1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 1990 Mentat Inc.
  25  * Copyright (c) 2012 Joyent, Inc. All rights reserved.
  26  * Copyright (c) 2014, OmniTI Computer Consulting, Inc. All rights reserved.
  27  */
  28 
  29 #include <sys/types.h>
  30 #include <sys/stream.h>
  31 #include <sys/dlpi.h>
  32 #include <sys/stropts.h>
  33 #include <sys/sysmacros.h>
  34 #include <sys/strsubr.h>
  35 #include <sys/strlog.h>
  36 #include <sys/strsun.h>
  37 #include <sys/zone.h>
  38 #define _SUN_TPI_VERSION 2
  39 #include <sys/tihdr.h>
  40 #include <sys/xti_inet.h>
  41 #include <sys/ddi.h>
  42 #include <sys/suntpi.h>
  43 #include <sys/cmn_err.h>
  44 #include <sys/debug.h>
  45 #include <sys/kobj.h>
  46 #include <sys/modctl.h>
  47 #include <sys/atomic.h>
  48 #include <sys/policy.h>
  49 #include <sys/priv.h>
  50 #include <sys/taskq.h>
  51 
  52 #include <sys/systm.h>
  53 #include <sys/param.h>
  54 #include <sys/kmem.h>
  55 #include <sys/sdt.h>
  56 #include <sys/socket.h>
  57 #include <sys/vtrace.h>
  58 #include <sys/isa_defs.h>
  59 #include <sys/mac.h>
  60 #include <net/if.h>
  61 #include <net/if_arp.h>
  62 #include <net/route.h>
  63 #include <sys/sockio.h>
  64 #include <netinet/in.h>
  65 #include <net/if_dl.h>
  66 
  67 #include <inet/common.h>
  68 #include <inet/mi.h>
  69 #include <inet/mib2.h>
  70 #include <inet/nd.h>
  71 #include <inet/arp.h>
  72 #include <inet/snmpcom.h>
  73 #include <inet/optcom.h>
  74 #include <inet/kstatcom.h>
  75 
  76 #include <netinet/igmp_var.h>
  77 #include <netinet/ip6.h>
  78 #include <netinet/icmp6.h>
  79 #include <netinet/sctp.h>
  80 
  81 #include <inet/ip.h>
  82 #include <inet/ip_impl.h>
  83 #include <inet/ip6.h>
  84 #include <inet/ip6_asp.h>
  85 #include <inet/tcp.h>
  86 #include <inet/tcp_impl.h>
  87 #include <inet/ip_multi.h>
  88 #include <inet/ip_if.h>
  89 #include <inet/ip_ire.h>
  90 #include <inet/ip_ftable.h>
  91 #include <inet/ip_rts.h>
  92 #include <inet/ip_ndp.h>
  93 #include <inet/ip_listutils.h>
  94 #include <netinet/igmp.h>
  95 #include <netinet/ip_mroute.h>
  96 #include <inet/ipp_common.h>
  97 
  98 #include <net/pfkeyv2.h>
  99 #include <inet/sadb.h>
 100 #include <inet/ipsec_impl.h>
 101 #include <inet/iptun/iptun_impl.h>
 102 #include <inet/ipdrop.h>
 103 #include <inet/ip_netinfo.h>
 104 #include <inet/ilb_ip.h>
 105 
 106 #include <sys/ethernet.h>
 107 #include <net/if_types.h>
 108 #include <sys/cpuvar.h>
 109 
 110 #include <ipp/ipp.h>
 111 #include <ipp/ipp_impl.h>
 112 #include <ipp/ipgpc/ipgpc.h>
 113 
 114 #include <sys/pattr.h>
 115 #include <inet/ipclassifier.h>
 116 #include <inet/sctp_ip.h>
 117 #include <inet/sctp/sctp_impl.h>
 118 #include <inet/udp_impl.h>
 119 #include <inet/rawip_impl.h>
 120 #include <inet/rts_impl.h>
 121 
 122 #include <sys/tsol/label.h>
 123 #include <sys/tsol/tnet.h>
 124 
 125 #include <sys/squeue_impl.h>
 126 #include <inet/ip_arp.h>
 127 
 128 #include <sys/clock_impl.h>       /* For LBOLT_FASTPATH{,64} */
 129 
 130 /*
 131  * Values for squeue switch:
 132  * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
 133  * IP_SQUEUE_ENTER: SQ_PROCESS
 134  * IP_SQUEUE_FILL: SQ_FILL
 135  */
 136 int ip_squeue_enter = IP_SQUEUE_ENTER;  /* Setable in /etc/system */
 137 
 138 int ip_squeue_flag;
 139 
 140 /*
 141  * Setable in /etc/system
 142  */
 143 int ip_poll_normal_ms = 100;
 144 int ip_poll_normal_ticks = 0;
 145 int ip_modclose_ackwait_ms = 3000;
 146 
 147 /*
 148  * It would be nice to have these present only in DEBUG systems, but the
 149  * current design of the global symbol checking logic requires them to be
 150  * unconditionally present.
 151  */
 152 uint_t ip_thread_data;                  /* TSD key for debug support */
 153 krwlock_t ip_thread_rwlock;
 154 list_t  ip_thread_list;
 155 
 156 /*
 157  * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
 158  */
 159 
 160 struct listptr_s {
 161         mblk_t  *lp_head;       /* pointer to the head of the list */
 162         mblk_t  *lp_tail;       /* pointer to the tail of the list */
 163 };
 164 
 165 typedef struct listptr_s listptr_t;
 166 
 167 /*
 168  * This is used by ip_snmp_get_mib2_ip_route_media and
 169  * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
 170  */
 171 typedef struct iproutedata_s {
 172         uint_t          ird_idx;
 173         uint_t          ird_flags;      /* see below */
 174         listptr_t       ird_route;      /* ipRouteEntryTable */
 175         listptr_t       ird_netmedia;   /* ipNetToMediaEntryTable */
 176         listptr_t       ird_attrs;      /* ipRouteAttributeTable */
 177 } iproutedata_t;
 178 
 179 /* Include ire_testhidden and IRE_IF_CLONE routes */
 180 #define IRD_REPORT_ALL  0x01
 181 
 182 /*
 183  * Cluster specific hooks. These should be NULL when booted as a non-cluster
 184  */
 185 
 186 /*
 187  * Hook functions to enable cluster networking
 188  * On non-clustered systems these vectors must always be NULL.
 189  *
 190  * Hook function to Check ip specified ip address is a shared ip address
 191  * in the cluster
 192  *
 193  */
 194 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
 195     sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
 196 
 197 /*
 198  * Hook function to generate cluster wide ip fragment identifier
 199  */
 200 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
 201     sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
 202     void *args) = NULL;
 203 
 204 /*
 205  * Hook function to generate cluster wide SPI.
 206  */
 207 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
 208     void *) = NULL;
 209 
 210 /*
 211  * Hook function to verify if the SPI is already utlized.
 212  */
 213 
 214 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
 215 
 216 /*
 217  * Hook function to delete the SPI from the cluster wide repository.
 218  */
 219 
 220 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
 221 
 222 /*
 223  * Hook function to inform the cluster when packet received on an IDLE SA
 224  */
 225 
 226 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
 227     in6_addr_t, in6_addr_t, void *) = NULL;
 228 
 229 /*
 230  * Synchronization notes:
 231  *
 232  * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
 233  * MT level protection given by STREAMS. IP uses a combination of its own
 234  * internal serialization mechanism and standard Solaris locking techniques.
 235  * The internal serialization is per phyint.  This is used to serialize
 236  * plumbing operations, IPMP operations, most set ioctls, etc.
 237  *
 238  * Plumbing is a long sequence of operations involving message
 239  * exchanges between IP, ARP and device drivers. Many set ioctls are typically
 240  * involved in plumbing operations. A natural model is to serialize these
 241  * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
 242  * parallel without any interference. But various set ioctls on hme0 are best
 243  * serialized, along with IPMP operations and processing of DLPI control
 244  * messages received from drivers on a per phyint basis. This serialization is
 245  * provided by the ipsq_t and primitives operating on this. Details can
 246  * be found in ip_if.c above the core primitives operating on ipsq_t.
 247  *
 248  * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
 249  * Simiarly lookup of an ire by a thread also returns a refheld ire.
 250  * In addition ipif's and ill's referenced by the ire are also indirectly
 251  * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
 252  * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
 253  * address of an ipif has to go through the ipsq_t. This ensures that only
 254  * one such exclusive operation proceeds at any time on the ipif. It then
 255  * waits for all refcnts
 256  * associated with this ipif to come down to zero. The address is changed
 257  * only after the ipif has been quiesced. Then the ipif is brought up again.
 258  * More details are described above the comment in ip_sioctl_flags.
 259  *
 260  * Packet processing is based mostly on IREs and are fully multi-threaded
 261  * using standard Solaris MT techniques.
 262  *
 263  * There are explicit locks in IP to handle:
 264  * - The ip_g_head list maintained by mi_open_link() and friends.
 265  *
 266  * - The reassembly data structures (one lock per hash bucket)
 267  *
 268  * - conn_lock is meant to protect conn_t fields. The fields actually
 269  *   protected by conn_lock are documented in the conn_t definition.
 270  *
 271  * - ire_lock to protect some of the fields of the ire, IRE tables
 272  *   (one lock per hash bucket). Refer to ip_ire.c for details.
 273  *
 274  * - ndp_g_lock and ncec_lock for protecting NCEs.
 275  *
 276  * - ill_lock protects fields of the ill and ipif. Details in ip.h
 277  *
 278  * - ill_g_lock: This is a global reader/writer lock. Protects the following
 279  *      * The AVL tree based global multi list of all ills.
 280  *      * The linked list of all ipifs of an ill
 281  *      * The <ipsq-xop> mapping
 282  *      * <ill-phyint> association
 283  *   Insertion/deletion of an ill in the system, insertion/deletion of an ipif
 284  *   into an ill, changing the <ipsq-xop> mapping of an ill, changing the
 285  *   <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
 286  *   writer for the actual duration of the insertion/deletion/change.
 287  *
 288  * - ill_lock:  This is a per ill mutex.
 289  *   It protects some members of the ill_t struct; see ip.h for details.
 290  *   It also protects the <ill-phyint> assoc.
 291  *   It also protects the list of ipifs hanging off the ill.
 292  *
 293  * - ipsq_lock: This is a per ipsq_t mutex lock.
 294  *   This protects some members of the ipsq_t struct; see ip.h for details.
 295  *   It also protects the <ipsq-ipxop> mapping
 296  *
 297  * - ipx_lock: This is a per ipxop_t mutex lock.
 298  *   This protects some members of the ipxop_t struct; see ip.h for details.
 299  *
 300  * - phyint_lock: This is a per phyint mutex lock. Protects just the
 301  *   phyint_flags
 302  *
 303  * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
 304  *   This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
 305  *   uniqueness check also done atomically.
 306  *
 307  * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
 308  *   group list linked by ill_usesrc_grp_next. It also protects the
 309  *   ill_usesrc_ifindex field. It is taken as a writer when a member of the
 310  *   group is being added or deleted.  This lock is taken as a reader when
 311  *   walking the list/group(eg: to get the number of members in a usesrc group).
 312  *   Note, it is only necessary to take this lock if the ill_usesrc_grp_next
 313  *   field is changing state i.e from NULL to non-NULL or vice-versa. For
 314  *   example, it is not necessary to take this lock in the initial portion
 315  *   of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
 316  *   operations are executed exclusively and that ensures that the "usesrc
 317  *   group state" cannot change. The "usesrc group state" change can happen
 318  *   only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
 319  *
 320  * Changing <ill-phyint>, <ipsq-xop> assocications:
 321  *
 322  * To change the <ill-phyint> association, the ill_g_lock must be held
 323  * as writer, and the ill_locks of both the v4 and v6 instance of the ill
 324  * must be held.
 325  *
 326  * To change the <ipsq-xop> association, the ill_g_lock must be held as
 327  * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
 328  * This is only done when ills are added or removed from IPMP groups.
 329  *
 330  * To add or delete an ipif from the list of ipifs hanging off the ill,
 331  * ill_g_lock (writer) and ill_lock must be held and the thread must be
 332  * a writer on the associated ipsq.
 333  *
 334  * To add or delete an ill to the system, the ill_g_lock must be held as
 335  * writer and the thread must be a writer on the associated ipsq.
 336  *
 337  * To add or delete an ilm to an ill, the ill_lock must be held and the thread
 338  * must be a writer on the associated ipsq.
 339  *
 340  * Lock hierarchy
 341  *
 342  * Some lock hierarchy scenarios are listed below.
 343  *
 344  * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
 345  * ill_g_lock -> ill_lock(s) -> phyint_lock
 346  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
 347  * ill_g_lock -> ip_addr_avail_lock
 348  * conn_lock -> irb_lock -> ill_lock -> ire_lock
 349  * ill_g_lock -> ip_g_nd_lock
 350  * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
 351  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
 352  * arl_lock -> ill_lock
 353  * ips_ire_dep_lock -> irb_lock
 354  *
 355  * When more than 1 ill lock is needed to be held, all ill lock addresses
 356  * are sorted on address and locked starting from highest addressed lock
 357  * downward.
 358  *
 359  * Multicast scenarios
 360  * ips_ill_g_lock -> ill_mcast_lock
 361  * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
 362  * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
 363  * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
 364  * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
 365  * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
 366  *
 367  * IPsec scenarios
 368  *
 369  * ipsa_lock -> ill_g_lock -> ill_lock
 370  * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
 371  *
 372  * Trusted Solaris scenarios
 373  *
 374  * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
 375  * igsa_lock -> gcdb_lock
 376  * gcgrp_rwlock -> ire_lock
 377  * gcgrp_rwlock -> gcdb_lock
 378  *
 379  * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
 380  *
 381  * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
 382  * sq_lock -> conn_lock -> QLOCK(q)
 383  * ill_lock -> ft_lock -> fe_lock
 384  *
 385  * Routing/forwarding table locking notes:
 386  *
 387  * Lock acquisition order: Radix tree lock, irb_lock.
 388  * Requirements:
 389  * i.  Walker must not hold any locks during the walker callback.
 390  * ii  Walker must not see a truncated tree during the walk because of any node
 391  *     deletion.
 392  * iii Existing code assumes ire_bucket is valid if it is non-null and is used
 393  *     in many places in the code to walk the irb list. Thus even if all the
 394  *     ires in a bucket have been deleted, we still can't free the radix node
 395  *     until the ires have actually been inactive'd (freed).
 396  *
 397  * Tree traversal - Need to hold the global tree lock in read mode.
 398  * Before dropping the global tree lock, need to either increment the ire_refcnt
 399  * to ensure that the radix node can't be deleted.
 400  *
 401  * Tree add - Need to hold the global tree lock in write mode to add a
 402  * radix node. To prevent the node from being deleted, increment the
 403  * irb_refcnt, after the node is added to the tree. The ire itself is
 404  * added later while holding the irb_lock, but not the tree lock.
 405  *
 406  * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
 407  * All associated ires must be inactive (i.e. freed), and irb_refcnt
 408  * must be zero.
 409  *
 410  * Walker - Increment irb_refcnt before calling the walker callback. Hold the
 411  * global tree lock (read mode) for traversal.
 412  *
 413  * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
 414  * hence we will acquire irb_lock while holding ips_ire_dep_lock.
 415  *
 416  * IPsec notes :
 417  *
 418  * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
 419  * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
 420  * ip_xmit_attr_t has the
 421  * information used by the IPsec code for applying the right level of
 422  * protection. The information initialized by IP in the ip_xmit_attr_t
 423  * is determined by the per-socket policy or global policy in the system.
 424  * For inbound datagrams, the ip_recv_attr_t
 425  * starts out with nothing in it. It gets filled
 426  * with the right information if it goes through the AH/ESP code, which
 427  * happens if the incoming packet is secure. The information initialized
 428  * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
 429  * the policy requirements needed by per-socket policy or global policy
 430  * is met or not.
 431  *
 432  * For fully connected sockets i.e dst, src [addr, port] is known,
 433  * conn_policy_cached is set indicating that policy has been cached.
 434  * conn_in_enforce_policy may or may not be set depending on whether
 435  * there is a global policy match or per-socket policy match.
 436  * Policy inheriting happpens in ip_policy_set once the destination is known.
 437  * Once the right policy is set on the conn_t, policy cannot change for
 438  * this socket. This makes life simpler for TCP (UDP ?) where
 439  * re-transmissions go out with the same policy. For symmetry, policy
 440  * is cached for fully connected UDP sockets also. Thus if policy is cached,
 441  * it also implies that policy is latched i.e policy cannot change
 442  * on these sockets. As we have the right policy on the conn, we don't
 443  * have to lookup global policy for every outbound and inbound datagram
 444  * and thus serving as an optimization. Note that a global policy change
 445  * does not affect fully connected sockets if they have policy. If fully
 446  * connected sockets did not have any policy associated with it, global
 447  * policy change may affect them.
 448  *
 449  * IP Flow control notes:
 450  * ---------------------
 451  * Non-TCP streams are flow controlled by IP. The way this is accomplished
 452  * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
 453  * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
 454  * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
 455  * functions.
 456  *
 457  * Per Tx ring udp flow control:
 458  * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
 459  * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
 460  *
 461  * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
 462  * To achieve best performance, outgoing traffic need to be fanned out among
 463  * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
 464  * traffic out of the NIC and it takes a fanout hint. UDP connections pass
 465  * the address of connp as fanout hint to mac_tx(). Under flow controlled
 466  * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
 467  * cookie points to a specific Tx ring that is blocked. The cookie is used to
 468  * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
 469  * point to drain_lists (idl_t's). These drain list will store the blocked UDP
 470  * connp's. The drain list is not a single list but a configurable number of
 471  * lists.
 472  *
 473  * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
 474  * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
 475  * which is equal to 128. This array in turn contains a pointer to idl_t[],
 476  * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
 477  * list will point to the list of connp's that are flow controlled.
 478  *
 479  *                      ---------------   -------   -------   -------
 480  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
 481  *                   |  ---------------   -------   -------   -------
 482  *                   |  ---------------   -------   -------   -------
 483  *                   |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
 484  * ----------------  |  ---------------   -------   -------   -------
 485  * |idl_tx_list[0]|->|  ---------------   -------   -------   -------
 486  * ----------------  |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
 487  *                   |  ---------------   -------   -------   -------
 488  *                   .        .              .         .         .
 489  *                   |  ---------------   -------   -------   -------
 490  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
 491  *                      ---------------   -------   -------   -------
 492  *                      ---------------   -------   -------   -------
 493  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
 494  *                   |  ---------------   -------   -------   -------
 495  *                   |  ---------------   -------   -------   -------
 496  * ----------------  |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
 497  * |idl_tx_list[1]|->|  ---------------   -------   -------   -------
 498  * ----------------  |        .              .         .         .
 499  *                   |  ---------------   -------   -------   -------
 500  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
 501  *                      ---------------   -------   -------   -------
 502  *     .....
 503  * ----------------
 504  * |idl_tx_list[n]|-> ...
 505  * ----------------
 506  *
 507  * When mac_tx() returns a cookie, the cookie is hashed into an index into
 508  * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
 509  * to insert the conn onto.  conn_drain_insert() asserts flow control for the
 510  * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
 511  * Further, conn_blocked is set to indicate that the conn is blocked.
 512  *
 513  * GLDv3 calls ill_flow_enable() when flow control is relieved.  The cookie
 514  * passed in the call to ill_flow_enable() identifies the blocked Tx ring and
 515  * is again hashed to locate the appropriate idl_tx_list, which is then
 516  * drained via conn_walk_drain().  conn_walk_drain() goes through each conn in
 517  * the drain list and calls conn_drain_remove() to clear flow control (via
 518  * calling su_txq_full() or clearing QFULL), and remove the conn from the
 519  * drain list.
 520  *
 521  * Note that the drain list is not a single list but a (configurable) array of
 522  * lists (8 elements by default).  Synchronization between drain insertion and
 523  * flow control wakeup is handled by using idl_txl->txl_lock, and only
 524  * conn_drain_insert() and conn_drain_remove() manipulate the drain list.
 525  *
 526  * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
 527  * On the send side, if the packet cannot be sent down to the driver by IP
 528  * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
 529  * caller, who may then invoke ixa_check_drain_insert() to insert the conn on
 530  * the 0'th drain list.  When ip_wsrv() runs on the ill_wq because flow
 531  * control has been relieved, the blocked conns in the 0'th drain list are
 532  * drained as in the non-STREAMS case.
 533  *
 534  * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
 535  * is done when the conn is inserted into the drain list (conn_drain_insert())
 536  * and cleared when the conn is removed from the it (conn_drain_remove()).
 537  *
 538  * IPQOS notes:
 539  *
 540  * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
 541  * and IPQoS modules. IPPF includes hooks in IP at different control points
 542  * (callout positions) which direct packets to IPQoS modules for policy
 543  * processing. Policies, if present, are global.
 544  *
 545  * The callout positions are located in the following paths:
 546  *              o local_in (packets destined for this host)
 547  *              o local_out (packets orginating from this host )
 548  *              o fwd_in  (packets forwarded by this m/c - inbound)
 549  *              o fwd_out (packets forwarded by this m/c - outbound)
 550  * Hooks at these callout points can be enabled/disabled using the ndd variable
 551  * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
 552  * By default all the callout positions are enabled.
 553  *
 554  * Outbound (local_out)
 555  * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
 556  *
 557  * Inbound (local_in)
 558  * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
 559  *
 560  * Forwarding (in and out)
 561  * Hooks are placed in ire_recv_forward_v4/v6.
 562  *
 563  * IP Policy Framework processing (IPPF processing)
 564  * Policy processing for a packet is initiated by ip_process, which ascertains
 565  * that the classifier (ipgpc) is loaded and configured, failing which the
 566  * packet resumes normal processing in IP. If the clasifier is present, the
 567  * packet is acted upon by one or more IPQoS modules (action instances), per
 568  * filters configured in ipgpc and resumes normal IP processing thereafter.
 569  * An action instance can drop a packet in course of its processing.
 570  *
 571  * Zones notes:
 572  *
 573  * The partitioning rules for networking are as follows:
 574  * 1) Packets coming from a zone must have a source address belonging to that
 575  * zone.
 576  * 2) Packets coming from a zone can only be sent on a physical interface on
 577  * which the zone has an IP address.
 578  * 3) Between two zones on the same machine, packet delivery is only allowed if
 579  * there's a matching route for the destination and zone in the forwarding
 580  * table.
 581  * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
 582  * different zones can bind to the same port with the wildcard address
 583  * (INADDR_ANY).
 584  *
 585  * The granularity of interface partitioning is at the logical interface level.
 586  * Therefore, every zone has its own IP addresses, and incoming packets can be
 587  * attributed to a zone unambiguously. A logical interface is placed into a zone
 588  * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
 589  * structure. Rule (1) is implemented by modifying the source address selection
 590  * algorithm so that the list of eligible addresses is filtered based on the
 591  * sending process zone.
 592  *
 593  * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
 594  * across all zones, depending on their type. Here is the break-up:
 595  *
 596  * IRE type                             Shared/exclusive
 597  * --------                             ----------------
 598  * IRE_BROADCAST                        Exclusive
 599  * IRE_DEFAULT (default routes)         Shared (*)
 600  * IRE_LOCAL                            Exclusive (x)
 601  * IRE_LOOPBACK                         Exclusive
 602  * IRE_PREFIX (net routes)              Shared (*)
 603  * IRE_IF_NORESOLVER (interface routes) Exclusive
 604  * IRE_IF_RESOLVER (interface routes)   Exclusive
 605  * IRE_IF_CLONE (interface routes)      Exclusive
 606  * IRE_HOST (host routes)               Shared (*)
 607  *
 608  * (*) A zone can only use a default or off-subnet route if the gateway is
 609  * directly reachable from the zone, that is, if the gateway's address matches
 610  * one of the zone's logical interfaces.
 611  *
 612  * (x) IRE_LOCAL are handled a bit differently.
 613  * When ip_restrict_interzone_loopback is set (the default),
 614  * ire_route_recursive restricts loopback using an IRE_LOCAL
 615  * between zone to the case when L2 would have conceptually looped the packet
 616  * back, i.e. the loopback which is required since neither Ethernet drivers
 617  * nor Ethernet hardware loops them back. This is the case when the normal
 618  * routes (ignoring IREs with different zoneids) would send out the packet on
 619  * the same ill as the ill with which is IRE_LOCAL is associated.
 620  *
 621  * Multiple zones can share a common broadcast address; typically all zones
 622  * share the 255.255.255.255 address. Incoming as well as locally originated
 623  * broadcast packets must be dispatched to all the zones on the broadcast
 624  * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
 625  * since some zones may not be on the 10.16.72/24 network. To handle this, each
 626  * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
 627  * sent to every zone that has an IRE_BROADCAST entry for the destination
 628  * address on the input ill, see ip_input_broadcast().
 629  *
 630  * Applications in different zones can join the same multicast group address.
 631  * The same logic applies for multicast as for broadcast. ip_input_multicast
 632  * dispatches packets to all zones that have members on the physical interface.
 633  */
 634 
 635 /*
 636  * Squeue Fanout flags:
 637  *      0: No fanout.
 638  *      1: Fanout across all squeues
 639  */
 640 boolean_t       ip_squeue_fanout = 0;
 641 
 642 /*
 643  * Maximum dups allowed per packet.
 644  */
 645 uint_t ip_max_frag_dups = 10;
 646 
 647 static int      ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
 648                     cred_t *credp, boolean_t isv6);
 649 static mblk_t   *ip_xmit_attach_llhdr(mblk_t *, nce_t *);
 650 
 651 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
 652 static void     icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
 653 static void     icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
 654     ip_recv_attr_t *);
 655 static void     icmp_options_update(ipha_t *);
 656 static void     icmp_param_problem(mblk_t *, uint8_t,  ip_recv_attr_t *);
 657 static void     icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
 658 static mblk_t   *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
 659 static void     icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
 660     ip_recv_attr_t *);
 661 static void     icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
 662 static void     icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
 663     ip_recv_attr_t *);
 664 
 665 mblk_t          *ip_dlpi_alloc(size_t, t_uscalar_t);
 666 char            *ip_dot_addr(ipaddr_t, char *);
 667 mblk_t          *ip_carve_mp(mblk_t **, ssize_t);
 668 int             ip_close(queue_t *, int);
 669 static char     *ip_dot_saddr(uchar_t *, char *);
 670 static void     ip_lrput(queue_t *, mblk_t *);
 671 ipaddr_t        ip_net_mask(ipaddr_t);
 672 char            *ip_nv_lookup(nv_t *, int);
 673 void    ip_rput(queue_t *, mblk_t *);
 674 static void     ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
 675                     void *dummy_arg);
 676 int             ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
 677 static mblk_t   *ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
 678                     mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
 679 static mblk_t   *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
 680                     ip_stack_t *, boolean_t);
 681 static mblk_t   *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
 682                     boolean_t);
 683 static mblk_t   *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
 684 static mblk_t   *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
 685 static mblk_t   *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
 686 static mblk_t   *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
 687 static mblk_t   *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
 688                     ip_stack_t *ipst, boolean_t);
 689 static mblk_t   *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
 690                     ip_stack_t *ipst, boolean_t);
 691 static mblk_t   *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
 692                     ip_stack_t *ipst);
 693 static mblk_t   *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
 694                     ip_stack_t *ipst);
 695 static mblk_t   *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
 696                     ip_stack_t *ipst);
 697 static mblk_t   *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
 698                     ip_stack_t *ipst);
 699 static mblk_t   *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
 700                     ip_stack_t *ipst);
 701 static mblk_t   *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
 702                     ip_stack_t *ipst);
 703 static mblk_t   *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
 704                     ip_stack_t *ipst);
 705 static mblk_t   *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
 706                     ip_stack_t *ipst);
 707 static void     ip_snmp_get2_v4(ire_t *, iproutedata_t *);
 708 static void     ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
 709 static int      ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *);
 710 static int      ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *);
 711 int             ip_snmp_set(queue_t *, int, int, uchar_t *, int);
 712 
 713 static mblk_t   *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
 714                     mblk_t *);
 715 
 716 static void     conn_drain_init(ip_stack_t *);
 717 static void     conn_drain_fini(ip_stack_t *);
 718 static void     conn_drain(conn_t *connp, boolean_t closing);
 719 
 720 static void     conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
 721 static void     conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
 722 
 723 static void     *ip_stack_init(netstackid_t stackid, netstack_t *ns);
 724 static void     ip_stack_shutdown(netstackid_t stackid, void *arg);
 725 static void     ip_stack_fini(netstackid_t stackid, void *arg);
 726 
 727 static int      ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
 728     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
 729     ire_t *, conn_t *, boolean_t, const in6_addr_t *,  mcast_record_t,
 730     const in6_addr_t *);
 731 
 732 static int      ip_squeue_switch(int);
 733 
 734 static void     *ip_kstat_init(netstackid_t, ip_stack_t *);
 735 static void     ip_kstat_fini(netstackid_t, kstat_t *);
 736 static int      ip_kstat_update(kstat_t *kp, int rw);
 737 static void     *icmp_kstat_init(netstackid_t);
 738 static void     icmp_kstat_fini(netstackid_t, kstat_t *);
 739 static int      icmp_kstat_update(kstat_t *kp, int rw);
 740 static void     *ip_kstat2_init(netstackid_t, ip_stat_t *);
 741 static void     ip_kstat2_fini(netstackid_t, kstat_t *);
 742 
 743 static void     ipobs_init(ip_stack_t *);
 744 static void     ipobs_fini(ip_stack_t *);
 745 
 746 static int      ip_tp_cpu_update(cpu_setup_t, int, void *);
 747 
 748 ipaddr_t        ip_g_all_ones = IP_HOST_MASK;
 749 
 750 static long ip_rput_pullups;
 751 int     dohwcksum = 1;  /* use h/w cksum if supported by the hardware */
 752 
 753 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
 754 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
 755 
 756 int     ip_debug;
 757 
 758 /*
 759  * Multirouting/CGTP stuff
 760  */
 761 int     ip_cgtp_filter_rev = CGTP_FILTER_REV;   /* CGTP hooks version */
 762 
 763 /*
 764  * IP tunables related declarations. Definitions are in ip_tunables.c
 765  */
 766 extern mod_prop_info_t ip_propinfo_tbl[];
 767 extern int ip_propinfo_count;
 768 
 769 /*
 770  * Table of IP ioctls encoding the various properties of the ioctl and
 771  * indexed based on the last byte of the ioctl command. Occasionally there
 772  * is a clash, and there is more than 1 ioctl with the same last byte.
 773  * In such a case 1 ioctl is encoded in the ndx table and the remaining
 774  * ioctls are encoded in the misc table. An entry in the ndx table is
 775  * retrieved by indexing on the last byte of the ioctl command and comparing
 776  * the ioctl command with the value in the ndx table. In the event of a
 777  * mismatch the misc table is then searched sequentially for the desired
 778  * ioctl command.
 779  *
 780  * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
 781  */
 782 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
 783         /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 784         /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 785         /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 786         /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 787         /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 788         /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 789         /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 790         /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 791         /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 792         /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 793 
 794         /* 010 */ { SIOCADDRT,  sizeof (struct rtentry), IPI_PRIV,
 795                         MISC_CMD, ip_siocaddrt, NULL },
 796         /* 011 */ { SIOCDELRT,  sizeof (struct rtentry), IPI_PRIV,
 797                         MISC_CMD, ip_siocdelrt, NULL },
 798 
 799         /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 800                         IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
 801         /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
 802                         IF_CMD, ip_sioctl_get_addr, NULL },
 803 
 804         /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 805                         IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
 806         /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
 807                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
 808 
 809         /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
 810                         IPI_PRIV | IPI_WR,
 811                         IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
 812         /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
 813                         IPI_MODOK | IPI_GET_CMD,
 814                         IF_CMD, ip_sioctl_get_flags, NULL },
 815 
 816         /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 817         /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 818 
 819         /* copyin size cannot be coded for SIOCGIFCONF */
 820         /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
 821                         MISC_CMD, ip_sioctl_get_ifconf, NULL },
 822 
 823         /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 824                         IF_CMD, ip_sioctl_mtu, NULL },
 825         /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD,
 826                         IF_CMD, ip_sioctl_get_mtu, NULL },
 827         /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
 828                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
 829         /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 830                         IF_CMD, ip_sioctl_brdaddr, NULL },
 831         /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
 832                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
 833         /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 834                         IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
 835         /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
 836                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
 837         /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
 838                         IF_CMD, ip_sioctl_metric, NULL },
 839         /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 840 
 841         /* See 166-168 below for extended SIOC*XARP ioctls */
 842         /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
 843                         ARP_CMD, ip_sioctl_arp, NULL },
 844         /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
 845                         ARP_CMD, ip_sioctl_arp, NULL },
 846         /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
 847                         ARP_CMD, ip_sioctl_arp, NULL },
 848 
 849         /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 850         /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 851         /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 852         /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 853         /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 854         /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 855         /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 856         /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 857         /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 858         /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 859         /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 860         /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 861         /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 862         /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 863         /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 864         /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 865         /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 866         /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 867         /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 868         /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 869         /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 870 
 871         /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
 872                         MISC_CMD, if_unitsel, if_unitsel_restart },
 873 
 874         /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 875         /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 876         /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 877         /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 878         /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 879         /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 880         /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 881         /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 882         /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 883         /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 884         /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 885         /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 886         /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 887         /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 888         /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 889         /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 890         /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 891         /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 892 
 893         /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
 894                         IPI_PRIV | IPI_WR | IPI_MODOK,
 895                         IF_CMD, ip_sioctl_sifname, NULL },
 896 
 897         /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 898         /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 899         /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 900         /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 901         /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 902         /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 903         /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 904         /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 905         /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 906         /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 907         /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 908         /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 909         /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 910 
 911         /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
 912                         MISC_CMD, ip_sioctl_get_ifnum, NULL },
 913         /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
 914                         IF_CMD, ip_sioctl_get_muxid, NULL },
 915         /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
 916                         IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
 917 
 918         /* Both if and lif variants share same func */
 919         /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
 920                         IF_CMD, ip_sioctl_get_lifindex, NULL },
 921         /* Both if and lif variants share same func */
 922         /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
 923                         IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
 924 
 925         /* copyin size cannot be coded for SIOCGIFCONF */
 926         /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
 927                         MISC_CMD, ip_sioctl_get_ifconf, NULL },
 928         /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 929         /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 930         /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 931         /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 932         /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 933         /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 934         /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 935         /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 936         /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 937         /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 938         /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 939         /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 940         /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 941         /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 942         /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 943         /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 944         /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 945 
 946         /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
 947                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
 948                         ip_sioctl_removeif_restart },
 949         /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
 950                         IPI_GET_CMD | IPI_PRIV | IPI_WR,
 951                         LIF_CMD, ip_sioctl_addif, NULL },
 952 #define SIOCLIFADDR_NDX 112
 953         /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 954                         LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
 955         /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
 956                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
 957         /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 958                         LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
 959         /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
 960                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
 961         /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
 962                         IPI_PRIV | IPI_WR,
 963                         LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
 964         /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
 965                         IPI_GET_CMD | IPI_MODOK,
 966                         LIF_CMD, ip_sioctl_get_flags, NULL },
 967 
 968         /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 969         /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 970 
 971         /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
 972                         ip_sioctl_get_lifconf, NULL },
 973         /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 974                         LIF_CMD, ip_sioctl_mtu, NULL },
 975         /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
 976                         LIF_CMD, ip_sioctl_get_mtu, NULL },
 977         /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
 978                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
 979         /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 980                         LIF_CMD, ip_sioctl_brdaddr, NULL },
 981         /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
 982                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
 983         /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 984                         LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
 985         /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
 986                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
 987         /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 988                         LIF_CMD, ip_sioctl_metric, NULL },
 989         /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
 990                         IPI_PRIV | IPI_WR | IPI_MODOK,
 991                         LIF_CMD, ip_sioctl_slifname,
 992                         ip_sioctl_slifname_restart },
 993 
 994         /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
 995                         MISC_CMD, ip_sioctl_get_lifnum, NULL },
 996         /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
 997                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
 998         /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
 999                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
1000         /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1001                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1002         /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1003                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1004         /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1005                         LIF_CMD, ip_sioctl_token, NULL },
1006         /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1007                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1008         /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1009                         LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1010         /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1011                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1012         /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1013                         LIF_CMD, ip_sioctl_lnkinfo, NULL },
1014 
1015         /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1016                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1017         /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1018                         LIF_CMD, ip_siocdelndp_v6, NULL },
1019         /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1020                         LIF_CMD, ip_siocqueryndp_v6, NULL },
1021         /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1022                         LIF_CMD, ip_siocsetndp_v6, NULL },
1023         /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1024                         MISC_CMD, ip_sioctl_tmyaddr, NULL },
1025         /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1026                         MISC_CMD, ip_sioctl_tonlink, NULL },
1027         /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1028                         MISC_CMD, ip_sioctl_tmysite, NULL },
1029         /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1030         /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1031 
1032         /* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */
1033         /* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1034         /* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1035         /* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1036         /* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1037 
1038         /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1039 
1040         /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1041                         LIF_CMD, ip_sioctl_get_binding, NULL },
1042         /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1043                         IPI_PRIV | IPI_WR,
1044                         LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1045         /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1046                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1047         /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1048                         IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
1049 
1050         /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1051         /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1052         /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1053         /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054 
1055         /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1056 
1057         /* These are handled in ip_sioctl_copyin_setup itself */
1058         /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1059                         MISC_CMD, NULL, NULL },
1060         /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1061                         MISC_CMD, NULL, NULL },
1062         /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1063 
1064         /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1065                         ip_sioctl_get_lifconf, NULL },
1066 
1067         /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1068                         XARP_CMD, ip_sioctl_arp, NULL },
1069         /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1070                         XARP_CMD, ip_sioctl_arp, NULL },
1071         /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1072                         XARP_CMD, ip_sioctl_arp, NULL },
1073 
1074         /* SIOCPOPSOCKFS is not handled by IP */
1075         /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1076 
1077         /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1078                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1079         /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1080                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1081                         ip_sioctl_slifzone_restart },
1082         /* 172-174 are SCTP ioctls and not handled by IP */
1083         /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1084         /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1085         /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1086         /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1087                         IPI_GET_CMD, LIF_CMD,
1088                         ip_sioctl_get_lifusesrc, 0 },
1089         /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1090                         IPI_PRIV | IPI_WR,
1091                         LIF_CMD, ip_sioctl_slifusesrc,
1092                         NULL },
1093         /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1094                         ip_sioctl_get_lifsrcof, NULL },
1095         /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1096                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1097         /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1098                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1099         /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1100                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1101         /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1102                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1103         /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1104         /* SIOCSENABLESDP is handled by SDP */
1105         /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1106         /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1107         /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
1108                         IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
1109         /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1110         /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1111                         ip_sioctl_ilb_cmd, NULL },
1112         /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1113         /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1114         /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1115                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1116         /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1117                         LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1118         /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
1119                         LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
1120 };
1121 
1122 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1123 
1124 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1125         { I_LINK,       0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1126         { I_UNLINK,     0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1127         { I_PLINK,      0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1128         { I_PUNLINK,    0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1129         { ND_GET,       0, 0, 0, NULL, NULL },
1130         { ND_SET,       0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1131         { IP_IOCTL,     0, 0, 0, NULL, NULL },
1132         { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1133                 MISC_CMD, mrt_ioctl},
1134         { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD,
1135                 MISC_CMD, mrt_ioctl},
1136         { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1137                 MISC_CMD, mrt_ioctl}
1138 };
1139 
1140 int ip_misc_ioctl_count =
1141     sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1142 
1143 int     conn_drain_nthreads;            /* Number of drainers reqd. */
1144                                         /* Settable in /etc/system */
1145 /* Defined in ip_ire.c */
1146 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1147 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1148 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1149 
1150 static nv_t     ire_nv_arr[] = {
1151         { IRE_BROADCAST, "BROADCAST" },
1152         { IRE_LOCAL, "LOCAL" },
1153         { IRE_LOOPBACK, "LOOPBACK" },
1154         { IRE_DEFAULT, "DEFAULT" },
1155         { IRE_PREFIX, "PREFIX" },
1156         { IRE_IF_NORESOLVER, "IF_NORESOL" },
1157         { IRE_IF_RESOLVER, "IF_RESOLV" },
1158         { IRE_IF_CLONE, "IF_CLONE" },
1159         { IRE_HOST, "HOST" },
1160         { IRE_MULTICAST, "MULTICAST" },
1161         { IRE_NOROUTE, "NOROUTE" },
1162         { 0 }
1163 };
1164 
1165 nv_t    *ire_nv_tbl = ire_nv_arr;
1166 
1167 /* Simple ICMP IP Header Template */
1168 static ipha_t icmp_ipha = {
1169         IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1170 };
1171 
1172 struct module_info ip_mod_info = {
1173         IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1174         IP_MOD_LOWAT
1175 };
1176 
1177 /*
1178  * Duplicate static symbols within a module confuses mdb; so we avoid the
1179  * problem by making the symbols here distinct from those in udp.c.
1180  */
1181 
1182 /*
1183  * Entry points for IP as a device and as a module.
1184  * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1185  */
1186 static struct qinit iprinitv4 = {
1187         (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL,
1188         &ip_mod_info
1189 };
1190 
1191 struct qinit iprinitv6 = {
1192         (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL,
1193         &ip_mod_info
1194 };
1195 
1196 static struct qinit ipwinit = {
1197         (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL,
1198         &ip_mod_info
1199 };
1200 
1201 static struct qinit iplrinit = {
1202         (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL,
1203         &ip_mod_info
1204 };
1205 
1206 static struct qinit iplwinit = {
1207         (pfi_t)ip_lwput, NULL, NULL, NULL, NULL,
1208         &ip_mod_info
1209 };
1210 
1211 /* For AF_INET aka /dev/ip */
1212 struct streamtab ipinfov4 = {
1213         &iprinitv4, &ipwinit, &iplrinit, &iplwinit
1214 };
1215 
1216 /* For AF_INET6 aka /dev/ip6 */
1217 struct streamtab ipinfov6 = {
1218         &iprinitv6, &ipwinit, &iplrinit, &iplwinit
1219 };
1220 
1221 #ifdef  DEBUG
1222 boolean_t skip_sctp_cksum = B_FALSE;
1223 #endif
1224 
1225 /*
1226  * Generate an ICMP fragmentation needed message.
1227  * When called from ip_output side a minimal ip_recv_attr_t needs to be
1228  * constructed by the caller.
1229  */
1230 void
1231 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1232 {
1233         icmph_t icmph;
1234         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
1235 
1236         mp = icmp_pkt_err_ok(mp, ira);
1237         if (mp == NULL)
1238                 return;
1239 
1240         bzero(&icmph, sizeof (icmph_t));
1241         icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1242         icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1243         icmph.icmph_du_mtu = htons((uint16_t)mtu);
1244         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1245         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1246 
1247         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1248 }
1249 
1250 /*
1251  * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1252  * If the ICMP message is consumed by IP, i.e., it should not be delivered
1253  * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1254  * Likewise, if the ICMP error is misformed (too short, etc), then it
1255  * returns NULL. The caller uses this to determine whether or not to send
1256  * to raw sockets.
1257  *
1258  * All error messages are passed to the matching transport stream.
1259  *
1260  * The following cases are handled by icmp_inbound:
1261  * 1) It needs to send a reply back and possibly delivering it
1262  *    to the "interested" upper clients.
1263  * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1264  * 3) It needs to change some values in IP only.
1265  * 4) It needs to change some values in IP and upper layers e.g TCP
1266  *    by delivering an error to the upper layers.
1267  *
1268  * We handle the above three cases in the context of IPsec in the
1269  * following way :
1270  *
1271  * 1) Send the reply back in the same way as the request came in.
1272  *    If it came in encrypted, it goes out encrypted. If it came in
1273  *    clear, it goes out in clear. Thus, this will prevent chosen
1274  *    plain text attack.
1275  * 2) The client may or may not expect things to come in secure.
1276  *    If it comes in secure, the policy constraints are checked
1277  *    before delivering it to the upper layers. If it comes in
1278  *    clear, ipsec_inbound_accept_clear will decide whether to
1279  *    accept this in clear or not. In both the cases, if the returned
1280  *    message (IP header + 8 bytes) that caused the icmp message has
1281  *    AH/ESP headers, it is sent up to AH/ESP for validation before
1282  *    sending up. If there are only 8 bytes of returned message, then
1283  *    upper client will not be notified.
1284  * 3) Check with global policy to see whether it matches the constaints.
1285  *    But this will be done only if icmp_accept_messages_in_clear is
1286  *    zero.
1287  * 4) If we need to change both in IP and ULP, then the decision taken
1288  *    while affecting the values in IP and while delivering up to TCP
1289  *    should be the same.
1290  *
1291  *      There are two cases.
1292  *
1293  *      a) If we reject data at the IP layer (ipsec_check_global_policy()
1294  *         failed), we will not deliver it to the ULP, even though they
1295  *         are *willing* to accept in *clear*. This is fine as our global
1296  *         disposition to icmp messages asks us reject the datagram.
1297  *
1298  *      b) If we accept data at the IP layer (ipsec_check_global_policy()
1299  *         succeeded or icmp_accept_messages_in_clear is 1), and not able
1300  *         to deliver it to ULP (policy failed), it can lead to
1301  *         consistency problems. The cases known at this time are
1302  *         ICMP_DESTINATION_UNREACHABLE  messages with following code
1303  *         values :
1304  *
1305  *         - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1306  *           and Upper layer rejects. Then the communication will
1307  *           come to a stop. This is solved by making similar decisions
1308  *           at both levels. Currently, when we are unable to deliver
1309  *           to the Upper Layer (due to policy failures) while IP has
1310  *           adjusted dce_pmtu, the next outbound datagram would
1311  *           generate a local ICMP_FRAGMENTATION_NEEDED message - which
1312  *           will be with the right level of protection. Thus the right
1313  *           value will be communicated even if we are not able to
1314  *           communicate when we get from the wire initially. But this
1315  *           assumes there would be at least one outbound datagram after
1316  *           IP has adjusted its dce_pmtu value. To make things
1317  *           simpler, we accept in clear after the validation of
1318  *           AH/ESP headers.
1319  *
1320  *         - Other ICMP ERRORS : We may not be able to deliver it to the
1321  *           upper layer depending on the level of protection the upper
1322  *           layer expects and the disposition in ipsec_inbound_accept_clear().
1323  *           ipsec_inbound_accept_clear() decides whether a given ICMP error
1324  *           should be accepted in clear when the Upper layer expects secure.
1325  *           Thus the communication may get aborted by some bad ICMP
1326  *           packets.
1327  */
1328 mblk_t *
1329 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1330 {
1331         icmph_t         *icmph;
1332         ipha_t          *ipha;          /* Outer header */
1333         int             ip_hdr_length;  /* Outer header length */
1334         boolean_t       interested;
1335         ipif_t          *ipif;
1336         uint32_t        ts;
1337         uint32_t        *tsp;
1338         timestruc_t     now;
1339         ill_t           *ill = ira->ira_ill;
1340         ip_stack_t      *ipst = ill->ill_ipst;
1341         zoneid_t        zoneid = ira->ira_zoneid;
1342         int             len_needed;
1343         mblk_t          *mp_ret = NULL;
1344 
1345         ipha = (ipha_t *)mp->b_rptr;
1346 
1347         BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1348 
1349         ip_hdr_length = ira->ira_ip_hdr_length;
1350         if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1351                 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1352                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1353                         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1354                         freemsg(mp);
1355                         return (NULL);
1356                 }
1357                 /* Last chance to get real. */
1358                 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1359                 if (ipha == NULL) {
1360                         BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1361                         freemsg(mp);
1362                         return (NULL);
1363                 }
1364         }
1365 
1366         /* The IP header will always be a multiple of four bytes */
1367         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1368         ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1369             icmph->icmph_code));
1370 
1371         /*
1372          * We will set "interested" to "true" if we should pass a copy to
1373          * the transport or if we handle the packet locally.
1374          */
1375         interested = B_FALSE;
1376         switch (icmph->icmph_type) {
1377         case ICMP_ECHO_REPLY:
1378                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1379                 break;
1380         case ICMP_DEST_UNREACHABLE:
1381                 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1382                         BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1383                 interested = B_TRUE;    /* Pass up to transport */
1384                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1385                 break;
1386         case ICMP_SOURCE_QUENCH:
1387                 interested = B_TRUE;    /* Pass up to transport */
1388                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1389                 break;
1390         case ICMP_REDIRECT:
1391                 if (!ipst->ips_ip_ignore_redirect)
1392                         interested = B_TRUE;
1393                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1394                 break;
1395         case ICMP_ECHO_REQUEST:
1396                 /*
1397                  * Whether to respond to echo requests that come in as IP
1398                  * broadcasts or as IP multicast is subject to debate
1399                  * (what isn't?).  We aim to please, you pick it.
1400                  * Default is do it.
1401                  */
1402                 if (ira->ira_flags & IRAF_MULTICAST) {
1403                         /* multicast: respond based on tunable */
1404                         interested = ipst->ips_ip_g_resp_to_echo_mcast;
1405                 } else if (ira->ira_flags & IRAF_BROADCAST) {
1406                         /* broadcast: respond based on tunable */
1407                         interested = ipst->ips_ip_g_resp_to_echo_bcast;
1408                 } else {
1409                         /* unicast: always respond */
1410                         interested = B_TRUE;
1411                 }
1412                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1413                 if (!interested) {
1414                         /* We never pass these to RAW sockets */
1415                         freemsg(mp);
1416                         return (NULL);
1417                 }
1418 
1419                 /* Check db_ref to make sure we can modify the packet. */
1420                 if (mp->b_datap->db_ref > 1) {
1421                         mblk_t  *mp1;
1422 
1423                         mp1 = copymsg(mp);
1424                         freemsg(mp);
1425                         if (!mp1) {
1426                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1427                                 return (NULL);
1428                         }
1429                         mp = mp1;
1430                         ipha = (ipha_t *)mp->b_rptr;
1431                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1432                 }
1433                 icmph->icmph_type = ICMP_ECHO_REPLY;
1434                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1435                 icmp_send_reply_v4(mp, ipha, icmph, ira);
1436                 return (NULL);
1437 
1438         case ICMP_ROUTER_ADVERTISEMENT:
1439         case ICMP_ROUTER_SOLICITATION:
1440                 break;
1441         case ICMP_TIME_EXCEEDED:
1442                 interested = B_TRUE;    /* Pass up to transport */
1443                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1444                 break;
1445         case ICMP_PARAM_PROBLEM:
1446                 interested = B_TRUE;    /* Pass up to transport */
1447                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1448                 break;
1449         case ICMP_TIME_STAMP_REQUEST:
1450                 /* Response to Time Stamp Requests is local policy. */
1451                 if (ipst->ips_ip_g_resp_to_timestamp) {
1452                         if (ira->ira_flags & IRAF_MULTIBROADCAST)
1453                                 interested =
1454                                     ipst->ips_ip_g_resp_to_timestamp_bcast;
1455                         else
1456                                 interested = B_TRUE;
1457                 }
1458                 if (!interested) {
1459                         /* We never pass these to RAW sockets */
1460                         freemsg(mp);
1461                         return (NULL);
1462                 }
1463 
1464                 /* Make sure we have enough of the packet */
1465                 len_needed = ip_hdr_length + ICMPH_SIZE +
1466                     3 * sizeof (uint32_t);
1467 
1468                 if (mp->b_wptr - mp->b_rptr < len_needed) {
1469                         ipha = ip_pullup(mp, len_needed, ira);
1470                         if (ipha == NULL) {
1471                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1472                                 ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1473                                     mp, ill);
1474                                 freemsg(mp);
1475                                 return (NULL);
1476                         }
1477                         /* Refresh following the pullup. */
1478                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1479                 }
1480                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1481                 /* Check db_ref to make sure we can modify the packet. */
1482                 if (mp->b_datap->db_ref > 1) {
1483                         mblk_t  *mp1;
1484 
1485                         mp1 = copymsg(mp);
1486                         freemsg(mp);
1487                         if (!mp1) {
1488                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1489                                 return (NULL);
1490                         }
1491                         mp = mp1;
1492                         ipha = (ipha_t *)mp->b_rptr;
1493                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1494                 }
1495                 icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1496                 tsp = (uint32_t *)&icmph[1];
1497                 tsp++;          /* Skip past 'originate time' */
1498                 /* Compute # of milliseconds since midnight */
1499                 gethrestime(&now);
1500                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1501                     now.tv_nsec / (NANOSEC / MILLISEC);
1502                 *tsp++ = htonl(ts);     /* Lay in 'receive time' */
1503                 *tsp++ = htonl(ts);     /* Lay in 'send time' */
1504                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1505                 icmp_send_reply_v4(mp, ipha, icmph, ira);
1506                 return (NULL);
1507 
1508         case ICMP_TIME_STAMP_REPLY:
1509                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1510                 break;
1511         case ICMP_INFO_REQUEST:
1512                 /* Per RFC 1122 3.2.2.7, ignore this. */
1513         case ICMP_INFO_REPLY:
1514                 break;
1515         case ICMP_ADDRESS_MASK_REQUEST:
1516                 if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1517                         interested =
1518                             ipst->ips_ip_respond_to_address_mask_broadcast;
1519                 } else {
1520                         interested = B_TRUE;
1521                 }
1522                 if (!interested) {
1523                         /* We never pass these to RAW sockets */
1524                         freemsg(mp);
1525                         return (NULL);
1526                 }
1527                 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1528                 if (mp->b_wptr - mp->b_rptr < len_needed) {
1529                         ipha = ip_pullup(mp, len_needed, ira);
1530                         if (ipha == NULL) {
1531                                 BUMP_MIB(ill->ill_ip_mib,
1532                                     ipIfStatsInTruncatedPkts);
1533                                 ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1534                                     ill);
1535                                 freemsg(mp);
1536                                 return (NULL);
1537                         }
1538                         /* Refresh following the pullup. */
1539                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1540                 }
1541                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1542                 /* Check db_ref to make sure we can modify the packet. */
1543                 if (mp->b_datap->db_ref > 1) {
1544                         mblk_t  *mp1;
1545 
1546                         mp1 = copymsg(mp);
1547                         freemsg(mp);
1548                         if (!mp1) {
1549                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1550                                 return (NULL);
1551                         }
1552                         mp = mp1;
1553                         ipha = (ipha_t *)mp->b_rptr;
1554                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1555                 }
1556                 /*
1557                  * Need the ipif with the mask be the same as the source
1558                  * address of the mask reply. For unicast we have a specific
1559                  * ipif. For multicast/broadcast we only handle onlink
1560                  * senders, and use the source address to pick an ipif.
1561                  */
1562                 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1563                 if (ipif == NULL) {
1564                         /* Broadcast or multicast */
1565                         ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1566                         if (ipif == NULL) {
1567                                 freemsg(mp);
1568                                 return (NULL);
1569                         }
1570                 }
1571                 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1572                 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1573                 ipif_refrele(ipif);
1574                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1575                 icmp_send_reply_v4(mp, ipha, icmph, ira);
1576                 return (NULL);
1577 
1578         case ICMP_ADDRESS_MASK_REPLY:
1579                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1580                 break;
1581         default:
1582                 interested = B_TRUE;    /* Pass up to transport */
1583                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1584                 break;
1585         }
1586         /*
1587          * See if there is an ICMP client to avoid an extra copymsg/freemsg
1588          * if there isn't one.
1589          */
1590         if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1591                 /* If there is an ICMP client and we want one too, copy it. */
1592 
1593                 if (!interested) {
1594                         /* Caller will deliver to RAW sockets */
1595                         return (mp);
1596                 }
1597                 mp_ret = copymsg(mp);
1598                 if (mp_ret == NULL) {
1599                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1600                         ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1601                 }
1602         } else if (!interested) {
1603                 /* Neither we nor raw sockets are interested. Drop packet now */
1604                 freemsg(mp);
1605                 return (NULL);
1606         }
1607 
1608         /*
1609          * ICMP error or redirect packet. Make sure we have enough of
1610          * the header and that db_ref == 1 since we might end up modifying
1611          * the packet.
1612          */
1613         if (mp->b_cont != NULL) {
1614                 if (ip_pullup(mp, -1, ira) == NULL) {
1615                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1616                         ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1617                             mp, ill);
1618                         freemsg(mp);
1619                         return (mp_ret);
1620                 }
1621         }
1622 
1623         if (mp->b_datap->db_ref > 1) {
1624                 mblk_t  *mp1;
1625 
1626                 mp1 = copymsg(mp);
1627                 if (mp1 == NULL) {
1628                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1629                         ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1630                         freemsg(mp);
1631                         return (mp_ret);
1632                 }
1633                 freemsg(mp);
1634                 mp = mp1;
1635         }
1636 
1637         /*
1638          * In case mp has changed, verify the message before any further
1639          * processes.
1640          */
1641         ipha = (ipha_t *)mp->b_rptr;
1642         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1643         if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1644                 freemsg(mp);
1645                 return (mp_ret);
1646         }
1647 
1648         switch (icmph->icmph_type) {
1649         case ICMP_REDIRECT:
1650                 icmp_redirect_v4(mp, ipha, icmph, ira);
1651                 break;
1652         case ICMP_DEST_UNREACHABLE:
1653                 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1654                         /* Update DCE and adjust MTU is icmp header if needed */
1655                         icmp_inbound_too_big_v4(icmph, ira);
1656                 }
1657                 /* FALLTHRU */
1658         default:
1659                 icmp_inbound_error_fanout_v4(mp, icmph, ira);
1660                 break;
1661         }
1662         return (mp_ret);
1663 }
1664 
1665 /*
1666  * Send an ICMP echo, timestamp or address mask reply.
1667  * The caller has already updated the payload part of the packet.
1668  * We handle the ICMP checksum, IP source address selection and feed
1669  * the packet into ip_output_simple.
1670  */
1671 static void
1672 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1673     ip_recv_attr_t *ira)
1674 {
1675         uint_t          ip_hdr_length = ira->ira_ip_hdr_length;
1676         ill_t           *ill = ira->ira_ill;
1677         ip_stack_t      *ipst = ill->ill_ipst;
1678         ip_xmit_attr_t  ixas;
1679 
1680         /* Send out an ICMP packet */
1681         icmph->icmph_checksum = 0;
1682         icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1683         /* Reset time to live. */
1684         ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1685         {
1686                 /* Swap source and destination addresses */
1687                 ipaddr_t tmp;
1688 
1689                 tmp = ipha->ipha_src;
1690                 ipha->ipha_src = ipha->ipha_dst;
1691                 ipha->ipha_dst = tmp;
1692         }
1693         ipha->ipha_ident = 0;
1694         if (!IS_SIMPLE_IPH(ipha))
1695                 icmp_options_update(ipha);
1696 
1697         bzero(&ixas, sizeof (ixas));
1698         ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1699         ixas.ixa_zoneid = ira->ira_zoneid;
1700         ixas.ixa_cred = kcred;
1701         ixas.ixa_cpid = NOPID;
1702         ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
1703         ixas.ixa_ifindex = 0;
1704         ixas.ixa_ipst = ipst;
1705         ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1706 
1707         if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1708                 /*
1709                  * This packet should go out the same way as it
1710                  * came in i.e in clear, independent of the IPsec policy
1711                  * for transmitting packets.
1712                  */
1713                 ixas.ixa_flags |= IXAF_NO_IPSEC;
1714         } else {
1715                 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1716                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1717                         /* Note: mp already consumed and ip_drop_packet done */
1718                         return;
1719                 }
1720         }
1721         if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1722                 /*
1723                  * Not one or our addresses (IRE_LOCALs), thus we let
1724                  * ip_output_simple pick the source.
1725                  */
1726                 ipha->ipha_src = INADDR_ANY;
1727                 ixas.ixa_flags |= IXAF_SET_SOURCE;
1728         }
1729         /* Should we send with DF and use dce_pmtu? */
1730         if (ipst->ips_ipv4_icmp_return_pmtu) {
1731                 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1732                 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1733         }
1734 
1735         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
1736 
1737         (void) ip_output_simple(mp, &ixas);
1738         ixa_cleanup(&ixas);
1739 }
1740 
1741 /*
1742  * Verify the ICMP messages for either for ICMP error or redirect packet.
1743  * The caller should have fully pulled up the message. If it's a redirect
1744  * packet, only basic checks on IP header will be done; otherwise, verify
1745  * the packet by looking at the included ULP header.
1746  *
1747  * Called before icmp_inbound_error_fanout_v4 is called.
1748  */
1749 static boolean_t
1750 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1751 {
1752         ill_t           *ill = ira->ira_ill;
1753         int             hdr_length;
1754         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
1755         conn_t          *connp;
1756         ipha_t          *ipha;  /* Inner IP header */
1757 
1758         ipha = (ipha_t *)&icmph[1];
1759         if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1760                 goto truncated;
1761 
1762         hdr_length = IPH_HDR_LENGTH(ipha);
1763 
1764         if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1765                 goto discard_pkt;
1766 
1767         if (hdr_length < sizeof (ipha_t))
1768                 goto truncated;
1769 
1770         if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1771                 goto truncated;
1772 
1773         /*
1774          * Stop here for ICMP_REDIRECT.
1775          */
1776         if (icmph->icmph_type == ICMP_REDIRECT)
1777                 return (B_TRUE);
1778 
1779         /*
1780          * ICMP errors only.
1781          */
1782         switch (ipha->ipha_protocol) {
1783         case IPPROTO_UDP:
1784                 /*
1785                  * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1786                  * transport header.
1787                  */
1788                 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1789                     mp->b_wptr)
1790                         goto truncated;
1791                 break;
1792         case IPPROTO_TCP: {
1793                 tcpha_t         *tcpha;
1794 
1795                 /*
1796                  * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1797                  * transport header.
1798                  */
1799                 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1800                     mp->b_wptr)
1801                         goto truncated;
1802 
1803                 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1804                 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1805                     ipst);
1806                 if (connp == NULL)
1807                         goto discard_pkt;
1808 
1809                 if ((connp->conn_verifyicmp != NULL) &&
1810                     !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1811                         CONN_DEC_REF(connp);
1812                         goto discard_pkt;
1813                 }
1814                 CONN_DEC_REF(connp);
1815                 break;
1816         }
1817         case IPPROTO_SCTP:
1818                 /*
1819                  * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1820                  * transport header.
1821                  */
1822                 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1823                     mp->b_wptr)
1824                         goto truncated;
1825                 break;
1826         case IPPROTO_ESP:
1827         case IPPROTO_AH:
1828                 break;
1829         case IPPROTO_ENCAP:
1830                 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1831                     mp->b_wptr)
1832                         goto truncated;
1833                 break;
1834         default:
1835                 break;
1836         }
1837 
1838         return (B_TRUE);
1839 
1840 discard_pkt:
1841         /* Bogus ICMP error. */
1842         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1843         return (B_FALSE);
1844 
1845 truncated:
1846         /* We pulled up everthing already. Must be truncated */
1847         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1848         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1849         return (B_FALSE);
1850 }
1851 
1852 /* Table from RFC 1191 */
1853 static int icmp_frag_size_table[] =
1854 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
1855 
1856 /*
1857  * Process received ICMP Packet too big.
1858  * Just handles the DCE create/update, including using the above table of
1859  * PMTU guesses. The caller is responsible for validating the packet before
1860  * passing it in and also to fanout the ICMP error to any matching transport
1861  * conns. Assumes the message has been fully pulled up and verified.
1862  *
1863  * Before getting here, the caller has called icmp_inbound_verify_v4()
1864  * that should have verified with ULP to prevent undoing the changes we're
1865  * going to make to DCE. For example, TCP might have verified that the packet
1866  * which generated error is in the send window.
1867  *
1868  * In some cases modified this MTU in the ICMP header packet; the caller
1869  * should pass to the matching ULP after this returns.
1870  */
1871 static void
1872 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1873 {
1874         dce_t           *dce;
1875         int             old_mtu;
1876         int             mtu, orig_mtu;
1877         ipaddr_t        dst;
1878         boolean_t       disable_pmtud;
1879         ill_t           *ill = ira->ira_ill;
1880         ip_stack_t      *ipst = ill->ill_ipst;
1881         uint_t          hdr_length;
1882         ipha_t          *ipha;
1883 
1884         /* Caller already pulled up everything. */
1885         ipha = (ipha_t *)&icmph[1];
1886         ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1887             icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1888         ASSERT(ill != NULL);
1889 
1890         hdr_length = IPH_HDR_LENGTH(ipha);
1891 
1892         /*
1893          * We handle path MTU for source routed packets since the DCE
1894          * is looked up using the final destination.
1895          */
1896         dst = ip_get_dst(ipha);
1897 
1898         dce = dce_lookup_and_add_v4(dst, ipst);
1899         if (dce == NULL) {
1900                 /* Couldn't add a unique one - ENOMEM */
1901                 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1902                     ntohl(dst)));
1903                 return;
1904         }
1905 
1906         /* Check for MTU discovery advice as described in RFC 1191 */
1907         mtu = ntohs(icmph->icmph_du_mtu);
1908         orig_mtu = mtu;
1909         disable_pmtud = B_FALSE;
1910 
1911         mutex_enter(&dce->dce_lock);
1912         if (dce->dce_flags & DCEF_PMTU)
1913                 old_mtu = dce->dce_pmtu;
1914         else
1915                 old_mtu = ill->ill_mtu;
1916 
1917         if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1918                 uint32_t length;
1919                 int     i;
1920 
1921                 /*
1922                  * Use the table from RFC 1191 to figure out
1923                  * the next "plateau" based on the length in
1924                  * the original IP packet.
1925                  */
1926                 length = ntohs(ipha->ipha_length);
1927                 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1928                     uint32_t, length);
1929                 if (old_mtu <= length &&
1930                     old_mtu >= length - hdr_length) {
1931                         /*
1932                          * Handle broken BSD 4.2 systems that
1933                          * return the wrong ipha_length in ICMP
1934                          * errors.
1935                          */
1936                         ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1937                             length, old_mtu));
1938                         length -= hdr_length;
1939                 }
1940                 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
1941                         if (length > icmp_frag_size_table[i])
1942                                 break;
1943                 }
1944                 if (i == A_CNT(icmp_frag_size_table)) {
1945                         /* Smaller than IP_MIN_MTU! */
1946                         ip1dbg(("Too big for packet size %d\n",
1947                             length));
1948                         disable_pmtud = B_TRUE;
1949                         mtu = ipst->ips_ip_pmtu_min;
1950                 } else {
1951                         mtu = icmp_frag_size_table[i];
1952                         ip1dbg(("Calculated mtu %d, packet size %d, "
1953                             "before %d\n", mtu, length, old_mtu));
1954                         if (mtu < ipst->ips_ip_pmtu_min) {
1955                                 mtu = ipst->ips_ip_pmtu_min;
1956                                 disable_pmtud = B_TRUE;
1957                         }
1958                 }
1959         }
1960         if (disable_pmtud)
1961                 dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1962         else
1963                 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
1964 
1965         dce->dce_pmtu = MIN(old_mtu, mtu);
1966         /* Prepare to send the new max frag size for the ULP. */
1967         icmph->icmph_du_zero = 0;
1968         icmph->icmph_du_mtu =  htons((uint16_t)dce->dce_pmtu);
1969         DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
1970             dce, int, orig_mtu, int, mtu);
1971 
1972         /* We now have a PMTU for sure */
1973         dce->dce_flags |= DCEF_PMTU;
1974         dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
1975         mutex_exit(&dce->dce_lock);
1976         /*
1977          * After dropping the lock the new value is visible to everyone.
1978          * Then we bump the generation number so any cached values reinspect
1979          * the dce_t.
1980          */
1981         dce_increment_generation(dce);
1982         dce_refrele(dce);
1983 }
1984 
1985 /*
1986  * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
1987  * calls this function.
1988  */
1989 static mblk_t *
1990 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
1991 {
1992         int length;
1993 
1994         ASSERT(mp->b_datap->db_type == M_DATA);
1995 
1996         /* icmp_inbound_v4 has already pulled up the whole error packet */
1997         ASSERT(mp->b_cont == NULL);
1998 
1999         /*
2000          * The length that we want to overlay is the inner header
2001          * and what follows it.
2002          */
2003         length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
2004 
2005         /*
2006          * Overlay the inner header and whatever follows it over the
2007          * outer header.
2008          */
2009         bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2010 
2011         /* Adjust for what we removed */
2012         mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2013         return (mp);
2014 }
2015 
2016 /*
2017  * Try to pass the ICMP message upstream in case the ULP cares.
2018  *
2019  * If the packet that caused the ICMP error is secure, we send
2020  * it to AH/ESP to make sure that the attached packet has a
2021  * valid association. ipha in the code below points to the
2022  * IP header of the packet that caused the error.
2023  *
2024  * For IPsec cases, we let the next-layer-up (which has access to
2025  * cached policy on the conn_t, or can query the SPD directly)
2026  * subtract out any IPsec overhead if they must.  We therefore make no
2027  * adjustments here for IPsec overhead.
2028  *
2029  * IFN could have been generated locally or by some router.
2030  *
2031  * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2032  * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2033  *          This happens because IP adjusted its value of MTU on an
2034  *          earlier IFN message and could not tell the upper layer,
2035  *          the new adjusted value of MTU e.g. Packet was encrypted
2036  *          or there was not enough information to fanout to upper
2037  *          layers. Thus on the next outbound datagram, ire_send_wire
2038  *          generates the IFN, where IPsec processing has *not* been
2039  *          done.
2040  *
2041  *          Note that we retain ixa_fragsize across IPsec thus once
2042  *          we have picking ixa_fragsize and entered ipsec_out_process we do
2043  *          no change the fragsize even if the path MTU changes before
2044  *          we reach ip_output_post_ipsec.
2045  *
2046  *          In the local case, IRAF_LOOPBACK will be set indicating
2047  *          that IFN was generated locally.
2048  *
2049  * ROUTER : IFN could be secure or non-secure.
2050  *
2051  *          * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2052  *            packet in error has AH/ESP headers to validate the AH/ESP
2053  *            headers. AH/ESP will verify whether there is a valid SA or
2054  *            not and send it back. We will fanout again if we have more
2055  *            data in the packet.
2056  *
2057  *            If the packet in error does not have AH/ESP, we handle it
2058  *            like any other case.
2059  *
2060  *          * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2061  *            up to AH/ESP for validation. AH/ESP will verify whether there is a
2062  *            valid SA or not and send it back. We will fanout again if
2063  *            we have more data in the packet.
2064  *
2065  *            If the packet in error does not have AH/ESP, we handle it
2066  *            like any other case.
2067  *
2068  * The caller must have called icmp_inbound_verify_v4.
2069  */
2070 static void
2071 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2072 {
2073         uint16_t        *up;    /* Pointer to ports in ULP header */
2074         uint32_t        ports;  /* reversed ports for fanout */
2075         ipha_t          ripha;  /* With reversed addresses */
2076         ipha_t          *ipha;  /* Inner IP header */
2077         uint_t          hdr_length; /* Inner IP header length */
2078         tcpha_t         *tcpha;
2079         conn_t          *connp;
2080         ill_t           *ill = ira->ira_ill;
2081         ip_stack_t      *ipst = ill->ill_ipst;
2082         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
2083         ill_t           *rill = ira->ira_rill;
2084 
2085         /* Caller already pulled up everything. */
2086         ipha = (ipha_t *)&icmph[1];
2087         ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2088         ASSERT(mp->b_cont == NULL);
2089 
2090         hdr_length = IPH_HDR_LENGTH(ipha);
2091         ira->ira_protocol = ipha->ipha_protocol;
2092 
2093         /*
2094          * We need a separate IP header with the source and destination
2095          * addresses reversed to do fanout/classification because the ipha in
2096          * the ICMP error is in the form we sent it out.
2097          */
2098         ripha.ipha_src = ipha->ipha_dst;
2099         ripha.ipha_dst = ipha->ipha_src;
2100         ripha.ipha_protocol = ipha->ipha_protocol;
2101         ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
2102 
2103         ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2104             ripha.ipha_protocol, ntohl(ipha->ipha_src),
2105             ntohl(ipha->ipha_dst),
2106             icmph->icmph_type, icmph->icmph_code));
2107 
2108         switch (ipha->ipha_protocol) {
2109         case IPPROTO_UDP:
2110                 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2111 
2112                 /* Attempt to find a client stream based on port. */
2113                 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2114                     ntohs(up[0]), ntohs(up[1])));
2115 
2116                 /* Note that we send error to all matches. */
2117                 ira->ira_flags |= IRAF_ICMP_ERROR;
2118                 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2119                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2120                 return;
2121 
2122         case IPPROTO_TCP:
2123                 /*
2124                  * Find a TCP client stream for this packet.
2125                  * Note that we do a reverse lookup since the header is
2126                  * in the form we sent it out.
2127                  */
2128                 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2129                 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2130                     ipst);
2131                 if (connp == NULL)
2132                         goto discard_pkt;
2133 
2134                 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2135                     (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2136                         mp = ipsec_check_inbound_policy(mp, connp,
2137                             ipha, NULL, ira);
2138                         if (mp == NULL) {
2139                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2140                                 /* Note that mp is NULL */
2141                                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2142                                 CONN_DEC_REF(connp);
2143                                 return;
2144                         }
2145                 }
2146 
2147                 ira->ira_flags |= IRAF_ICMP_ERROR;
2148                 ira->ira_ill = ira->ira_rill = NULL;
2149                 if (IPCL_IS_TCP(connp)) {
2150                         SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2151                             connp->conn_recvicmp, connp, ira, SQ_FILL,
2152                             SQTAG_TCP_INPUT_ICMP_ERR);
2153                 } else {
2154                         /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2155                         (connp->conn_recv)(connp, mp, NULL, ira);
2156                         CONN_DEC_REF(connp);
2157                 }
2158                 ira->ira_ill = ill;
2159                 ira->ira_rill = rill;
2160                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2161                 return;
2162 
2163         case IPPROTO_SCTP:
2164                 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2165                 /* Find a SCTP client stream for this packet. */
2166                 ((uint16_t *)&ports)[0] = up[1];
2167                 ((uint16_t *)&ports)[1] = up[0];
2168 
2169                 ira->ira_flags |= IRAF_ICMP_ERROR;
2170                 ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2171                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2172                 return;
2173 
2174         case IPPROTO_ESP:
2175         case IPPROTO_AH:
2176                 if (!ipsec_loaded(ipss)) {
2177                         ip_proto_not_sup(mp, ira);
2178                         return;
2179                 }
2180 
2181                 if (ipha->ipha_protocol == IPPROTO_ESP)
2182                         mp = ipsecesp_icmp_error(mp, ira);
2183                 else
2184                         mp = ipsecah_icmp_error(mp, ira);
2185                 if (mp == NULL)
2186                         return;
2187 
2188                 /* Just in case ipsec didn't preserve the NULL b_cont */
2189                 if (mp->b_cont != NULL) {
2190                         if (!pullupmsg(mp, -1))
2191                                 goto discard_pkt;
2192                 }
2193 
2194                 /*
2195                  * Note that ira_pktlen and ira_ip_hdr_length are no longer
2196                  * correct, but we don't use them any more here.
2197                  *
2198                  * If succesful, the mp has been modified to not include
2199                  * the ESP/AH header so we can fanout to the ULP's icmp
2200                  * error handler.
2201                  */
2202                 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2203                         goto truncated;
2204 
2205                 /* Verify the modified message before any further processes. */
2206                 ipha = (ipha_t *)mp->b_rptr;
2207                 hdr_length = IPH_HDR_LENGTH(ipha);
2208                 icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2209                 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2210                         freemsg(mp);
2211                         return;
2212                 }
2213 
2214                 icmp_inbound_error_fanout_v4(mp, icmph, ira);
2215                 return;
2216 
2217         case IPPROTO_ENCAP: {
2218                 /* Look for self-encapsulated packets that caused an error */
2219                 ipha_t *in_ipha;
2220 
2221                 /*
2222                  * Caller has verified that length has to be
2223                  * at least the size of IP header.
2224                  */
2225                 ASSERT(hdr_length >= sizeof (ipha_t));
2226                 /*
2227                  * Check the sanity of the inner IP header like
2228                  * we did for the outer header.
2229                  */
2230                 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2231                 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2232                         goto discard_pkt;
2233                 }
2234                 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2235                         goto discard_pkt;
2236                 }
2237                 /* Check for Self-encapsulated tunnels */
2238                 if (in_ipha->ipha_src == ipha->ipha_src &&
2239                     in_ipha->ipha_dst == ipha->ipha_dst) {
2240 
2241                         mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2242                             in_ipha);
2243                         if (mp == NULL)
2244                                 goto discard_pkt;
2245 
2246                         /*
2247                          * Just in case self_encap didn't preserve the NULL
2248                          * b_cont
2249                          */
2250                         if (mp->b_cont != NULL) {
2251                                 if (!pullupmsg(mp, -1))
2252                                         goto discard_pkt;
2253                         }
2254                         /*
2255                          * Note that ira_pktlen and ira_ip_hdr_length are no
2256                          * longer correct, but we don't use them any more here.
2257                          */
2258                         if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2259                                 goto truncated;
2260 
2261                         /*
2262                          * Verify the modified message before any further
2263                          * processes.
2264                          */
2265                         ipha = (ipha_t *)mp->b_rptr;
2266                         hdr_length = IPH_HDR_LENGTH(ipha);
2267                         icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2268                         if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2269                                 freemsg(mp);
2270                                 return;
2271                         }
2272 
2273                         /*
2274                          * The packet in error is self-encapsualted.
2275                          * And we are finding it further encapsulated
2276                          * which we could not have possibly generated.
2277                          */
2278                         if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2279                                 goto discard_pkt;
2280                         }
2281                         icmp_inbound_error_fanout_v4(mp, icmph, ira);
2282                         return;
2283                 }
2284                 /* No self-encapsulated */
2285                 /* FALLTHRU */
2286         }
2287         case IPPROTO_IPV6:
2288                 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2289                     &ripha.ipha_dst, ipst)) != NULL) {
2290                         ira->ira_flags |= IRAF_ICMP_ERROR;
2291                         connp->conn_recvicmp(connp, mp, NULL, ira);
2292                         CONN_DEC_REF(connp);
2293                         ira->ira_flags &= ~IRAF_ICMP_ERROR;
2294                         return;
2295                 }
2296                 /*
2297                  * No IP tunnel is interested, fallthrough and see
2298                  * if a raw socket will want it.
2299                  */
2300                 /* FALLTHRU */
2301         default:
2302                 ira->ira_flags |= IRAF_ICMP_ERROR;
2303                 ip_fanout_proto_v4(mp, &ripha, ira);
2304                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2305                 return;
2306         }
2307         /* NOTREACHED */
2308 discard_pkt:
2309         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2310         ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2311         ip_drop_input("ipIfStatsInDiscards", mp, ill);
2312         freemsg(mp);
2313         return;
2314 
2315 truncated:
2316         /* We pulled up everthing already. Must be truncated */
2317         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2318         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2319         freemsg(mp);
2320 }
2321 
2322 /*
2323  * Common IP options parser.
2324  *
2325  * Setup routine: fill in *optp with options-parsing state, then
2326  * tail-call ipoptp_next to return the first option.
2327  */
2328 uint8_t
2329 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2330 {
2331         uint32_t totallen; /* total length of all options */
2332 
2333         totallen = ipha->ipha_version_and_hdr_length -
2334             (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2335         totallen <<= 2;
2336         optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2337         optp->ipoptp_end = optp->ipoptp_next + totallen;
2338         optp->ipoptp_flags = 0;
2339         return (ipoptp_next(optp));
2340 }
2341 
2342 /* Like above but without an ipha_t */
2343 uint8_t
2344 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2345 {
2346         optp->ipoptp_next = opt;
2347         optp->ipoptp_end = optp->ipoptp_next + totallen;
2348         optp->ipoptp_flags = 0;
2349         return (ipoptp_next(optp));
2350 }
2351 
2352 /*
2353  * Common IP options parser: extract next option.
2354  */
2355 uint8_t
2356 ipoptp_next(ipoptp_t *optp)
2357 {
2358         uint8_t *end = optp->ipoptp_end;
2359         uint8_t *cur = optp->ipoptp_next;
2360         uint8_t opt, len, pointer;
2361 
2362         /*
2363          * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2364          * has been corrupted.
2365          */
2366         ASSERT(cur <= end);
2367 
2368         if (cur == end)
2369                 return (IPOPT_EOL);
2370 
2371         opt = cur[IPOPT_OPTVAL];
2372 
2373         /*
2374          * Skip any NOP options.
2375          */
2376         while (opt == IPOPT_NOP) {
2377                 cur++;
2378                 if (cur == end)
2379                         return (IPOPT_EOL);
2380                 opt = cur[IPOPT_OPTVAL];
2381         }
2382 
2383         if (opt == IPOPT_EOL)
2384                 return (IPOPT_EOL);
2385 
2386         /*
2387          * Option requiring a length.
2388          */
2389         if ((cur + 1) >= end) {
2390                 optp->ipoptp_flags |= IPOPTP_ERROR;
2391                 return (IPOPT_EOL);
2392         }
2393         len = cur[IPOPT_OLEN];
2394         if (len < 2) {
2395                 optp->ipoptp_flags |= IPOPTP_ERROR;
2396                 return (IPOPT_EOL);
2397         }
2398         optp->ipoptp_cur = cur;
2399         optp->ipoptp_len = len;
2400         optp->ipoptp_next = cur + len;
2401         if (cur + len > end) {
2402                 optp->ipoptp_flags |= IPOPTP_ERROR;
2403                 return (IPOPT_EOL);
2404         }
2405 
2406         /*
2407          * For the options which require a pointer field, make sure
2408          * its there, and make sure it points to either something
2409          * inside this option, or the end of the option.
2410          */
2411         switch (opt) {
2412         case IPOPT_RR:
2413         case IPOPT_TS:
2414         case IPOPT_LSRR:
2415         case IPOPT_SSRR:
2416                 if (len <= IPOPT_OFFSET) {
2417                         optp->ipoptp_flags |= IPOPTP_ERROR;
2418                         return (opt);
2419                 }
2420                 pointer = cur[IPOPT_OFFSET];
2421                 if (pointer - 1 > len) {
2422                         optp->ipoptp_flags |= IPOPTP_ERROR;
2423                         return (opt);
2424                 }
2425                 break;
2426         }
2427 
2428         /*
2429          * Sanity check the pointer field based on the type of the
2430          * option.
2431          */
2432         switch (opt) {
2433         case IPOPT_RR:
2434         case IPOPT_SSRR:
2435         case IPOPT_LSRR:
2436                 if (pointer < IPOPT_MINOFF_SR)
2437                         optp->ipoptp_flags |= IPOPTP_ERROR;
2438                 break;
2439         case IPOPT_TS:
2440                 if (pointer < IPOPT_MINOFF_IT)
2441                         optp->ipoptp_flags |= IPOPTP_ERROR;
2442                 /*
2443                  * Note that the Internet Timestamp option also
2444                  * contains two four bit fields (the Overflow field,
2445                  * and the Flag field), which follow the pointer
2446                  * field.  We don't need to check that these fields
2447                  * fall within the length of the option because this
2448                  * was implicitely done above.  We've checked that the
2449                  * pointer value is at least IPOPT_MINOFF_IT, and that
2450                  * it falls within the option.  Since IPOPT_MINOFF_IT >
2451                  * IPOPT_POS_OV_FLG, we don't need the explicit check.
2452                  */
2453                 ASSERT(len > IPOPT_POS_OV_FLG);
2454                 break;
2455         }
2456 
2457         return (opt);
2458 }
2459 
2460 /*
2461  * Use the outgoing IP header to create an IP_OPTIONS option the way
2462  * it was passed down from the application.
2463  *
2464  * This is compatible with BSD in that it returns
2465  * the reverse source route with the final destination
2466  * as the last entry. The first 4 bytes of the option
2467  * will contain the final destination.
2468  */
2469 int
2470 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2471 {
2472         ipoptp_t        opts;
2473         uchar_t         *opt;
2474         uint8_t         optval;
2475         uint8_t         optlen;
2476         uint32_t        len = 0;
2477         uchar_t         *buf1 = buf;
2478         uint32_t        totallen;
2479         ipaddr_t        dst;
2480         ip_pkt_t        *ipp = &connp->conn_xmit_ipp;
2481 
2482         if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2483                 return (0);
2484 
2485         totallen = ipp->ipp_ipv4_options_len;
2486         if (totallen & 0x3)
2487                 return (0);
2488 
2489         buf += IP_ADDR_LEN;     /* Leave room for final destination */
2490         len += IP_ADDR_LEN;
2491         bzero(buf1, IP_ADDR_LEN);
2492 
2493         dst = connp->conn_faddr_v4;
2494 
2495         for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2496             optval != IPOPT_EOL;
2497             optval = ipoptp_next(&opts)) {
2498                 int     off;
2499 
2500                 opt = opts.ipoptp_cur;
2501                 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2502                         break;
2503                 }
2504                 optlen = opts.ipoptp_len;
2505 
2506                 switch (optval) {
2507                 case IPOPT_SSRR:
2508                 case IPOPT_LSRR:
2509 
2510                         /*
2511                          * Insert destination as the first entry in the source
2512                          * route and move down the entries on step.
2513                          * The last entry gets placed at buf1.
2514                          */
2515                         buf[IPOPT_OPTVAL] = optval;
2516                         buf[IPOPT_OLEN] = optlen;
2517                         buf[IPOPT_OFFSET] = optlen;
2518 
2519                         off = optlen - IP_ADDR_LEN;
2520                         if (off < 0) {
2521                                 /* No entries in source route */
2522                                 break;
2523                         }
2524                         /* Last entry in source route if not already set */
2525                         if (dst == INADDR_ANY)
2526                                 bcopy(opt + off, buf1, IP_ADDR_LEN);
2527                         off -= IP_ADDR_LEN;
2528 
2529                         while (off > 0) {
2530                                 bcopy(opt + off,
2531                                     buf + off + IP_ADDR_LEN,
2532                                     IP_ADDR_LEN);
2533                                 off -= IP_ADDR_LEN;
2534                         }
2535                         /* ipha_dst into first slot */
2536                         bcopy(&dst, buf + off + IP_ADDR_LEN,
2537                             IP_ADDR_LEN);
2538                         buf += optlen;
2539                         len += optlen;
2540                         break;
2541 
2542                 default:
2543                         bcopy(opt, buf, optlen);
2544                         buf += optlen;
2545                         len += optlen;
2546                         break;
2547                 }
2548         }
2549 done:
2550         /* Pad the resulting options */
2551         while (len & 0x3) {
2552                 *buf++ = IPOPT_EOL;
2553                 len++;
2554         }
2555         return (len);
2556 }
2557 
2558 /*
2559  * Update any record route or timestamp options to include this host.
2560  * Reverse any source route option.
2561  * This routine assumes that the options are well formed i.e. that they
2562  * have already been checked.
2563  */
2564 static void
2565 icmp_options_update(ipha_t *ipha)
2566 {
2567         ipoptp_t        opts;
2568         uchar_t         *opt;
2569         uint8_t         optval;
2570         ipaddr_t        src;            /* Our local address */
2571         ipaddr_t        dst;
2572 
2573         ip2dbg(("icmp_options_update\n"));
2574         src = ipha->ipha_src;
2575         dst = ipha->ipha_dst;
2576 
2577         for (optval = ipoptp_first(&opts, ipha);
2578             optval != IPOPT_EOL;
2579             optval = ipoptp_next(&opts)) {
2580                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2581                 opt = opts.ipoptp_cur;
2582                 ip2dbg(("icmp_options_update: opt %d, len %d\n",
2583                     optval, opts.ipoptp_len));
2584                 switch (optval) {
2585                         int off1, off2;
2586                 case IPOPT_SSRR:
2587                 case IPOPT_LSRR:
2588                         /*
2589                          * Reverse the source route.  The first entry
2590                          * should be the next to last one in the current
2591                          * source route (the last entry is our address).
2592                          * The last entry should be the final destination.
2593                          */
2594                         off1 = IPOPT_MINOFF_SR - 1;
2595                         off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2596                         if (off2 < 0) {
2597                                 /* No entries in source route */
2598                                 ip1dbg((
2599                                     "icmp_options_update: bad src route\n"));
2600                                 break;
2601                         }
2602                         bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2603                         bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2604                         bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2605                         off2 -= IP_ADDR_LEN;
2606 
2607                         while (off1 < off2) {
2608                                 bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2609                                 bcopy((char *)opt + off2, (char *)opt + off1,
2610                                     IP_ADDR_LEN);
2611                                 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2612                                 off1 += IP_ADDR_LEN;
2613                                 off2 -= IP_ADDR_LEN;
2614                         }
2615                         opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2616                         break;
2617                 }
2618         }
2619 }
2620 
2621 /*
2622  * Process received ICMP Redirect messages.
2623  * Assumes the caller has verified that the headers are in the pulled up mblk.
2624  * Consumes mp.
2625  */
2626 static void
2627 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2628 {
2629         ire_t           *ire, *nire;
2630         ire_t           *prev_ire;
2631         ipaddr_t        src, dst, gateway;
2632         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2633         ipha_t          *inner_ipha;    /* Inner IP header */
2634 
2635         /* Caller already pulled up everything. */
2636         inner_ipha = (ipha_t *)&icmph[1];
2637         src = ipha->ipha_src;
2638         dst = inner_ipha->ipha_dst;
2639         gateway = icmph->icmph_rd_gateway;
2640         /* Make sure the new gateway is reachable somehow. */
2641         ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2642             ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2643         /*
2644          * Make sure we had a route for the dest in question and that
2645          * that route was pointing to the old gateway (the source of the
2646          * redirect packet.)
2647          * We do longest match and then compare ire_gateway_addr below.
2648          */
2649         prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2650             NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2651         /*
2652          * Check that
2653          *      the redirect was not from ourselves
2654          *      the new gateway and the old gateway are directly reachable
2655          */
2656         if (prev_ire == NULL || ire == NULL ||
2657             (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2658             (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2659             !(ire->ire_type & IRE_IF_ALL) ||
2660             prev_ire->ire_gateway_addr != src) {
2661                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2662                 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2663                 freemsg(mp);
2664                 if (ire != NULL)
2665                         ire_refrele(ire);
2666                 if (prev_ire != NULL)
2667                         ire_refrele(prev_ire);
2668                 return;
2669         }
2670 
2671         ire_refrele(prev_ire);
2672         ire_refrele(ire);
2673 
2674         /*
2675          * TODO: more precise handling for cases 0, 2, 3, the latter two
2676          * require TOS routing
2677          */
2678         switch (icmph->icmph_code) {
2679         case 0:
2680         case 1:
2681                 /* TODO: TOS specificity for cases 2 and 3 */
2682         case 2:
2683         case 3:
2684                 break;
2685         default:
2686                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2687                 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2688                 freemsg(mp);
2689                 return;
2690         }
2691         /*
2692          * Create a Route Association.  This will allow us to remember that
2693          * someone we believe told us to use the particular gateway.
2694          */
2695         ire = ire_create(
2696             (uchar_t *)&dst,                        /* dest addr */
2697             (uchar_t *)&ip_g_all_ones,              /* mask */
2698             (uchar_t *)&gateway,            /* gateway addr */
2699             IRE_HOST,
2700             NULL,                               /* ill */
2701             ALL_ZONES,
2702             (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2703             NULL,                               /* tsol_gc_t */
2704             ipst);
2705 
2706         if (ire == NULL) {
2707                 freemsg(mp);
2708                 return;
2709         }
2710         nire = ire_add(ire);
2711         /* Check if it was a duplicate entry */
2712         if (nire != NULL && nire != ire) {
2713                 ASSERT(nire->ire_identical_ref > 1);
2714                 ire_delete(nire);
2715                 ire_refrele(nire);
2716                 nire = NULL;
2717         }
2718         ire = nire;
2719         if (ire != NULL) {
2720                 ire_refrele(ire);               /* Held in ire_add */
2721 
2722                 /* tell routing sockets that we received a redirect */
2723                 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2724                     (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2725                     (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2726         }
2727 
2728         /*
2729          * Delete any existing IRE_HOST type redirect ires for this destination.
2730          * This together with the added IRE has the effect of
2731          * modifying an existing redirect.
2732          */
2733         prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2734             ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2735         if (prev_ire != NULL) {
2736                 if (prev_ire ->ire_flags & RTF_DYNAMIC)
2737                         ire_delete(prev_ire);
2738                 ire_refrele(prev_ire);
2739         }
2740 
2741         freemsg(mp);
2742 }
2743 
2744 /*
2745  * Generate an ICMP parameter problem message.
2746  * When called from ip_output side a minimal ip_recv_attr_t needs to be
2747  * constructed by the caller.
2748  */
2749 static void
2750 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2751 {
2752         icmph_t icmph;
2753         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2754 
2755         mp = icmp_pkt_err_ok(mp, ira);
2756         if (mp == NULL)
2757                 return;
2758 
2759         bzero(&icmph, sizeof (icmph_t));
2760         icmph.icmph_type = ICMP_PARAM_PROBLEM;
2761         icmph.icmph_pp_ptr = ptr;
2762         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2763         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2764 }
2765 
2766 /*
2767  * Build and ship an IPv4 ICMP message using the packet data in mp, and
2768  * the ICMP header pointed to by "stuff".  (May be called as writer.)
2769  * Note: assumes that icmp_pkt_err_ok has been called to verify that
2770  * an icmp error packet can be sent.
2771  * Assigns an appropriate source address to the packet. If ipha_dst is
2772  * one of our addresses use it for source. Otherwise let ip_output_simple
2773  * pick the source address.
2774  */
2775 static void
2776 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2777 {
2778         ipaddr_t dst;
2779         icmph_t *icmph;
2780         ipha_t  *ipha;
2781         uint_t  len_needed;
2782         size_t  msg_len;
2783         mblk_t  *mp1;
2784         ipaddr_t src;
2785         ire_t   *ire;
2786         ip_xmit_attr_t ixas;
2787         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2788 
2789         ipha = (ipha_t *)mp->b_rptr;
2790 
2791         bzero(&ixas, sizeof (ixas));
2792         ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2793         ixas.ixa_zoneid = ira->ira_zoneid;
2794         ixas.ixa_ifindex = 0;
2795         ixas.ixa_ipst = ipst;
2796         ixas.ixa_cred = kcred;
2797         ixas.ixa_cpid = NOPID;
2798         ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
2799         ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2800 
2801         if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2802                 /*
2803                  * Apply IPsec based on how IPsec was applied to
2804                  * the packet that had the error.
2805                  *
2806                  * If it was an outbound packet that caused the ICMP
2807                  * error, then the caller will have setup the IRA
2808                  * appropriately.
2809                  */
2810                 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2811                         BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2812                         /* Note: mp already consumed and ip_drop_packet done */
2813                         return;
2814                 }
2815         } else {
2816                 /*
2817                  * This is in clear. The icmp message we are building
2818                  * here should go out in clear, independent of our policy.
2819                  */
2820                 ixas.ixa_flags |= IXAF_NO_IPSEC;
2821         }
2822 
2823         /* Remember our eventual destination */
2824         dst = ipha->ipha_src;
2825 
2826         /*
2827          * If the packet was for one of our unicast addresses, make
2828          * sure we respond with that as the source. Otherwise
2829          * have ip_output_simple pick the source address.
2830          */
2831         ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2832             (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2833             MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2834         if (ire != NULL) {
2835                 ire_refrele(ire);
2836                 src = ipha->ipha_dst;
2837         } else {
2838                 src = INADDR_ANY;
2839                 ixas.ixa_flags |= IXAF_SET_SOURCE;
2840         }
2841 
2842         /*
2843          * Check if we can send back more then 8 bytes in addition to
2844          * the IP header.  We try to send 64 bytes of data and the internal
2845          * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2846          */
2847         len_needed = IPH_HDR_LENGTH(ipha);
2848         if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2849             ipha->ipha_protocol == IPPROTO_IPV6) {
2850                 if (!pullupmsg(mp, -1)) {
2851                         BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2852                         ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2853                         freemsg(mp);
2854                         return;
2855                 }
2856                 ipha = (ipha_t *)mp->b_rptr;
2857 
2858                 if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2859                         len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
2860                             len_needed));
2861                 } else {
2862                         ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
2863 
2864                         ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2865                         len_needed += ip_hdr_length_v6(mp, ip6h);
2866                 }
2867         }
2868         len_needed += ipst->ips_ip_icmp_return;
2869         msg_len = msgdsize(mp);
2870         if (msg_len > len_needed) {
2871                 (void) adjmsg(mp, len_needed - msg_len);
2872                 msg_len = len_needed;
2873         }
2874         mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2875         if (mp1 == NULL) {
2876                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2877                 freemsg(mp);
2878                 return;
2879         }
2880         mp1->b_cont = mp;
2881         mp = mp1;
2882 
2883         /*
2884          * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2885          * node generates be accepted in peace by all on-host destinations.
2886          * If we do NOT assume that all on-host destinations trust
2887          * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2888          * (Look for IXAF_TRUSTED_ICMP).
2889          */
2890         ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
2891 
2892         ipha = (ipha_t *)mp->b_rptr;
2893         mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2894         *ipha = icmp_ipha;
2895         ipha->ipha_src = src;
2896         ipha->ipha_dst = dst;
2897         ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2898         msg_len += sizeof (icmp_ipha) + len;
2899         if (msg_len > IP_MAXPACKET) {
2900                 (void) adjmsg(mp, IP_MAXPACKET - msg_len);
2901                 msg_len = IP_MAXPACKET;
2902         }
2903         ipha->ipha_length = htons((uint16_t)msg_len);
2904         icmph = (icmph_t *)&ipha[1];
2905         bcopy(stuff, icmph, len);
2906         icmph->icmph_checksum = 0;
2907         icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2908         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2909 
2910         (void) ip_output_simple(mp, &ixas);
2911         ixa_cleanup(&ixas);
2912 }
2913 
2914 /*
2915  * Determine if an ICMP error packet can be sent given the rate limit.
2916  * The limit consists of an average frequency (icmp_pkt_err_interval measured
2917  * in milliseconds) and a burst size. Burst size number of packets can
2918  * be sent arbitrarely closely spaced.
2919  * The state is tracked using two variables to implement an approximate
2920  * token bucket filter:
2921  *      icmp_pkt_err_last - lbolt value when the last burst started
2922  *      icmp_pkt_err_sent - number of packets sent in current burst
2923  */
2924 boolean_t
2925 icmp_err_rate_limit(ip_stack_t *ipst)
2926 {
2927         clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2928         uint_t refilled; /* Number of packets refilled in tbf since last */
2929         /* Guard against changes by loading into local variable */
2930         uint_t err_interval = ipst->ips_ip_icmp_err_interval;
2931 
2932         if (err_interval == 0)
2933                 return (B_FALSE);
2934 
2935         if (ipst->ips_icmp_pkt_err_last > now) {
2936                 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2937                 ipst->ips_icmp_pkt_err_last = 0;
2938                 ipst->ips_icmp_pkt_err_sent = 0;
2939         }
2940         /*
2941          * If we are in a burst update the token bucket filter.
2942          * Update the "last" time to be close to "now" but make sure
2943          * we don't loose precision.
2944          */
2945         if (ipst->ips_icmp_pkt_err_sent != 0) {
2946                 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2947                 if (refilled > ipst->ips_icmp_pkt_err_sent) {
2948                         ipst->ips_icmp_pkt_err_sent = 0;
2949                 } else {
2950                         ipst->ips_icmp_pkt_err_sent -= refilled;
2951                         ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2952                 }
2953         }
2954         if (ipst->ips_icmp_pkt_err_sent == 0) {
2955                 /* Start of new burst */
2956                 ipst->ips_icmp_pkt_err_last = now;
2957         }
2958         if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2959                 ipst->ips_icmp_pkt_err_sent++;
2960                 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
2961                     ipst->ips_icmp_pkt_err_sent));
2962                 return (B_FALSE);
2963         }
2964         ip1dbg(("icmp_err_rate_limit: dropped\n"));
2965         return (B_TRUE);
2966 }
2967 
2968 /*
2969  * Check if it is ok to send an IPv4 ICMP error packet in
2970  * response to the IPv4 packet in mp.
2971  * Free the message and return null if no
2972  * ICMP error packet should be sent.
2973  */
2974 static mblk_t *
2975 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
2976 {
2977         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2978         icmph_t *icmph;
2979         ipha_t  *ipha;
2980         uint_t  len_needed;
2981 
2982         if (!mp)
2983                 return (NULL);
2984         ipha = (ipha_t *)mp->b_rptr;
2985         if (ip_csum_hdr(ipha)) {
2986                 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
2987                 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
2988                 freemsg(mp);
2989                 return (NULL);
2990         }
2991         if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
2992             ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
2993             CLASSD(ipha->ipha_dst) ||
2994             CLASSD(ipha->ipha_src) ||
2995             (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
2996                 /* Note: only errors to the fragment with offset 0 */
2997                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
2998                 freemsg(mp);
2999                 return (NULL);
3000         }
3001         if (ipha->ipha_protocol == IPPROTO_ICMP) {
3002                 /*
3003                  * Check the ICMP type.  RFC 1122 sez:  don't send ICMP
3004                  * errors in response to any ICMP errors.
3005                  */
3006                 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3007                 if (mp->b_wptr - mp->b_rptr < len_needed) {
3008                         if (!pullupmsg(mp, len_needed)) {
3009                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3010                                 freemsg(mp);
3011                                 return (NULL);
3012                         }
3013                         ipha = (ipha_t *)mp->b_rptr;
3014                 }
3015                 icmph = (icmph_t *)
3016                     (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3017                 switch (icmph->icmph_type) {
3018                 case ICMP_DEST_UNREACHABLE:
3019                 case ICMP_SOURCE_QUENCH:
3020                 case ICMP_TIME_EXCEEDED:
3021                 case ICMP_PARAM_PROBLEM:
3022                 case ICMP_REDIRECT:
3023                         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3024                         freemsg(mp);
3025                         return (NULL);
3026                 default:
3027                         break;
3028                 }
3029         }
3030         /*
3031          * If this is a labeled system, then check to see if we're allowed to
3032          * send a response to this particular sender.  If not, then just drop.
3033          */
3034         if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3035                 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3036                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3037                 freemsg(mp);
3038                 return (NULL);
3039         }
3040         if (icmp_err_rate_limit(ipst)) {
3041                 /*
3042                  * Only send ICMP error packets every so often.
3043                  * This should be done on a per port/source basis,
3044                  * but for now this will suffice.
3045                  */
3046                 freemsg(mp);
3047                 return (NULL);
3048         }
3049         return (mp);
3050 }
3051 
3052 /*
3053  * Called when a packet was sent out the same link that it arrived on.
3054  * Check if it is ok to send a redirect and then send it.
3055  */
3056 void
3057 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3058     ip_recv_attr_t *ira)
3059 {
3060         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
3061         ipaddr_t        src, nhop;
3062         mblk_t          *mp1;
3063         ire_t           *nhop_ire;
3064 
3065         /*
3066          * Check the source address to see if it originated
3067          * on the same logical subnet it is going back out on.
3068          * If so, we should be able to send it a redirect.
3069          * Avoid sending a redirect if the destination
3070          * is directly connected (i.e., we matched an IRE_ONLINK),
3071          * or if the packet was source routed out this interface.
3072          *
3073          * We avoid sending a redirect if the
3074          * destination is directly connected
3075          * because it is possible that multiple
3076          * IP subnets may have been configured on
3077          * the link, and the source may not
3078          * be on the same subnet as ip destination,
3079          * even though they are on the same
3080          * physical link.
3081          */
3082         if ((ire->ire_type & IRE_ONLINK) ||
3083             ip_source_routed(ipha, ipst))
3084                 return;
3085 
3086         nhop_ire = ire_nexthop(ire);
3087         if (nhop_ire == NULL)
3088                 return;
3089 
3090         nhop = nhop_ire->ire_addr;
3091 
3092         if (nhop_ire->ire_type & IRE_IF_CLONE) {
3093                 ire_t   *ire2;
3094 
3095                 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3096                 mutex_enter(&nhop_ire->ire_lock);
3097                 ire2 = nhop_ire->ire_dep_parent;
3098                 if (ire2 != NULL)
3099                         ire_refhold(ire2);
3100                 mutex_exit(&nhop_ire->ire_lock);
3101                 ire_refrele(nhop_ire);
3102                 nhop_ire = ire2;
3103         }
3104         if (nhop_ire == NULL)
3105                 return;
3106 
3107         ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
3108 
3109         src = ipha->ipha_src;
3110 
3111         /*
3112          * We look at the interface ire for the nexthop,
3113          * to see if ipha_src is in the same subnet
3114          * as the nexthop.
3115          */
3116         if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3117                 /*
3118                  * The source is directly connected.
3119                  */
3120                 mp1 = copymsg(mp);
3121                 if (mp1 != NULL) {
3122                         icmp_send_redirect(mp1, nhop, ira);
3123                 }
3124         }
3125         ire_refrele(nhop_ire);
3126 }
3127 
3128 /*
3129  * Generate an ICMP redirect message.
3130  */
3131 static void
3132 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3133 {
3134         icmph_t icmph;
3135         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3136 
3137         mp = icmp_pkt_err_ok(mp, ira);
3138         if (mp == NULL)
3139                 return;
3140 
3141         bzero(&icmph, sizeof (icmph_t));
3142         icmph.icmph_type = ICMP_REDIRECT;
3143         icmph.icmph_code = 1;
3144         icmph.icmph_rd_gateway = gateway;
3145         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3146         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3147 }
3148 
3149 /*
3150  * Generate an ICMP time exceeded message.
3151  */
3152 void
3153 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3154 {
3155         icmph_t icmph;
3156         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3157 
3158         mp = icmp_pkt_err_ok(mp, ira);
3159         if (mp == NULL)
3160                 return;
3161 
3162         bzero(&icmph, sizeof (icmph_t));
3163         icmph.icmph_type = ICMP_TIME_EXCEEDED;
3164         icmph.icmph_code = code;
3165         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3166         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3167 }
3168 
3169 /*
3170  * Generate an ICMP unreachable message.
3171  * When called from ip_output side a minimal ip_recv_attr_t needs to be
3172  * constructed by the caller.
3173  */
3174 void
3175 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3176 {
3177         icmph_t icmph;
3178         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3179 
3180         mp = icmp_pkt_err_ok(mp, ira);
3181         if (mp == NULL)
3182                 return;
3183 
3184         bzero(&icmph, sizeof (icmph_t));
3185         icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3186         icmph.icmph_code = code;
3187         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3188         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3189 }
3190 
3191 /*
3192  * Latch in the IPsec state for a stream based the policy in the listener
3193  * and the actions in the ip_recv_attr_t.
3194  * Called directly from TCP and SCTP.
3195  */
3196 boolean_t
3197 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3198 {
3199         ASSERT(lconnp->conn_policy != NULL);
3200         ASSERT(connp->conn_policy == NULL);
3201 
3202         IPPH_REFHOLD(lconnp->conn_policy);
3203         connp->conn_policy = lconnp->conn_policy;
3204 
3205         if (ira->ira_ipsec_action != NULL) {
3206                 if (connp->conn_latch == NULL) {
3207                         connp->conn_latch = iplatch_create();
3208                         if (connp->conn_latch == NULL)
3209                                 return (B_FALSE);
3210                 }
3211                 ipsec_latch_inbound(connp, ira);
3212         }
3213         return (B_TRUE);
3214 }
3215 
3216 /*
3217  * Verify whether or not the IP address is a valid local address.
3218  * Could be a unicast, including one for a down interface.
3219  * If allow_mcbc then a multicast or broadcast address is also
3220  * acceptable.
3221  *
3222  * In the case of a broadcast/multicast address, however, the
3223  * upper protocol is expected to reset the src address
3224  * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3225  * no packets are emitted with broadcast/multicast address as
3226  * source address (that violates hosts requirements RFC 1122)
3227  * The addresses valid for bind are:
3228  *      (1) - INADDR_ANY (0)
3229  *      (2) - IP address of an UP interface
3230  *      (3) - IP address of a DOWN interface
3231  *      (4) - valid local IP broadcast addresses. In this case
3232  *      the conn will only receive packets destined to
3233  *      the specified broadcast address.
3234  *      (5) - a multicast address. In this case
3235  *      the conn will only receive packets destined to
3236  *      the specified multicast address. Note: the
3237  *      application still has to issue an
3238  *      IP_ADD_MEMBERSHIP socket option.
3239  *
3240  * In all the above cases, the bound address must be valid in the current zone.
3241  * When the address is loopback, multicast or broadcast, there might be many
3242  * matching IREs so bind has to look up based on the zone.
3243  */
3244 ip_laddr_t
3245 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3246     ip_stack_t *ipst, boolean_t allow_mcbc)
3247 {
3248         ire_t *src_ire;
3249 
3250         ASSERT(src_addr != INADDR_ANY);
3251 
3252         src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3253             NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
3254 
3255         /*
3256          * If an address other than in6addr_any is requested,
3257          * we verify that it is a valid address for bind
3258          * Note: Following code is in if-else-if form for
3259          * readability compared to a condition check.
3260          */
3261         if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3262                 /*
3263                  * (2) Bind to address of local UP interface
3264                  */
3265                 ire_refrele(src_ire);
3266                 return (IPVL_UNICAST_UP);
3267         } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3268                 /*
3269                  * (4) Bind to broadcast address
3270                  */
3271                 ire_refrele(src_ire);
3272                 if (allow_mcbc)
3273                         return (IPVL_BCAST);
3274                 else
3275                         return (IPVL_BAD);
3276         } else if (CLASSD(src_addr)) {
3277                 /* (5) bind to multicast address. */
3278                 if (src_ire != NULL)
3279                         ire_refrele(src_ire);
3280 
3281                 if (allow_mcbc)
3282                         return (IPVL_MCAST);
3283                 else
3284                         return (IPVL_BAD);
3285         } else {
3286                 ipif_t *ipif;
3287 
3288                 /*
3289                  * (3) Bind to address of local DOWN interface?
3290                  * (ipif_lookup_addr() looks up all interfaces
3291                  * but we do not get here for UP interfaces
3292                  * - case (2) above)
3293                  */
3294                 if (src_ire != NULL)
3295                         ire_refrele(src_ire);
3296 
3297                 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3298                 if (ipif == NULL)
3299                         return (IPVL_BAD);
3300 
3301                 /* Not a useful source? */
3302                 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3303                         ipif_refrele(ipif);
3304                         return (IPVL_BAD);
3305                 }
3306                 ipif_refrele(ipif);
3307                 return (IPVL_UNICAST_DOWN);
3308         }
3309 }
3310 
3311 /*
3312  * Insert in the bind fanout for IPv4 and IPv6.
3313  * The caller should already have used ip_laddr_verify_v*() before calling
3314  * this.
3315  */
3316 int
3317 ip_laddr_fanout_insert(conn_t *connp)
3318 {
3319         int             error;
3320 
3321         /*
3322          * Allow setting new policies. For example, disconnects result
3323          * in us being called. As we would have set conn_policy_cached
3324          * to B_TRUE before, we should set it to B_FALSE, so that policy
3325          * can change after the disconnect.
3326          */
3327         connp->conn_policy_cached = B_FALSE;
3328 
3329         error = ipcl_bind_insert(connp);
3330         if (error != 0) {
3331                 if (connp->conn_anon_port) {
3332                         (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3333                             connp->conn_mlp_type, connp->conn_proto,
3334                             ntohs(connp->conn_lport), B_FALSE);
3335                 }
3336                 connp->conn_mlp_type = mlptSingle;
3337         }
3338         return (error);
3339 }
3340 
3341 /*
3342  * Verify that both the source and destination addresses are valid. If
3343  * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3344  * i.e. have no route to it.  Protocols like TCP want to verify destination
3345  * reachability, while tunnels do not.
3346  *
3347  * Determine the route, the interface, and (optionally) the source address
3348  * to use to reach a given destination.
3349  * Note that we allow connect to broadcast and multicast addresses when
3350  * IPDF_ALLOW_MCBC is set.
3351  * first_hop and dst_addr are normally the same, but if source routing
3352  * they will differ; in that case the first_hop is what we'll use for the
3353  * routing lookup but the dce and label checks will be done on dst_addr,
3354  *
3355  * If uinfo is set, then we fill in the best available information
3356  * we have for the destination. This is based on (in priority order) any
3357  * metrics and path MTU stored in a dce_t, route metrics, and finally the
3358  * ill_mtu/ill_mc_mtu.
3359  *
3360  * Tsol note: If we have a source route then dst_addr != firsthop. But we
3361  * always do the label check on dst_addr.
3362  */
3363 int
3364 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3365     ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3366 {
3367         ire_t           *ire = NULL;
3368         int             error = 0;
3369         ipaddr_t        setsrc;                         /* RTF_SETSRC */
3370         zoneid_t        zoneid = ixa->ixa_zoneid;    /* Honors SO_ALLZONES */
3371         ip_stack_t      *ipst = ixa->ixa_ipst;
3372         dce_t           *dce;
3373         uint_t          pmtu;
3374         uint_t          generation;
3375         nce_t           *nce;
3376         ill_t           *ill = NULL;
3377         boolean_t       multirt = B_FALSE;
3378 
3379         ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
3380 
3381         /*
3382          * We never send to zero; the ULPs map it to the loopback address.
3383          * We can't allow it since we use zero to mean unitialized in some
3384          * places.
3385          */
3386         ASSERT(dst_addr != INADDR_ANY);
3387 
3388         if (is_system_labeled()) {
3389                 ts_label_t *tsl = NULL;
3390 
3391                 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3392                     mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3393                 if (error != 0)
3394                         return (error);
3395                 if (tsl != NULL) {
3396                         /* Update the label */
3397                         ip_xmit_attr_replace_tsl(ixa, tsl);
3398                 }
3399         }
3400 
3401         setsrc = INADDR_ANY;
3402         /*
3403          * Select a route; For IPMP interfaces, we would only select
3404          * a "hidden" route (i.e., going through a specific under_ill)
3405          * if ixa_ifindex has been specified.
3406          */
3407         ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3408             &generation, &setsrc, &error, &multirt);
3409         ASSERT(ire != NULL);    /* IRE_NOROUTE if none found */
3410         if (error != 0)
3411                 goto bad_addr;
3412 
3413         /*
3414          * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3415          * If IPDF_VERIFY_DST is set, the destination must be reachable;
3416          * Otherwise the destination needn't be reachable.
3417          *
3418          * If we match on a reject or black hole, then we've got a
3419          * local failure.  May as well fail out the connect() attempt,
3420          * since it's never going to succeed.
3421          */
3422         if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3423                 /*
3424                  * If we're verifying destination reachability, we always want
3425                  * to complain here.
3426                  *
3427                  * If we're not verifying destination reachability but the
3428                  * destination has a route, we still want to fail on the
3429                  * temporary address and broadcast address tests.
3430                  *
3431                  * In both cases do we let the code continue so some reasonable
3432                  * information is returned to the caller. That enables the
3433                  * caller to use (and even cache) the IRE. conn_ip_ouput will
3434                  * use the generation mismatch path to check for the unreachable
3435                  * case thereby avoiding any specific check in the main path.
3436                  */
3437                 ASSERT(generation == IRE_GENERATION_VERIFY);
3438                 if (flags & IPDF_VERIFY_DST) {
3439                         /*
3440                          * Set errno but continue to set up ixa_ire to be
3441                          * the RTF_REJECT|RTF_BLACKHOLE IRE.
3442                          * That allows callers to use ip_output to get an
3443                          * ICMP error back.
3444                          */
3445                         if (!(ire->ire_type & IRE_HOST))
3446                                 error = ENETUNREACH;
3447                         else
3448                                 error = EHOSTUNREACH;
3449                 }
3450         }
3451 
3452         if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3453             !(flags & IPDF_ALLOW_MCBC)) {
3454                 ire_refrele(ire);
3455                 ire = ire_reject(ipst, B_FALSE);
3456                 generation = IRE_GENERATION_VERIFY;
3457                 error = ENETUNREACH;
3458         }
3459 
3460         /* Cache things */
3461         if (ixa->ixa_ire != NULL)
3462                 ire_refrele_notr(ixa->ixa_ire);
3463 #ifdef DEBUG
3464         ire_refhold_notr(ire);
3465         ire_refrele(ire);
3466 #endif
3467         ixa->ixa_ire = ire;
3468         ixa->ixa_ire_generation = generation;
3469 
3470         /*
3471          * Ensure that ixa_dce is always set any time that ixa_ire is set,
3472          * since some callers will send a packet to conn_ip_output() even if
3473          * there's an error.
3474          */
3475         if (flags & IPDF_UNIQUE_DCE) {
3476                 /* Fallback to the default dce if allocation fails */
3477                 dce = dce_lookup_and_add_v4(dst_addr, ipst);
3478                 if (dce != NULL)
3479                         generation = dce->dce_generation;
3480                 else
3481                         dce = dce_lookup_v4(dst_addr, ipst, &generation);
3482         } else {
3483                 dce = dce_lookup_v4(dst_addr, ipst, &generation);
3484         }
3485         ASSERT(dce != NULL);
3486         if (ixa->ixa_dce != NULL)
3487                 dce_refrele_notr(ixa->ixa_dce);
3488 #ifdef DEBUG
3489         dce_refhold_notr(dce);
3490         dce_refrele(dce);
3491 #endif
3492         ixa->ixa_dce = dce;
3493         ixa->ixa_dce_generation = generation;
3494 
3495         /*
3496          * For multicast with multirt we have a flag passed back from
3497          * ire_lookup_multi_ill_v4 since we don't have an IRE for each
3498          * possible multicast address.
3499          * We also need a flag for multicast since we can't check
3500          * whether RTF_MULTIRT is set in ixa_ire for multicast.
3501          */
3502         if (multirt) {
3503                 ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3504                 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3505         } else {
3506                 ixa->ixa_postfragfn = ire->ire_postfragfn;
3507                 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3508         }
3509         if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3510                 /* Get an nce to cache. */
3511                 nce = ire_to_nce(ire, firsthop, NULL);
3512                 if (nce == NULL) {
3513                         /* Allocation failure? */
3514                         ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3515                 } else {
3516                         if (ixa->ixa_nce != NULL)
3517                                 nce_refrele(ixa->ixa_nce);
3518                         ixa->ixa_nce = nce;
3519                 }
3520         }
3521 
3522         /*
3523          * If the source address is a loopback address, the
3524          * destination had best be local or multicast.
3525          * If we are sending to an IRE_LOCAL using a loopback source then
3526          * it had better be the same zoneid.
3527          */
3528         if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3529                 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3530                         ire = NULL;     /* Stored in ixa_ire */
3531                         error = EADDRNOTAVAIL;
3532                         goto bad_addr;
3533                 }
3534                 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3535                         ire = NULL;     /* Stored in ixa_ire */
3536                         error = EADDRNOTAVAIL;
3537                         goto bad_addr;
3538                 }
3539         }
3540         if (ire->ire_type & IRE_BROADCAST) {
3541                 /*
3542                  * If the ULP didn't have a specified source, then we
3543                  * make sure we reselect the source when sending
3544                  * broadcasts out different interfaces.
3545                  */
3546                 if (flags & IPDF_SELECT_SRC)
3547                         ixa->ixa_flags |= IXAF_SET_SOURCE;
3548                 else
3549                         ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3550         }
3551 
3552         /*
3553          * Does the caller want us to pick a source address?
3554          */
3555         if (flags & IPDF_SELECT_SRC) {
3556                 ipaddr_t        src_addr;
3557 
3558                 /*
3559                  * We use use ire_nexthop_ill to avoid the under ipmp
3560                  * interface for source address selection. Note that for ipmp
3561                  * probe packets, ixa_ifindex would have been specified, and
3562                  * the ip_select_route() invocation would have picked an ire
3563                  * will ire_ill pointing at an under interface.
3564                  */
3565                 ill = ire_nexthop_ill(ire);
3566 
3567                 /* If unreachable we have no ill but need some source */
3568                 if (ill == NULL) {
3569                         src_addr = htonl(INADDR_LOOPBACK);
3570                         /* Make sure we look for a better source address */
3571                         generation = SRC_GENERATION_VERIFY;
3572                 } else {
3573                         error = ip_select_source_v4(ill, setsrc, dst_addr,
3574                             ixa->ixa_multicast_ifaddr, zoneid,
3575                             ipst, &src_addr, &generation, NULL);
3576                         if (error != 0) {
3577                                 ire = NULL;     /* Stored in ixa_ire */
3578                                 goto bad_addr;
3579                         }
3580                 }
3581 
3582                 /*
3583                  * We allow the source address to to down.
3584                  * However, we check that we don't use the loopback address
3585                  * as a source when sending out on the wire.
3586                  */
3587                 if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3588                     !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3589                     !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3590                         ire = NULL;     /* Stored in ixa_ire */
3591                         error = EADDRNOTAVAIL;
3592                         goto bad_addr;
3593                 }
3594 
3595                 *src_addrp = src_addr;
3596                 ixa->ixa_src_generation = generation;
3597         }
3598 
3599         /*
3600          * Make sure we don't leave an unreachable ixa_nce in place
3601          * since ip_select_route is used when we unplumb i.e., remove
3602          * references on ixa_ire, ixa_nce, and ixa_dce.
3603          */
3604         nce = ixa->ixa_nce;
3605         if (nce != NULL && nce->nce_is_condemned) {
3606                 nce_refrele(nce);
3607                 ixa->ixa_nce = NULL;
3608                 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3609         }
3610 
3611         /*
3612          * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3613          * However, we can't do it for IPv4 multicast or broadcast.
3614          */
3615         if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3616                 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3617 
3618         /*
3619          * Set initial value for fragmentation limit. Either conn_ip_output
3620          * or ULP might updates it when there are routing changes.
3621          * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3622          */
3623         pmtu = ip_get_pmtu(ixa);
3624         ixa->ixa_fragsize = pmtu;
3625         /* Make sure ixa_fragsize and ixa_pmtu remain identical */
3626         if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3627                 ixa->ixa_pmtu = pmtu;
3628 
3629         /*
3630          * Extract information useful for some transports.
3631          * First we look for DCE metrics. Then we take what we have in
3632          * the metrics in the route, where the offlink is used if we have
3633          * one.
3634          */
3635         if (uinfo != NULL) {
3636                 bzero(uinfo, sizeof (*uinfo));
3637 
3638                 if (dce->dce_flags & DCEF_UINFO)
3639                         *uinfo = dce->dce_uinfo;
3640 
3641                 rts_merge_metrics(uinfo, &ire->ire_metrics);
3642 
3643                 /* Allow ire_metrics to decrease the path MTU from above */
3644                 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3645                         uinfo->iulp_mtu = pmtu;
3646 
3647                 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3648                 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3649                 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3650         }
3651 
3652         if (ill != NULL)
3653                 ill_refrele(ill);
3654 
3655         return (error);
3656 
3657 bad_addr:
3658         if (ire != NULL)
3659                 ire_refrele(ire);
3660 
3661         if (ill != NULL)
3662                 ill_refrele(ill);
3663 
3664         /*
3665          * Make sure we don't leave an unreachable ixa_nce in place
3666          * since ip_select_route is used when we unplumb i.e., remove
3667          * references on ixa_ire, ixa_nce, and ixa_dce.
3668          */
3669         nce = ixa->ixa_nce;
3670         if (nce != NULL && nce->nce_is_condemned) {
3671                 nce_refrele(nce);
3672                 ixa->ixa_nce = NULL;
3673                 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3674         }
3675 
3676         return (error);
3677 }
3678 
3679 
3680 /*
3681  * Get the base MTU for the case when path MTU discovery is not used.
3682  * Takes the MTU of the IRE into account.
3683  */
3684 uint_t
3685 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3686 {
3687         uint_t mtu;
3688         uint_t iremtu = ire->ire_metrics.iulp_mtu;
3689 
3690         if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))
3691                 mtu = ill->ill_mc_mtu;
3692         else
3693                 mtu = ill->ill_mtu;
3694 
3695         if (iremtu != 0 && iremtu < mtu)
3696                 mtu = iremtu;
3697 
3698         return (mtu);
3699 }
3700 
3701 /*
3702  * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3703  * Assumes that ixa_ire, dce, and nce have already been set up.
3704  *
3705  * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3706  * We avoid path MTU discovery if it is disabled with ndd.
3707  * Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
3708  *
3709  * NOTE: We also used to turn it off for source routed packets. That
3710  * is no longer required since the dce is per final destination.
3711  */
3712 uint_t
3713 ip_get_pmtu(ip_xmit_attr_t *ixa)
3714 {
3715         ip_stack_t      *ipst = ixa->ixa_ipst;
3716         dce_t           *dce;
3717         nce_t           *nce;
3718         ire_t           *ire;
3719         uint_t          pmtu;
3720 
3721         ire = ixa->ixa_ire;
3722         dce = ixa->ixa_dce;
3723         nce = ixa->ixa_nce;
3724 
3725         /*
3726          * If path MTU discovery has been turned off by ndd, then we ignore
3727          * any dce_pmtu and for IPv4 we will not set DF.
3728          */
3729         if (!ipst->ips_ip_path_mtu_discovery)
3730                 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3731 
3732         pmtu = IP_MAXPACKET;
3733         /*
3734          * Decide whether whether IPv4 sets DF
3735          * For IPv6 "no DF" means to use the 1280 mtu
3736          */
3737         if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3738                 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3739         } else {
3740                 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3741                 if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3742                         pmtu = IPV6_MIN_MTU;
3743         }
3744 
3745         /* Check if the PMTU is to old before we use it */
3746         if ((dce->dce_flags & DCEF_PMTU) &&
3747             TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3748             ipst->ips_ip_pathmtu_interval) {
3749                 /*
3750                  * Older than 20 minutes. Drop the path MTU information.
3751                  */
3752                 mutex_enter(&dce->dce_lock);
3753                 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3754                 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3755                 mutex_exit(&dce->dce_lock);
3756                 dce_increment_generation(dce);
3757         }
3758 
3759         /* The metrics on the route can lower the path MTU */
3760         if (ire->ire_metrics.iulp_mtu != 0 &&
3761             ire->ire_metrics.iulp_mtu < pmtu)
3762                 pmtu = ire->ire_metrics.iulp_mtu;
3763 
3764         /*
3765          * If the path MTU is smaller than some minimum, we still use dce_pmtu
3766          * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3767          * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3768          */
3769         if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3770                 if (dce->dce_flags & DCEF_PMTU) {
3771                         if (dce->dce_pmtu < pmtu)
3772                                 pmtu = dce->dce_pmtu;
3773 
3774                         if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3775                                 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3776                                 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3777                         } else {
3778                                 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3779                                 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3780                         }
3781                 } else {
3782                         ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3783                         ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3784                 }
3785         }
3786 
3787         /*
3788          * If we have an IRE_LOCAL we use the loopback mtu instead of
3789          * the ill for going out the wire i.e., IRE_LOCAL gets the same
3790          * mtu as IRE_LOOPBACK.
3791          */
3792         if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3793                 uint_t loopback_mtu;
3794 
3795                 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3796                     ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
3797 
3798                 if (loopback_mtu < pmtu)
3799                         pmtu = loopback_mtu;
3800         } else if (nce != NULL) {
3801                 /*
3802                  * Make sure we don't exceed the interface MTU.
3803                  * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3804                  * an ill. We'd use the above IP_MAXPACKET in that case just
3805                  * to tell the transport something larger than zero.
3806                  */
3807                 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
3808                         if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
3809                                 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
3810                         if (nce->nce_common->ncec_ill != nce->nce_ill &&
3811                             nce->nce_ill->ill_mc_mtu < pmtu) {
3812                                 /*
3813                                  * for interfaces in an IPMP group, the mtu of
3814                                  * the nce_ill (under_ill) could be different
3815                                  * from the mtu of the ncec_ill, so we take the
3816                                  * min of the two.
3817                                  */
3818                                 pmtu = nce->nce_ill->ill_mc_mtu;
3819                         }
3820                 } else {
3821                         if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3822                                 pmtu = nce->nce_common->ncec_ill->ill_mtu;
3823                         if (nce->nce_common->ncec_ill != nce->nce_ill &&
3824                             nce->nce_ill->ill_mtu < pmtu) {
3825                                 /*
3826                                  * for interfaces in an IPMP group, the mtu of
3827                                  * the nce_ill (under_ill) could be different
3828                                  * from the mtu of the ncec_ill, so we take the
3829                                  * min of the two.
3830                                  */
3831                                 pmtu = nce->nce_ill->ill_mtu;
3832                         }
3833                 }
3834         }
3835 
3836         /*
3837          * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3838          * Only applies to IPv6.
3839          */
3840         if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3841                 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3842                         switch (ixa->ixa_use_min_mtu) {
3843                         case IPV6_USE_MIN_MTU_MULTICAST:
3844                                 if (ire->ire_type & IRE_MULTICAST)
3845                                         pmtu = IPV6_MIN_MTU;
3846                                 break;
3847                         case IPV6_USE_MIN_MTU_ALWAYS:
3848                                 pmtu = IPV6_MIN_MTU;
3849                                 break;
3850                         case IPV6_USE_MIN_MTU_NEVER:
3851                                 break;
3852                         }
3853                 } else {
3854                         /* Default is IPV6_USE_MIN_MTU_MULTICAST */
3855                         if (ire->ire_type & IRE_MULTICAST)
3856                                 pmtu = IPV6_MIN_MTU;
3857                 }
3858         }
3859 
3860         /*
3861          * After receiving an ICMPv6 "packet too big" message with a
3862          * MTU < 1280, and for multirouted IPv6 packets, the IP layer
3863          * will insert a 8-byte fragment header in every packet. We compensate
3864          * for those cases by returning a smaller path MTU to the ULP.
3865          *
3866          * In the case of CGTP then ip_output will add a fragment header.
3867          * Make sure there is room for it by telling a smaller number
3868          * to the transport.
3869          *
3870          * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3871          * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3872          * which is the size of the packets it can send.
3873          */
3874         if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3875                 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) ||
3876                     (ire->ire_flags & RTF_MULTIRT) ||
3877                     (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3878                         pmtu -= sizeof (ip6_frag_t);
3879                         ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3880                 }
3881         }
3882 
3883         return (pmtu);
3884 }
3885 
3886 /*
3887  * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3888  * the final piece where we don't.  Return a pointer to the first mblk in the
3889  * result, and update the pointer to the next mblk to chew on.  If anything
3890  * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3891  * NULL pointer.
3892  */
3893 mblk_t *
3894 ip_carve_mp(mblk_t **mpp, ssize_t len)
3895 {
3896         mblk_t  *mp0;
3897         mblk_t  *mp1;
3898         mblk_t  *mp2;
3899 
3900         if (!len || !mpp || !(mp0 = *mpp))
3901                 return (NULL);
3902         /* If we aren't going to consume the first mblk, we need a dup. */
3903         if (mp0->b_wptr - mp0->b_rptr > len) {
3904                 mp1 = dupb(mp0);
3905                 if (mp1) {
3906                         /* Partition the data between the two mblks. */
3907                         mp1->b_wptr = mp1->b_rptr + len;
3908                         mp0->b_rptr = mp1->b_wptr;
3909                         /*
3910                          * after adjustments if mblk not consumed is now
3911                          * unaligned, try to align it. If this fails free
3912                          * all messages and let upper layer recover.
3913                          */
3914                         if (!OK_32PTR(mp0->b_rptr)) {
3915                                 if (!pullupmsg(mp0, -1)) {
3916                                         freemsg(mp0);
3917                                         freemsg(mp1);
3918                                         *mpp = NULL;
3919                                         return (NULL);
3920                                 }
3921                         }
3922                 }
3923                 return (mp1);
3924         }
3925         /* Eat through as many mblks as we need to get len bytes. */
3926         len -= mp0->b_wptr - mp0->b_rptr;
3927         for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3928                 if (mp2->b_wptr - mp2->b_rptr > len) {
3929                         /*
3930                          * We won't consume the entire last mblk.  Like
3931                          * above, dup and partition it.
3932                          */
3933                         mp1->b_cont = dupb(mp2);
3934                         mp1 = mp1->b_cont;
3935                         if (!mp1) {
3936                                 /*
3937                                  * Trouble.  Rather than go to a lot of
3938                                  * trouble to clean up, we free the messages.
3939                                  * This won't be any worse than losing it on
3940                                  * the wire.
3941                                  */
3942                                 freemsg(mp0);
3943                                 freemsg(mp2);
3944                                 *mpp = NULL;
3945                                 return (NULL);
3946                         }
3947                         mp1->b_wptr = mp1->b_rptr + len;
3948                         mp2->b_rptr = mp1->b_wptr;
3949                         /*
3950                          * after adjustments if mblk not consumed is now
3951                          * unaligned, try to align it. If this fails free
3952                          * all messages and let upper layer recover.
3953                          */
3954                         if (!OK_32PTR(mp2->b_rptr)) {
3955                                 if (!pullupmsg(mp2, -1)) {
3956                                         freemsg(mp0);
3957                                         freemsg(mp2);
3958                                         *mpp = NULL;
3959                                         return (NULL);
3960                                 }
3961                         }
3962                         *mpp = mp2;
3963                         return (mp0);
3964                 }
3965                 /* Decrement len by the amount we just got. */
3966                 len -= mp2->b_wptr - mp2->b_rptr;
3967         }
3968         /*
3969          * len should be reduced to zero now.  If not our caller has
3970          * screwed up.
3971          */
3972         if (len) {
3973                 /* Shouldn't happen! */
3974                 freemsg(mp0);
3975                 *mpp = NULL;
3976                 return (NULL);
3977         }
3978         /*
3979          * We consumed up to exactly the end of an mblk.  Detach the part
3980          * we are returning from the rest of the chain.
3981          */
3982         mp1->b_cont = NULL;
3983         *mpp = mp2;
3984         return (mp0);
3985 }
3986 
3987 /* The ill stream is being unplumbed. Called from ip_close */
3988 int
3989 ip_modclose(ill_t *ill)
3990 {
3991         boolean_t success;
3992         ipsq_t  *ipsq;
3993         ipif_t  *ipif;
3994         queue_t *q = ill->ill_rq;
3995         ip_stack_t      *ipst = ill->ill_ipst;
3996         int     i;
3997         arl_ill_common_t *ai = ill->ill_common;
3998 
3999         /*
4000          * The punlink prior to this may have initiated a capability
4001          * negotiation. But ipsq_enter will block until that finishes or
4002          * times out.
4003          */
4004         success = ipsq_enter(ill, B_FALSE, NEW_OP);
4005 
4006         /*
4007          * Open/close/push/pop is guaranteed to be single threaded
4008          * per stream by STREAMS. FS guarantees that all references
4009          * from top are gone before close is called. So there can't
4010          * be another close thread that has set CONDEMNED on this ill.
4011          * and cause ipsq_enter to return failure.
4012          */
4013         ASSERT(success);
4014         ipsq = ill->ill_phyint->phyint_ipsq;
4015 
4016         /*
4017          * Mark it condemned. No new reference will be made to this ill.
4018          * Lookup functions will return an error. Threads that try to
4019          * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4020          * that the refcnt will drop down to zero.
4021          */
4022         mutex_enter(&ill->ill_lock);
4023         ill->ill_state_flags |= ILL_CONDEMNED;
4024         for (ipif = ill->ill_ipif; ipif != NULL;
4025             ipif = ipif->ipif_next) {
4026                 ipif->ipif_state_flags |= IPIF_CONDEMNED;
4027         }
4028         /*
4029          * Wake up anybody waiting to enter the ipsq. ipsq_enter
4030          * returns  error if ILL_CONDEMNED is set
4031          */
4032         cv_broadcast(&ill->ill_cv);
4033         mutex_exit(&ill->ill_lock);
4034 
4035         /*
4036          * Send all the deferred DLPI messages downstream which came in
4037          * during the small window right before ipsq_enter(). We do this
4038          * without waiting for the ACKs because all the ACKs for M_PROTO
4039          * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4040          */
4041         ill_dlpi_send_deferred(ill);
4042 
4043         /*
4044          * Shut down fragmentation reassembly.
4045          * ill_frag_timer won't start a timer again.
4046          * Now cancel any existing timer
4047          */
4048         (void) untimeout(ill->ill_frag_timer_id);
4049         (void) ill_frag_timeout(ill, 0);
4050 
4051         /*
4052          * Call ill_delete to bring down the ipifs, ilms and ill on
4053          * this ill. Then wait for the refcnts to drop to zero.
4054          * ill_is_freeable checks whether the ill is really quiescent.
4055          * Then make sure that threads that are waiting to enter the
4056          * ipsq have seen the error returned by ipsq_enter and have
4057          * gone away. Then we call ill_delete_tail which does the
4058          * DL_UNBIND_REQ with the driver and then qprocsoff.
4059          */
4060         ill_delete(ill);
4061         mutex_enter(&ill->ill_lock);
4062         while (!ill_is_freeable(ill))
4063                 cv_wait(&ill->ill_cv, &ill->ill_lock);
4064 
4065         while (ill->ill_waiters)
4066                 cv_wait(&ill->ill_cv, &ill->ill_lock);
4067 
4068         mutex_exit(&ill->ill_lock);
4069 
4070         /*
4071          * ill_delete_tail drops reference on ill_ipst, but we need to keep
4072          * it held until the end of the function since the cleanup
4073          * below needs to be able to use the ip_stack_t.
4074          */
4075         netstack_hold(ipst->ips_netstack);
4076 
4077         /* qprocsoff is done via ill_delete_tail */
4078         ill_delete_tail(ill);
4079         /*
4080          * synchronously wait for arp stream to unbind. After this, we
4081          * cannot get any data packets up from the driver.
4082          */
4083         arp_unbind_complete(ill);
4084         ASSERT(ill->ill_ipst == NULL);
4085 
4086         /*
4087          * Walk through all conns and qenable those that have queued data.
4088          * Close synchronization needs this to
4089          * be done to ensure that all upper layers blocked
4090          * due to flow control to the closing device
4091          * get unblocked.
4092          */
4093         ip1dbg(("ip_wsrv: walking\n"));
4094         for (i = 0; i < TX_FANOUT_SIZE; i++) {
4095                 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4096         }
4097 
4098         /*
4099          * ai can be null if this is an IPv6 ill, or if the IPv4
4100          * stream is being torn down before ARP was plumbed (e.g.,
4101          * /sbin/ifconfig plumbing a stream twice, and encountering
4102          * an error
4103          */
4104         if (ai != NULL) {
4105                 ASSERT(!ill->ill_isv6);
4106                 mutex_enter(&ai->ai_lock);
4107                 ai->ai_ill = NULL;
4108                 if (ai->ai_arl == NULL) {
4109                         mutex_destroy(&ai->ai_lock);
4110                         kmem_free(ai, sizeof (*ai));
4111                 } else {
4112                         cv_signal(&ai->ai_ill_unplumb_done);
4113                         mutex_exit(&ai->ai_lock);
4114                 }
4115         }
4116 
4117         mutex_enter(&ipst->ips_ip_mi_lock);
4118         mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4119         mutex_exit(&ipst->ips_ip_mi_lock);
4120 
4121         /*
4122          * credp could be null if the open didn't succeed and ip_modopen
4123          * itself calls ip_close.
4124          */
4125         if (ill->ill_credp != NULL)
4126                 crfree(ill->ill_credp);
4127 
4128         mutex_destroy(&ill->ill_saved_ire_lock);
4129         mutex_destroy(&ill->ill_lock);
4130         rw_destroy(&ill->ill_mcast_lock);
4131         mutex_destroy(&ill->ill_mcast_serializer);
4132         list_destroy(&ill->ill_nce);
4133 
4134         /*
4135          * Now we are done with the module close pieces that
4136          * need the netstack_t.
4137          */
4138         netstack_rele(ipst->ips_netstack);
4139 
4140         mi_close_free((IDP)ill);
4141         q->q_ptr = WR(q)->q_ptr = NULL;
4142 
4143         ipsq_exit(ipsq);
4144 
4145         return (0);
4146 }
4147 
4148 /*
4149  * This is called as part of close() for IP, UDP, ICMP, and RTS
4150  * in order to quiesce the conn.
4151  */
4152 void
4153 ip_quiesce_conn(conn_t *connp)
4154 {
4155         boolean_t       drain_cleanup_reqd = B_FALSE;
4156         boolean_t       conn_ioctl_cleanup_reqd = B_FALSE;
4157         boolean_t       ilg_cleanup_reqd = B_FALSE;
4158         ip_stack_t      *ipst;
4159 
4160         ASSERT(!IPCL_IS_TCP(connp));
4161         ipst = connp->conn_netstack->netstack_ip;
4162 
4163         /*
4164          * Mark the conn as closing, and this conn must not be
4165          * inserted in future into any list. Eg. conn_drain_insert(),
4166          * won't insert this conn into the conn_drain_list.
4167          *
4168          * conn_idl, and conn_ilg cannot get set henceforth.
4169          */
4170         mutex_enter(&connp->conn_lock);
4171         ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4172         connp->conn_state_flags |= CONN_CLOSING;
4173         if (connp->conn_idl != NULL)
4174                 drain_cleanup_reqd = B_TRUE;
4175         if (connp->conn_oper_pending_ill != NULL)
4176                 conn_ioctl_cleanup_reqd = B_TRUE;
4177         if (connp->conn_dhcpinit_ill != NULL) {
4178                 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4179                 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4180                 ill_set_inputfn(connp->conn_dhcpinit_ill);
4181                 connp->conn_dhcpinit_ill = NULL;
4182         }
4183         if (connp->conn_ilg != NULL)
4184                 ilg_cleanup_reqd = B_TRUE;
4185         mutex_exit(&connp->conn_lock);
4186 
4187         if (conn_ioctl_cleanup_reqd)
4188                 conn_ioctl_cleanup(connp);
4189 
4190         if (is_system_labeled() && connp->conn_anon_port) {
4191                 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4192                     connp->conn_mlp_type, connp->conn_proto,
4193                     ntohs(connp->conn_lport), B_FALSE);
4194                 connp->conn_anon_port = 0;
4195         }
4196         connp->conn_mlp_type = mlptSingle;
4197 
4198         /*
4199          * Remove this conn from any fanout list it is on.
4200          * and then wait for any threads currently operating
4201          * on this endpoint to finish
4202          */
4203         ipcl_hash_remove(connp);
4204 
4205         /*
4206          * Remove this conn from the drain list, and do any other cleanup that
4207          * may be required.  (TCP conns are never flow controlled, and
4208          * conn_idl will be NULL.)
4209          */
4210         if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4211                 idl_t *idl = connp->conn_idl;
4212 
4213                 mutex_enter(&idl->idl_lock);
4214                 conn_drain(connp, B_TRUE);
4215                 mutex_exit(&idl->idl_lock);
4216         }
4217 
4218         if (connp == ipst->ips_ip_g_mrouter)
4219                 (void) ip_mrouter_done(ipst);
4220 
4221         if (ilg_cleanup_reqd)
4222                 ilg_delete_all(connp);
4223 
4224         /*
4225          * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4226          * callers from write side can't be there now because close
4227          * is in progress. The only other caller is ipcl_walk
4228          * which checks for the condemned flag.
4229          */
4230         mutex_enter(&connp->conn_lock);
4231         connp->conn_state_flags |= CONN_CONDEMNED;
4232         while (connp->conn_ref != 1)
4233                 cv_wait(&connp->conn_cv, &connp->conn_lock);
4234         connp->conn_state_flags |= CONN_QUIESCED;
4235         mutex_exit(&connp->conn_lock);
4236 }
4237 
4238 /* ARGSUSED */
4239 int
4240 ip_close(queue_t *q, int flags)
4241 {
4242         conn_t          *connp;
4243 
4244         /*
4245          * Call the appropriate delete routine depending on whether this is
4246          * a module or device.
4247          */
4248         if (WR(q)->q_next != NULL) {
4249                 /* This is a module close */
4250                 return (ip_modclose((ill_t *)q->q_ptr));
4251         }
4252 
4253         connp = q->q_ptr;
4254         ip_quiesce_conn(connp);
4255 
4256         qprocsoff(q);
4257 
4258         /*
4259          * Now we are truly single threaded on this stream, and can
4260          * delete the things hanging off the connp, and finally the connp.
4261          * We removed this connp from the fanout list, it cannot be
4262          * accessed thru the fanouts, and we already waited for the
4263          * conn_ref to drop to 0. We are already in close, so
4264          * there cannot be any other thread from the top. qprocsoff
4265          * has completed, and service has completed or won't run in
4266          * future.
4267          */
4268         ASSERT(connp->conn_ref == 1);
4269 
4270         inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4271 
4272         connp->conn_ref--;
4273         ipcl_conn_destroy(connp);
4274 
4275         q->q_ptr = WR(q)->q_ptr = NULL;
4276         return (0);
4277 }
4278 
4279 /*
4280  * Wapper around putnext() so that ip_rts_request can merely use
4281  * conn_recv.
4282  */
4283 /*ARGSUSED2*/
4284 static void
4285 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4286 {
4287         conn_t *connp = (conn_t *)arg1;
4288 
4289         putnext(connp->conn_rq, mp);
4290 }
4291 
4292 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4293 /* ARGSUSED */
4294 static void
4295 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4296 {
4297         freemsg(mp);
4298 }
4299 
4300 /*
4301  * Called when the module is about to be unloaded
4302  */
4303 void
4304 ip_ddi_destroy(void)
4305 {
4306         /* This needs to be called before destroying any transports. */
4307         mutex_enter(&cpu_lock);
4308         unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
4309         mutex_exit(&cpu_lock);
4310 
4311         tnet_fini();
4312 
4313         icmp_ddi_g_destroy();
4314         rts_ddi_g_destroy();
4315         udp_ddi_g_destroy();
4316         sctp_ddi_g_destroy();
4317         tcp_ddi_g_destroy();
4318         ilb_ddi_g_destroy();
4319         dce_g_destroy();
4320         ipsec_policy_g_destroy();
4321         ipcl_g_destroy();
4322         ip_net_g_destroy();
4323         ip_ire_g_fini();
4324         inet_minor_destroy(ip_minor_arena_sa);
4325 #if defined(_LP64)
4326         inet_minor_destroy(ip_minor_arena_la);
4327 #endif
4328 
4329 #ifdef DEBUG
4330         list_destroy(&ip_thread_list);
4331         rw_destroy(&ip_thread_rwlock);
4332         tsd_destroy(&ip_thread_data);
4333 #endif
4334 
4335         netstack_unregister(NS_IP);
4336 }
4337 
4338 /*
4339  * First step in cleanup.
4340  */
4341 /* ARGSUSED */
4342 static void
4343 ip_stack_shutdown(netstackid_t stackid, void *arg)
4344 {
4345         ip_stack_t *ipst = (ip_stack_t *)arg;
4346         kt_did_t ktid;
4347 
4348 #ifdef NS_DEBUG
4349         printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4350 #endif
4351 
4352         /*
4353          * Perform cleanup for special interfaces (loopback and IPMP).
4354          */
4355         ip_interface_cleanup(ipst);
4356 
4357         /*
4358          * The *_hook_shutdown()s start the process of notifying any
4359          * consumers that things are going away.... nothing is destroyed.
4360          */
4361         ipv4_hook_shutdown(ipst);
4362         ipv6_hook_shutdown(ipst);
4363         arp_hook_shutdown(ipst);
4364 
4365         mutex_enter(&ipst->ips_capab_taskq_lock);
4366         ktid = ipst->ips_capab_taskq_thread->t_did;
4367         ipst->ips_capab_taskq_quit = B_TRUE;
4368         cv_signal(&ipst->ips_capab_taskq_cv);
4369         mutex_exit(&ipst->ips_capab_taskq_lock);
4370 
4371         /*
4372          * In rare occurrences, particularly on virtual hardware where CPUs can
4373          * be de-scheduled, the thread that we just signaled will not run until
4374          * after we have gotten through parts of ip_stack_fini. If that happens
4375          * then we'll try to grab the ips_capab_taskq_lock as part of returning
4376          * from cv_wait which no longer exists.
4377          */
4378         thread_join(ktid);
4379 }
4380 
4381 /*
4382  * Free the IP stack instance.
4383  */
4384 static void
4385 ip_stack_fini(netstackid_t stackid, void *arg)
4386 {
4387         ip_stack_t *ipst = (ip_stack_t *)arg;
4388         int ret;
4389 
4390 #ifdef NS_DEBUG
4391         printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4392 #endif
4393         /*
4394          * At this point, all of the notifications that the events and
4395          * protocols are going away have been run, meaning that we can
4396          * now set about starting to clean things up.
4397          */
4398         ipobs_fini(ipst);
4399         ipv4_hook_destroy(ipst);
4400         ipv6_hook_destroy(ipst);
4401         arp_hook_destroy(ipst);
4402         ip_net_destroy(ipst);
4403 
4404         ipmp_destroy(ipst);
4405 
4406         ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4407         ipst->ips_ip_mibkp = NULL;
4408         icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4409         ipst->ips_icmp_mibkp = NULL;
4410         ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4411         ipst->ips_ip_kstat = NULL;
4412         bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4413         ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4414         ipst->ips_ip6_kstat = NULL;
4415         bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
4416 
4417         kmem_free(ipst->ips_propinfo_tbl,
4418             ip_propinfo_count * sizeof (mod_prop_info_t));
4419         ipst->ips_propinfo_tbl = NULL;
4420 
4421         dce_stack_destroy(ipst);
4422         ip_mrouter_stack_destroy(ipst);
4423 
4424         ret = untimeout(ipst->ips_igmp_timeout_id);
4425         if (ret == -1) {
4426                 ASSERT(ipst->ips_igmp_timeout_id == 0);
4427         } else {
4428                 ASSERT(ipst->ips_igmp_timeout_id != 0);
4429                 ipst->ips_igmp_timeout_id = 0;
4430         }
4431         ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4432         if (ret == -1) {
4433                 ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4434         } else {
4435                 ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4436                 ipst->ips_igmp_slowtimeout_id = 0;
4437         }
4438         ret = untimeout(ipst->ips_mld_timeout_id);
4439         if (ret == -1) {
4440                 ASSERT(ipst->ips_mld_timeout_id == 0);
4441         } else {
4442                 ASSERT(ipst->ips_mld_timeout_id != 0);
4443                 ipst->ips_mld_timeout_id = 0;
4444         }
4445         ret = untimeout(ipst->ips_mld_slowtimeout_id);
4446         if (ret == -1) {
4447                 ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4448         } else {
4449                 ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4450                 ipst->ips_mld_slowtimeout_id = 0;
4451         }
4452 
4453         ip_ire_fini(ipst);
4454         ip6_asp_free(ipst);
4455         conn_drain_fini(ipst);
4456         ipcl_destroy(ipst);
4457 
4458         mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4459         mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4460         kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4461         ipst->ips_ndp4 = NULL;
4462         kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4463         ipst->ips_ndp6 = NULL;
4464 
4465         if (ipst->ips_loopback_ksp != NULL) {
4466                 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4467                 ipst->ips_loopback_ksp = NULL;
4468         }
4469 
4470         mutex_destroy(&ipst->ips_capab_taskq_lock);
4471         cv_destroy(&ipst->ips_capab_taskq_cv);
4472 
4473         rw_destroy(&ipst->ips_srcid_lock);
4474 
4475         mutex_destroy(&ipst->ips_ip_mi_lock);
4476         rw_destroy(&ipst->ips_ill_g_usesrc_lock);
4477 
4478         mutex_destroy(&ipst->ips_igmp_timer_lock);
4479         mutex_destroy(&ipst->ips_mld_timer_lock);
4480         mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4481         mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4482         mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4483         rw_destroy(&ipst->ips_ill_g_lock);
4484 
4485         kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4486         ipst->ips_phyint_g_list = NULL;
4487         kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4488         ipst->ips_ill_g_heads = NULL;
4489 
4490         ldi_ident_release(ipst->ips_ldi_ident);
4491         kmem_free(ipst, sizeof (*ipst));
4492 }
4493 
4494 /*
4495  * This function is called from the TSD destructor, and is used to debug
4496  * reference count issues in IP. See block comment in <inet/ip_if.h> for
4497  * details.
4498  */
4499 static void
4500 ip_thread_exit(void *phash)
4501 {
4502         th_hash_t *thh = phash;
4503 
4504         rw_enter(&ip_thread_rwlock, RW_WRITER);
4505         list_remove(&ip_thread_list, thh);
4506         rw_exit(&ip_thread_rwlock);
4507         mod_hash_destroy_hash(thh->thh_hash);
4508         kmem_free(thh, sizeof (*thh));
4509 }
4510 
4511 /*
4512  * Called when the IP kernel module is loaded into the kernel
4513  */
4514 void
4515 ip_ddi_init(void)
4516 {
4517         ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
4518 
4519         /*
4520          * For IP and TCP the minor numbers should start from 2 since we have 4
4521          * initial devices: ip, ip6, tcp, tcp6.
4522          */
4523         /*
4524          * If this is a 64-bit kernel, then create two separate arenas -
4525          * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4526          * other for socket apps in the range 2^^18 through 2^^32-1.
4527          */
4528         ip_minor_arena_la = NULL;
4529         ip_minor_arena_sa = NULL;
4530 #if defined(_LP64)
4531         if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4532             INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4533                 cmn_err(CE_PANIC,
4534                     "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4535         }
4536         if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4537             MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4538                 cmn_err(CE_PANIC,
4539                     "ip_ddi_init: ip_minor_arena_la creation failed\n");
4540         }
4541 #else
4542         if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4543             INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4544                 cmn_err(CE_PANIC,
4545                     "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4546         }
4547 #endif
4548         ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
4549 
4550         ipcl_g_init();
4551         ip_ire_g_init();
4552         ip_net_g_init();
4553 
4554 #ifdef DEBUG
4555         tsd_create(&ip_thread_data, ip_thread_exit);
4556         rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4557         list_create(&ip_thread_list, sizeof (th_hash_t),
4558             offsetof(th_hash_t, thh_link));
4559 #endif
4560         ipsec_policy_g_init();
4561         tcp_ddi_g_init();
4562         sctp_ddi_g_init();
4563         dce_g_init();
4564 
4565         /*
4566          * We want to be informed each time a stack is created or
4567          * destroyed in the kernel, so we can maintain the
4568          * set of udp_stack_t's.
4569          */
4570         netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4571             ip_stack_fini);
4572 
4573         tnet_init();
4574 
4575         udp_ddi_g_init();
4576         rts_ddi_g_init();
4577         icmp_ddi_g_init();
4578         ilb_ddi_g_init();
4579 
4580         /* This needs to be called after all transports are initialized. */
4581         mutex_enter(&cpu_lock);
4582         register_cpu_setup_func(ip_tp_cpu_update, NULL);
4583         mutex_exit(&cpu_lock);
4584 }
4585 
4586 /*
4587  * Initialize the IP stack instance.
4588  */
4589 static void *
4590 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4591 {
4592         ip_stack_t      *ipst;
4593         size_t          arrsz;
4594         major_t         major;
4595 
4596 #ifdef NS_DEBUG
4597         printf("ip_stack_init(stack %d)\n", stackid);
4598 #endif
4599 
4600         ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4601         ipst->ips_netstack = ns;
4602 
4603         ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4604             KM_SLEEP);
4605         ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4606             KM_SLEEP);
4607         ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4608         ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4609         mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4610         mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4611 
4612         mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4613         ipst->ips_igmp_deferred_next = INFINITY;
4614         mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4615         ipst->ips_mld_deferred_next = INFINITY;
4616         mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4617         mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4618         mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4619         mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4620         rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4621         rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
4622 
4623         ipcl_init(ipst);
4624         ip_ire_init(ipst);
4625         ip6_asp_init(ipst);
4626         ipif_init(ipst);
4627         conn_drain_init(ipst);
4628         ip_mrouter_stack_init(ipst);
4629         dce_stack_init(ipst);
4630 
4631         ipst->ips_ip_multirt_log_interval = 1000;
4632 
4633         ipst->ips_ill_index = 1;
4634 
4635         ipst->ips_saved_ip_forwarding = -1;
4636         ipst->ips_reg_vif_num = ALL_VIFS;    /* Index to Register vif */
4637 
4638         arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4639         ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4640         bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);
4641 
4642         ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4643         ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4644         ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4645         ipst->ips_ip6_kstat =
4646             ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
4647 
4648         ipst->ips_ip_src_id = 1;
4649         rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
4650 
4651         ipst->ips_src_generation = SRC_GENERATION_INITIAL;
4652 
4653         ip_net_init(ipst, ns);
4654         ipv4_hook_init(ipst);
4655         ipv6_hook_init(ipst);
4656         arp_hook_init(ipst);
4657         ipmp_init(ipst);
4658         ipobs_init(ipst);
4659 
4660         /*
4661          * Create the taskq dispatcher thread and initialize related stuff.
4662          */
4663         mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4664         cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4665         ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4666             ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
4667 
4668         major = mod_name_to_major(INET_NAME);
4669         (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4670         return (ipst);
4671 }
4672 
4673 /*
4674  * Allocate and initialize a DLPI template of the specified length.  (May be
4675  * called as writer.)
4676  */
4677 mblk_t *
4678 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4679 {
4680         mblk_t  *mp;
4681 
4682         mp = allocb(len, BPRI_MED);
4683         if (!mp)
4684                 return (NULL);
4685 
4686         /*
4687          * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4688          * of which we don't seem to use) are sent with M_PCPROTO, and
4689          * that other DLPI are M_PROTO.
4690          */
4691         if (prim == DL_INFO_REQ) {
4692                 mp->b_datap->db_type = M_PCPROTO;
4693         } else {
4694                 mp->b_datap->db_type = M_PROTO;
4695         }
4696 
4697         mp->b_wptr = mp->b_rptr + len;
4698         bzero(mp->b_rptr, len);
4699         ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4700         return (mp);
4701 }
4702 
4703 /*
4704  * Allocate and initialize a DLPI notification.  (May be called as writer.)
4705  */
4706 mblk_t *
4707 ip_dlnotify_alloc(uint_t notification, uint_t data)
4708 {
4709         dl_notify_ind_t *notifyp;
4710         mblk_t          *mp;
4711 
4712         if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4713                 return (NULL);
4714 
4715         notifyp = (dl_notify_ind_t *)mp->b_rptr;
4716         notifyp->dl_notification = notification;
4717         notifyp->dl_data = data;
4718         return (mp);
4719 }
4720 
4721 mblk_t *
4722 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
4723 {
4724         dl_notify_ind_t *notifyp;
4725         mblk_t          *mp;
4726 
4727         if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4728                 return (NULL);
4729 
4730         notifyp = (dl_notify_ind_t *)mp->b_rptr;
4731         notifyp->dl_notification = notification;
4732         notifyp->dl_data1 = data1;
4733         notifyp->dl_data2 = data2;
4734         return (mp);
4735 }
4736 
4737 /*
4738  * Debug formatting routine.  Returns a character string representation of the
4739  * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
4740  * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4741  *
4742  * Once the ndd table-printing interfaces are removed, this can be changed to
4743  * standard dotted-decimal form.
4744  */
4745 char *
4746 ip_dot_addr(ipaddr_t addr, char *buf)
4747 {
4748         uint8_t *ap = (uint8_t *)&addr;
4749 
4750         (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4751             ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4752         return (buf);
4753 }
4754 
4755 /*
4756  * Write the given MAC address as a printable string in the usual colon-
4757  * separated format.
4758  */
4759 const char *
4760 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4761 {
4762         char *bp;
4763 
4764         if (alen == 0 || buflen < 4)
4765                 return ("?");
4766         bp = buf;
4767         for (;;) {
4768                 /*
4769                  * If there are more MAC address bytes available, but we won't
4770                  * have any room to print them, then add "..." to the string
4771                  * instead.  See below for the 'magic number' explanation.
4772                  */
4773                 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4774                         (void) strcpy(bp, "...");
4775                         break;
4776                 }
4777                 (void) sprintf(bp, "%02x", *addr++);
4778                 bp += 2;
4779                 if (--alen == 0)
4780                         break;
4781                 *bp++ = ':';
4782                 buflen -= 3;
4783                 /*
4784                  * At this point, based on the first 'if' statement above,
4785                  * either alen == 1 and buflen >= 3, or alen > 1 and
4786                  * buflen >= 4.  The first case leaves room for the final "xx"
4787                  * number and trailing NUL byte.  The second leaves room for at
4788                  * least "...".  Thus the apparently 'magic' numbers chosen for
4789                  * that statement.
4790                  */
4791         }
4792         return (buf);
4793 }
4794 
4795 /*
4796  * Called when it is conceptually a ULP that would sent the packet
4797  * e.g., port unreachable and protocol unreachable. Check that the packet
4798  * would have passed the IPsec global policy before sending the error.
4799  *
4800  * Send an ICMP error after patching up the packet appropriately.
4801  * Uses ip_drop_input and bumps the appropriate MIB.
4802  */
4803 void
4804 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4805     ip_recv_attr_t *ira)
4806 {
4807         ipha_t          *ipha;
4808         boolean_t       secure;
4809         ill_t           *ill = ira->ira_ill;
4810         ip_stack_t      *ipst = ill->ill_ipst;
4811         netstack_t      *ns = ipst->ips_netstack;
4812         ipsec_stack_t   *ipss = ns->netstack_ipsec;
4813 
4814         secure = ira->ira_flags & IRAF_IPSEC_SECURE;
4815 
4816         /*
4817          * We are generating an icmp error for some inbound packet.
4818          * Called from all ip_fanout_(udp, tcp, proto) functions.
4819          * Before we generate an error, check with global policy
4820          * to see whether this is allowed to enter the system. As
4821          * there is no "conn", we are checking with global policy.
4822          */
4823         ipha = (ipha_t *)mp->b_rptr;
4824         if (secure || ipss->ipsec_inbound_v4_policy_present) {
4825                 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4826                 if (mp == NULL)
4827                         return;
4828         }
4829 
4830         /* We never send errors for protocols that we do implement */
4831         if (ira->ira_protocol == IPPROTO_ICMP ||
4832             ira->ira_protocol == IPPROTO_IGMP) {
4833                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4834                 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4835                 freemsg(mp);
4836                 return;
4837         }
4838         /*
4839          * Have to correct checksum since
4840          * the packet might have been
4841          * fragmented and the reassembly code in ip_rput
4842          * does not restore the IP checksum.
4843          */
4844         ipha->ipha_hdr_checksum = 0;
4845         ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
4846 
4847         switch (icmp_type) {
4848         case ICMP_DEST_UNREACHABLE:
4849                 switch (icmp_code) {
4850                 case ICMP_PROTOCOL_UNREACHABLE:
4851                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4852                         ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4853                         break;
4854                 case ICMP_PORT_UNREACHABLE:
4855                         BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4856                         ip_drop_input("ipIfStatsNoPorts", mp, ill);
4857                         break;
4858                 }
4859 
4860                 icmp_unreachable(mp, icmp_code, ira);
4861                 break;
4862         default:
4863 #ifdef DEBUG
4864                 panic("ip_fanout_send_icmp_v4: wrong type");
4865                 /*NOTREACHED*/
4866 #else
4867                 freemsg(mp);
4868                 break;
4869 #endif
4870         }
4871 }
4872 
4873 /*
4874  * Used to send an ICMP error message when a packet is received for
4875  * a protocol that is not supported. The mblk passed as argument
4876  * is consumed by this function.
4877  */
4878 void
4879 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4880 {
4881         ipha_t          *ipha;
4882 
4883         ipha = (ipha_t *)mp->b_rptr;
4884         if (ira->ira_flags & IRAF_IS_IPV4) {
4885                 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
4886                 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4887                     ICMP_PROTOCOL_UNREACHABLE, ira);
4888         } else {
4889                 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4890                 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4891                     ICMP6_PARAMPROB_NEXTHEADER, ira);
4892         }
4893 }
4894 
4895 /*
4896  * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4897  * Handles IPv4 and IPv6.
4898  * We are responsible for disposing of mp, such as by freemsg() or putnext()
4899  * Caller is responsible for dropping references to the conn.
4900  */
4901 void
4902 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4903     ip_recv_attr_t *ira)
4904 {
4905         ill_t           *ill = ira->ira_ill;
4906         ip_stack_t      *ipst = ill->ill_ipst;
4907         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
4908         boolean_t       secure;
4909         uint_t          protocol = ira->ira_protocol;
4910         iaflags_t       iraflags = ira->ira_flags;
4911         queue_t         *rq;
4912 
4913         secure = iraflags & IRAF_IPSEC_SECURE;
4914 
4915         rq = connp->conn_rq;
4916         if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4917                 switch (protocol) {
4918                 case IPPROTO_ICMPV6:
4919                         BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4920                         break;
4921                 case IPPROTO_ICMP:
4922                         BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4923                         break;
4924                 default:
4925                         BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4926                         break;
4927                 }
4928                 freemsg(mp);
4929                 return;
4930         }
4931 
4932         ASSERT(!(IPCL_IS_IPTUN(connp)));
4933 
4934         if (((iraflags & IRAF_IS_IPV4) ?
4935             CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4936             CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4937             secure) {
4938                 mp = ipsec_check_inbound_policy(mp, connp, ipha,
4939                     ip6h, ira);
4940                 if (mp == NULL) {
4941                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4942                         /* Note that mp is NULL */
4943                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
4944                         return;
4945                 }
4946         }
4947 
4948         if (iraflags & IRAF_ICMP_ERROR) {
4949                 (connp->conn_recvicmp)(connp, mp, NULL, ira);
4950         } else {
4951                 ill_t *rill = ira->ira_rill;
4952 
4953                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4954                 ira->ira_ill = ira->ira_rill = NULL;
4955                 /* Send it upstream */
4956                 (connp->conn_recv)(connp, mp, NULL, ira);
4957                 ira->ira_ill = ill;
4958                 ira->ira_rill = rill;
4959         }
4960 }
4961 
4962 /*
4963  * Handle protocols with which IP is less intimate.  There
4964  * can be more than one stream bound to a particular
4965  * protocol.  When this is the case, normally each one gets a copy
4966  * of any incoming packets.
4967  *
4968  * IPsec NOTE :
4969  *
4970  * Don't allow a secure packet going up a non-secure connection.
4971  * We don't allow this because
4972  *
4973  * 1) Reply might go out in clear which will be dropped at
4974  *    the sending side.
4975  * 2) If the reply goes out in clear it will give the
4976  *    adversary enough information for getting the key in
4977  *    most of the cases.
4978  *
4979  * Moreover getting a secure packet when we expect clear
4980  * implies that SA's were added without checking for
4981  * policy on both ends. This should not happen once ISAKMP
4982  * is used to negotiate SAs as SAs will be added only after
4983  * verifying the policy.
4984  *
4985  * Zones notes:
4986  * Earlier in ip_input on a system with multiple shared-IP zones we
4987  * duplicate the multicast and broadcast packets and send them up
4988  * with each explicit zoneid that exists on that ill.
4989  * This means that here we can match the zoneid with SO_ALLZONES being special.
4990  */
4991 void
4992 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
4993 {
4994         mblk_t          *mp1;
4995         ipaddr_t        laddr;
4996         conn_t          *connp, *first_connp, *next_connp;
4997         connf_t         *connfp;
4998         ill_t           *ill = ira->ira_ill;
4999         ip_stack_t      *ipst = ill->ill_ipst;
5000 
5001         laddr = ipha->ipha_dst;
5002 
5003         connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
5004         mutex_enter(&connfp->connf_lock);
5005         connp = connfp->connf_head;
5006         for (connp = connfp->connf_head; connp != NULL;
5007             connp = connp->conn_next) {
5008                 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5009                 if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5010                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5011                     tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
5012                         break;
5013                 }
5014         }
5015 
5016         if (connp == NULL) {
5017                 /*
5018                  * No one bound to these addresses.  Is
5019                  * there a client that wants all
5020                  * unclaimed datagrams?
5021                  */
5022                 mutex_exit(&connfp->connf_lock);
5023                 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5024                     ICMP_PROTOCOL_UNREACHABLE, ira);
5025                 return;
5026         }
5027 
5028         ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5029 
5030         CONN_INC_REF(connp);
5031         first_connp = connp;
5032         connp = connp->conn_next;
5033 
5034         for (;;) {
5035                 while (connp != NULL) {
5036                         /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5037                         if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5038                             (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5039                             tsol_receive_local(mp, &laddr, IPV4_VERSION,
5040                             ira, connp)))
5041                                 break;
5042                         connp = connp->conn_next;
5043                 }
5044 
5045                 if (connp == NULL) {
5046                         /* No more interested clients */
5047                         connp = first_connp;
5048                         break;
5049                 }
5050                 if (((mp1 = dupmsg(mp)) == NULL) &&
5051                     ((mp1 = copymsg(mp)) == NULL)) {
5052                         /* Memory allocation failed */
5053                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5054                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
5055                         connp = first_connp;
5056                         break;
5057                 }
5058 
5059                 CONN_INC_REF(connp);
5060                 mutex_exit(&connfp->connf_lock);
5061 
5062                 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5063                     ira);
5064 
5065                 mutex_enter(&connfp->connf_lock);
5066                 /* Follow the next pointer before releasing the conn. */
5067                 next_connp = connp->conn_next;
5068                 CONN_DEC_REF(connp);
5069                 connp = next_connp;
5070         }
5071 
5072         /* Last one.  Send it upstream. */
5073         mutex_exit(&connfp->connf_lock);
5074 
5075         ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
5076 
5077         CONN_DEC_REF(connp);
5078 }
5079 
5080 /*
5081  * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5082  * pass it along to ESP if the SPI is non-zero.  Returns the mblk if the mblk
5083  * is not consumed.
5084  *
5085  * One of three things can happen, all of which affect the passed-in mblk:
5086  *
5087  * 1.) The packet is stock UDP and gets its zero-SPI stripped.  Return mblk..
5088  *
5089  * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5090  *     ESP packet, and is passed along to ESP for consumption.  Return NULL.
5091  *
5092  * 3.) The packet is an ESP-in-UDP Keepalive.  Drop it and return NULL.
5093  */
5094 mblk_t *
5095 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5096 {
5097         int shift, plen, iph_len;
5098         ipha_t *ipha;
5099         udpha_t *udpha;
5100         uint32_t *spi;
5101         uint32_t esp_ports;
5102         uint8_t *orptr;
5103         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
5104         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
5105 
5106         ipha = (ipha_t *)mp->b_rptr;
5107         iph_len = ira->ira_ip_hdr_length;
5108         plen = ira->ira_pktlen;
5109 
5110         if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5111                 /*
5112                  * Most likely a keepalive for the benefit of an intervening
5113                  * NAT.  These aren't for us, per se, so drop it.
5114                  *
5115                  * RFC 3947/8 doesn't say for sure what to do for 2-3
5116                  * byte packets (keepalives are 1-byte), but we'll drop them
5117                  * also.
5118                  */
5119                 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5120                     DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5121                 return (NULL);
5122         }
5123 
5124         if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5125                 /* might as well pull it all up - it might be ESP. */
5126                 if (!pullupmsg(mp, -1)) {
5127                         ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5128                             DROPPER(ipss, ipds_esp_nomem),
5129                             &ipss->ipsec_dropper);
5130                         return (NULL);
5131                 }
5132 
5133                 ipha = (ipha_t *)mp->b_rptr;
5134         }
5135         spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5136         if (*spi == 0) {
5137                 /* UDP packet - remove 0-spi. */
5138                 shift = sizeof (uint32_t);
5139         } else {
5140                 /* ESP-in-UDP packet - reduce to ESP. */
5141                 ipha->ipha_protocol = IPPROTO_ESP;
5142                 shift = sizeof (udpha_t);
5143         }
5144 
5145         /* Fix IP header */
5146         ira->ira_pktlen = (plen - shift);
5147         ipha->ipha_length = htons(ira->ira_pktlen);
5148         ipha->ipha_hdr_checksum = 0;
5149 
5150         orptr = mp->b_rptr;
5151         mp->b_rptr += shift;
5152 
5153         udpha = (udpha_t *)(orptr + iph_len);
5154         if (*spi == 0) {
5155                 ASSERT((uint8_t *)ipha == orptr);
5156                 udpha->uha_length = htons(plen - shift - iph_len);
5157                 iph_len += sizeof (udpha_t);    /* For the call to ovbcopy(). */
5158                 esp_ports = 0;
5159         } else {
5160                 esp_ports = *((uint32_t *)udpha);
5161                 ASSERT(esp_ports != 0);
5162         }
5163         ovbcopy(orptr, orptr + shift, iph_len);
5164         if (esp_ports != 0) /* Punt up for ESP processing. */ {
5165                 ipha = (ipha_t *)(orptr + shift);
5166 
5167                 ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5168                 ira->ira_esp_udp_ports = esp_ports;
5169                 ip_fanout_v4(mp, ipha, ira);
5170                 return (NULL);
5171         }
5172         return (mp);
5173 }
5174 
5175 /*
5176  * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5177  * Handles IPv4 and IPv6.
5178  * We are responsible for disposing of mp, such as by freemsg() or putnext()
5179  * Caller is responsible for dropping references to the conn.
5180  */
5181 void
5182 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5183     ip_recv_attr_t *ira)
5184 {
5185         ill_t           *ill = ira->ira_ill;
5186         ip_stack_t      *ipst = ill->ill_ipst;
5187         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
5188         boolean_t       secure;
5189         iaflags_t       iraflags = ira->ira_flags;
5190 
5191         secure = iraflags & IRAF_IPSEC_SECURE;
5192 
5193         if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5194             !canputnext(connp->conn_rq)) {
5195                 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5196                 freemsg(mp);
5197                 return;
5198         }
5199 
5200         if (((iraflags & IRAF_IS_IPV4) ?
5201             CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5202             CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5203             secure) {
5204                 mp = ipsec_check_inbound_policy(mp, connp, ipha,
5205                     ip6h, ira);
5206                 if (mp == NULL) {
5207                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5208                         /* Note that mp is NULL */
5209                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
5210                         return;
5211                 }
5212         }
5213 
5214         /*
5215          * Since this code is not used for UDP unicast we don't need a NAT_T
5216          * check. Only ip_fanout_v4 has that check.
5217          */
5218         if (ira->ira_flags & IRAF_ICMP_ERROR) {
5219                 (connp->conn_recvicmp)(connp, mp, NULL, ira);
5220         } else {
5221                 ill_t *rill = ira->ira_rill;
5222 
5223                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5224                 ira->ira_ill = ira->ira_rill = NULL;
5225                 /* Send it upstream */
5226                 (connp->conn_recv)(connp, mp, NULL, ira);
5227                 ira->ira_ill = ill;
5228                 ira->ira_rill = rill;
5229         }
5230 }
5231 
5232 /*
5233  * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5234  * (Unicast fanout is handled in ip_input_v4.)
5235  *
5236  * If SO_REUSEADDR is set all multicast and broadcast packets
5237  * will be delivered to all conns bound to the same port.
5238  *
5239  * If there is at least one matching AF_INET receiver, then we will
5240  * ignore any AF_INET6 receivers.
5241  * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5242  * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5243  * packets.
5244  *
5245  * Zones notes:
5246  * Earlier in ip_input on a system with multiple shared-IP zones we
5247  * duplicate the multicast and broadcast packets and send them up
5248  * with each explicit zoneid that exists on that ill.
5249  * This means that here we can match the zoneid with SO_ALLZONES being special.
5250  */
5251 void
5252 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5253     ip_recv_attr_t *ira)
5254 {
5255         ipaddr_t        laddr;
5256         in6_addr_t      v6faddr;
5257         conn_t          *connp;
5258         connf_t         *connfp;
5259         ipaddr_t        faddr;
5260         ill_t           *ill = ira->ira_ill;
5261         ip_stack_t      *ipst = ill->ill_ipst;
5262 
5263         ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
5264 
5265         laddr = ipha->ipha_dst;
5266         faddr = ipha->ipha_src;
5267 
5268         connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5269         mutex_enter(&connfp->connf_lock);
5270         connp = connfp->connf_head;
5271 
5272         /*
5273          * If SO_REUSEADDR has been set on the first we send the
5274          * packet to all clients that have joined the group and
5275          * match the port.
5276          */
5277         while (connp != NULL) {
5278                 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5279                     conn_wantpacket(connp, ira, ipha) &&
5280                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5281                     tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5282                         break;
5283                 connp = connp->conn_next;
5284         }
5285 
5286         if (connp == NULL)
5287                 goto notfound;
5288 
5289         CONN_INC_REF(connp);
5290 
5291         if (connp->conn_reuseaddr) {
5292                 conn_t          *first_connp = connp;
5293                 conn_t          *next_connp;
5294                 mblk_t          *mp1;
5295 
5296                 connp = connp->conn_next;
5297                 for (;;) {
5298                         while (connp != NULL) {
5299                                 if (IPCL_UDP_MATCH(connp, lport, laddr,
5300                                     fport, faddr) &&
5301                                     conn_wantpacket(connp, ira, ipha) &&
5302                                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5303                                     tsol_receive_local(mp, &laddr, IPV4_VERSION,
5304                                     ira, connp)))
5305                                         break;
5306                                 connp = connp->conn_next;
5307                         }
5308                         if (connp == NULL) {
5309                                 /* No more interested clients */
5310                                 connp = first_connp;
5311                                 break;
5312                         }
5313                         if (((mp1 = dupmsg(mp)) == NULL) &&
5314                             ((mp1 = copymsg(mp)) == NULL)) {
5315                                 /* Memory allocation failed */
5316                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5317                                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5318                                 connp = first_connp;
5319                                 break;
5320                         }
5321                         CONN_INC_REF(connp);
5322                         mutex_exit(&connfp->connf_lock);
5323 
5324                         IP_STAT(ipst, ip_udp_fanmb);
5325                         ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5326                             NULL, ira);
5327                         mutex_enter(&connfp->connf_lock);
5328                         /* Follow the next pointer before releasing the conn */
5329                         next_connp = connp->conn_next;
5330                         CONN_DEC_REF(connp);
5331                         connp = next_connp;
5332                 }
5333         }
5334 
5335         /* Last one.  Send it upstream. */
5336         mutex_exit(&connfp->connf_lock);
5337         IP_STAT(ipst, ip_udp_fanmb);
5338         ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5339         CONN_DEC_REF(connp);
5340         return;
5341 
5342 notfound:
5343         mutex_exit(&connfp->connf_lock);
5344         /*
5345          * IPv6 endpoints bound to multicast IPv4-mapped addresses
5346          * have already been matched above, since they live in the IPv4
5347          * fanout tables. This implies we only need to
5348          * check for IPv6 in6addr_any endpoints here.
5349          * Thus we compare using ipv6_all_zeros instead of the destination
5350          * address, except for the multicast group membership lookup which
5351          * uses the IPv4 destination.
5352          */
5353         IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5354         connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5355         mutex_enter(&connfp->connf_lock);
5356         connp = connfp->connf_head;
5357         /*
5358          * IPv4 multicast packet being delivered to an AF_INET6
5359          * in6addr_any endpoint.
5360          * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5361          * and not conn_wantpacket_v6() since any multicast membership is
5362          * for an IPv4-mapped multicast address.
5363          */
5364         while (connp != NULL) {
5365                 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5366                     fport, v6faddr) &&
5367                     conn_wantpacket(connp, ira, ipha) &&
5368                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5369                     tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5370                         break;
5371                 connp = connp->conn_next;
5372         }
5373 
5374         if (connp == NULL) {
5375                 /*
5376                  * No one bound to this port.  Is
5377                  * there a client that wants all
5378                  * unclaimed datagrams?
5379                  */
5380                 mutex_exit(&connfp->connf_lock);
5381 
5382                 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5383                     NULL) {
5384                         ASSERT(ira->ira_protocol == IPPROTO_UDP);
5385                         ip_fanout_proto_v4(mp, ipha, ira);
5386                 } else {
5387                         /*
5388                          * We used to attempt to send an icmp error here, but
5389                          * since this is known to be a multicast packet
5390                          * and we don't send icmp errors in response to
5391                          * multicast, just drop the packet and give up sooner.
5392                          */
5393                         BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5394                         freemsg(mp);
5395                 }
5396                 return;
5397         }
5398         ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5399 
5400         /*
5401          * If SO_REUSEADDR has been set on the first we send the
5402          * packet to all clients that have joined the group and
5403          * match the port.
5404          */
5405         if (connp->conn_reuseaddr) {
5406                 conn_t          *first_connp = connp;
5407                 conn_t          *next_connp;
5408                 mblk_t          *mp1;
5409 
5410                 CONN_INC_REF(connp);
5411                 connp = connp->conn_next;
5412                 for (;;) {
5413                         while (connp != NULL) {
5414                                 if (IPCL_UDP_MATCH_V6(connp, lport,
5415                                     ipv6_all_zeros, fport, v6faddr) &&
5416                                     conn_wantpacket(connp, ira, ipha) &&
5417                                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5418                                     tsol_receive_local(mp, &laddr, IPV4_VERSION,
5419                                     ira, connp)))
5420                                         break;
5421                                 connp = connp->conn_next;
5422                         }
5423                         if (connp == NULL) {
5424                                 /* No more interested clients */
5425                                 connp = first_connp;
5426                                 break;
5427                         }
5428                         if (((mp1 = dupmsg(mp)) == NULL) &&
5429                             ((mp1 = copymsg(mp)) == NULL)) {
5430                                 /* Memory allocation failed */
5431                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5432                                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5433                                 connp = first_connp;
5434                                 break;
5435                         }
5436                         CONN_INC_REF(connp);
5437                         mutex_exit(&connfp->connf_lock);
5438 
5439                         IP_STAT(ipst, ip_udp_fanmb);
5440                         ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5441                             NULL, ira);
5442                         mutex_enter(&connfp->connf_lock);
5443                         /* Follow the next pointer before releasing the conn */
5444                         next_connp = connp->conn_next;
5445                         CONN_DEC_REF(connp);
5446                         connp = next_connp;
5447                 }
5448         }
5449 
5450         /* Last one.  Send it upstream. */
5451         mutex_exit(&connfp->connf_lock);
5452         IP_STAT(ipst, ip_udp_fanmb);
5453         ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5454         CONN_DEC_REF(connp);
5455 }
5456 
5457 /*
5458  * Split an incoming packet's IPv4 options into the label and the other options.
5459  * If 'allocate' is set it does memory allocation for the ip_pkt_t, including
5460  * clearing out any leftover label or options.
5461  * Otherwise it just makes ipp point into the packet.
5462  *
5463  * Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
5464  */
5465 int
5466 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5467 {
5468         uchar_t         *opt;
5469         uint32_t        totallen;
5470         uint32_t        optval;
5471         uint32_t        optlen;
5472 
5473         ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5474         ipp->ipp_hoplimit = ipha->ipha_ttl;
5475         ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5476         IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
5477 
5478         /*
5479          * Get length (in 4 byte octets) of IP header options.
5480          */
5481         totallen = ipha->ipha_version_and_hdr_length -
5482             (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5483 
5484         if (totallen == 0) {
5485                 if (!allocate)
5486                         return (0);
5487 
5488                 /* Clear out anything from a previous packet */
5489                 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5490                         kmem_free(ipp->ipp_ipv4_options,
5491                             ipp->ipp_ipv4_options_len);
5492                         ipp->ipp_ipv4_options = NULL;
5493                         ipp->ipp_ipv4_options_len = 0;
5494                         ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5495                 }
5496                 if (ipp->ipp_fields & IPPF_LABEL_V4) {
5497                         kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5498                         ipp->ipp_label_v4 = NULL;
5499                         ipp->ipp_label_len_v4 = 0;
5500                         ipp->ipp_fields &= ~IPPF_LABEL_V4;
5501                 }
5502                 return (0);
5503         }
5504 
5505         totallen <<= 2;
5506         opt = (uchar_t *)&ipha[1];
5507         if (!is_system_labeled()) {
5508 
5509         copyall:
5510                 if (!allocate) {
5511                         if (totallen != 0) {
5512                                 ipp->ipp_ipv4_options = opt;
5513                                 ipp->ipp_ipv4_options_len = totallen;
5514                                 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5515                         }
5516                         return (0);
5517                 }
5518                 /* Just copy all of options */
5519                 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5520                         if (totallen == ipp->ipp_ipv4_options_len) {
5521                                 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5522                                 return (0);
5523                         }
5524                         kmem_free(ipp->ipp_ipv4_options,
5525                             ipp->ipp_ipv4_options_len);
5526                         ipp->ipp_ipv4_options = NULL;
5527                         ipp->ipp_ipv4_options_len = 0;
5528                         ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5529                 }
5530                 if (totallen == 0)
5531                         return (0);
5532 
5533                 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5534                 if (ipp->ipp_ipv4_options == NULL)
5535                         return (ENOMEM);
5536                 ipp->ipp_ipv4_options_len = totallen;
5537                 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5538                 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5539                 return (0);
5540         }
5541 
5542         if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5543                 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5544                 ipp->ipp_label_v4 = NULL;
5545                 ipp->ipp_label_len_v4 = 0;
5546                 ipp->ipp_fields &= ~IPPF_LABEL_V4;
5547         }
5548 
5549         /*
5550          * Search for CIPSO option.
5551          * We assume CIPSO is first in options if it is present.
5552          * If it isn't, then ipp_opt_ipv4_options will not include the options
5553          * prior to the CIPSO option.
5554          */
5555         while (totallen != 0) {
5556                 switch (optval = opt[IPOPT_OPTVAL]) {
5557                 case IPOPT_EOL:
5558                         return (0);
5559                 case IPOPT_NOP:
5560                         optlen = 1;
5561                         break;
5562                 default:
5563                         if (totallen <= IPOPT_OLEN)
5564                                 return (EINVAL);
5565                         optlen = opt[IPOPT_OLEN];
5566                         if (optlen < 2)
5567                                 return (EINVAL);
5568                 }
5569                 if (optlen > totallen)
5570                         return (EINVAL);
5571 
5572                 switch (optval) {
5573                 case IPOPT_COMSEC:
5574                         if (!allocate) {
5575                                 ipp->ipp_label_v4 = opt;
5576                                 ipp->ipp_label_len_v4 = optlen;
5577                                 ipp->ipp_fields |= IPPF_LABEL_V4;
5578                         } else {
5579                                 ipp->ipp_label_v4 = kmem_alloc(optlen,
5580                                     KM_NOSLEEP);
5581                                 if (ipp->ipp_label_v4 == NULL)
5582                                         return (ENOMEM);
5583                                 ipp->ipp_label_len_v4 = optlen;
5584                                 ipp->ipp_fields |= IPPF_LABEL_V4;
5585                                 bcopy(opt, ipp->ipp_label_v4, optlen);
5586                         }
5587                         totallen -= optlen;
5588                         opt += optlen;
5589 
5590                         /* Skip padding bytes until we get to a multiple of 4 */
5591                         while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5592                                 totallen--;
5593                                 opt++;
5594                         }
5595                         /* Remaining as ipp_ipv4_options */
5596                         goto copyall;
5597                 }
5598                 totallen -= optlen;
5599                 opt += optlen;
5600         }
5601         /* No CIPSO found; return everything as ipp_ipv4_options */
5602         totallen = ipha->ipha_version_and_hdr_length -
5603             (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5604         totallen <<= 2;
5605         opt = (uchar_t *)&ipha[1];
5606         goto copyall;
5607 }
5608 
5609 /*
5610  * Efficient versions of lookup for an IRE when we only
5611  * match the address.
5612  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5613  * Does not handle multicast addresses.
5614  */
5615 uint_t
5616 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5617 {
5618         ire_t *ire;
5619         uint_t result;
5620 
5621         ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5622         ASSERT(ire != NULL);
5623         if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5624                 result = IRE_NOROUTE;
5625         else
5626                 result = ire->ire_type;
5627         ire_refrele(ire);
5628         return (result);
5629 }
5630 
5631 /*
5632  * Efficient versions of lookup for an IRE when we only
5633  * match the address.
5634  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5635  * Does not handle multicast addresses.
5636  */
5637 uint_t
5638 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5639 {
5640         ire_t *ire;
5641         uint_t result;
5642 
5643         ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5644         ASSERT(ire != NULL);
5645         if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5646                 result = IRE_NOROUTE;
5647         else
5648                 result = ire->ire_type;
5649         ire_refrele(ire);
5650         return (result);
5651 }
5652 
5653 /*
5654  * Nobody should be sending
5655  * packets up this stream
5656  */
5657 static void
5658 ip_lrput(queue_t *q, mblk_t *mp)
5659 {
5660         switch (mp->b_datap->db_type) {
5661         case M_FLUSH:
5662                 /* Turn around */
5663                 if (*mp->b_rptr & FLUSHW) {
5664                         *mp->b_rptr &= ~FLUSHR;
5665                         qreply(q, mp);
5666                         return;
5667                 }
5668                 break;
5669         }
5670         freemsg(mp);
5671 }
5672 
5673 /* Nobody should be sending packets down this stream */
5674 /* ARGSUSED */
5675 void
5676 ip_lwput(queue_t *q, mblk_t *mp)
5677 {
5678         freemsg(mp);
5679 }
5680 
5681 /*
5682  * Move the first hop in any source route to ipha_dst and remove that part of
5683  * the source route.  Called by other protocols.  Errors in option formatting
5684  * are ignored - will be handled by ip_output_options. Return the final
5685  * destination (either ipha_dst or the last entry in a source route.)
5686  */
5687 ipaddr_t
5688 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5689 {
5690         ipoptp_t        opts;
5691         uchar_t         *opt;
5692         uint8_t         optval;
5693         uint8_t         optlen;
5694         ipaddr_t        dst;
5695         int             i;
5696         ip_stack_t      *ipst = ns->netstack_ip;
5697 
5698         ip2dbg(("ip_massage_options\n"));
5699         dst = ipha->ipha_dst;
5700         for (optval = ipoptp_first(&opts, ipha);
5701             optval != IPOPT_EOL;
5702             optval = ipoptp_next(&opts)) {
5703                 opt = opts.ipoptp_cur;
5704                 switch (optval) {
5705                         uint8_t off;
5706                 case IPOPT_SSRR:
5707                 case IPOPT_LSRR:
5708                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5709                                 ip1dbg(("ip_massage_options: bad src route\n"));
5710                                 break;
5711                         }
5712                         optlen = opts.ipoptp_len;
5713                         off = opt[IPOPT_OFFSET];
5714                         off--;
5715                 redo_srr:
5716                         if (optlen < IP_ADDR_LEN ||
5717                             off > optlen - IP_ADDR_LEN) {
5718                                 /* End of source route */
5719                                 ip1dbg(("ip_massage_options: end of SR\n"));
5720                                 break;
5721                         }
5722                         bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5723                         ip1dbg(("ip_massage_options: next hop 0x%x\n",
5724                             ntohl(dst)));
5725                         /*
5726                          * Check if our address is present more than
5727                          * once as consecutive hops in source route.
5728                          * XXX verify per-interface ip_forwarding
5729                          * for source route?
5730                          */
5731                         if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5732                                 off += IP_ADDR_LEN;
5733                                 goto redo_srr;
5734                         }
5735                         if (dst == htonl(INADDR_LOOPBACK)) {
5736                                 ip1dbg(("ip_massage_options: loopback addr in "
5737                                     "source route!\n"));
5738                                 break;
5739                         }
5740                         /*
5741                          * Update ipha_dst to be the first hop and remove the
5742                          * first hop from the source route (by overwriting
5743                          * part of the option with NOP options).
5744                          */
5745                         ipha->ipha_dst = dst;
5746                         /* Put the last entry in dst */
5747                         off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5748                             3;
5749                         bcopy(&opt[off], &dst, IP_ADDR_LEN);
5750 
5751                         ip1dbg(("ip_massage_options: last hop 0x%x\n",
5752                             ntohl(dst)));
5753                         /* Move down and overwrite */
5754                         opt[IP_ADDR_LEN] = opt[0];
5755                         opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5756                         opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5757                         for (i = 0; i < IP_ADDR_LEN; i++)
5758                                 opt[i] = IPOPT_NOP;
5759                         break;
5760                 }
5761         }
5762         return (dst);
5763 }
5764 
5765 /*
5766  * Return the network mask
5767  * associated with the specified address.
5768  */
5769 ipaddr_t
5770 ip_net_mask(ipaddr_t addr)
5771 {
5772         uchar_t *up = (uchar_t *)&addr;
5773         ipaddr_t mask = 0;
5774         uchar_t *maskp = (uchar_t *)&mask;
5775 
5776 #if defined(__i386) || defined(__amd64)
5777 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER
5778 #endif
5779 #ifdef  TOTALLY_BRAIN_DAMAGED_C_COMPILER
5780         maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5781 #endif
5782         if (CLASSD(addr)) {
5783                 maskp[0] = 0xF0;
5784                 return (mask);
5785         }
5786 
5787         /* We assume Class E default netmask to be 32 */
5788         if (CLASSE(addr))
5789                 return (0xffffffffU);
5790 
5791         if (addr == 0)
5792                 return (0);
5793         maskp[0] = 0xFF;
5794         if ((up[0] & 0x80) == 0)
5795                 return (mask);
5796 
5797         maskp[1] = 0xFF;
5798         if ((up[0] & 0xC0) == 0x80)
5799                 return (mask);
5800 
5801         maskp[2] = 0xFF;
5802         if ((up[0] & 0xE0) == 0xC0)
5803                 return (mask);
5804 
5805         /* Otherwise return no mask */
5806         return ((ipaddr_t)0);
5807 }
5808 
5809 /* Name/Value Table Lookup Routine */
5810 char *
5811 ip_nv_lookup(nv_t *nv, int value)
5812 {
5813         if (!nv)
5814                 return (NULL);
5815         for (; nv->nv_name; nv++) {
5816                 if (nv->nv_value == value)
5817                         return (nv->nv_name);
5818         }
5819         return ("unknown");
5820 }
5821 
5822 static int
5823 ip_wait_for_info_ack(ill_t *ill)
5824 {
5825         int err;
5826 
5827         mutex_enter(&ill->ill_lock);
5828         while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5829                 /*
5830                  * Return value of 0 indicates a pending signal.
5831                  */
5832                 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5833                 if (err == 0) {
5834                         mutex_exit(&ill->ill_lock);
5835                         return (EINTR);
5836                 }
5837         }
5838         mutex_exit(&ill->ill_lock);
5839         /*
5840          * ip_rput_other could have set an error  in ill_error on
5841          * receipt of M_ERROR.
5842          */
5843         return (ill->ill_error);
5844 }
5845 
5846 /*
5847  * This is a module open, i.e. this is a control stream for access
5848  * to a DLPI device.  We allocate an ill_t as the instance data in
5849  * this case.
5850  */
5851 static int
5852 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5853 {
5854         ill_t   *ill;
5855         int     err;
5856         zoneid_t zoneid;
5857         netstack_t *ns;
5858         ip_stack_t *ipst;
5859 
5860         /*
5861          * Prevent unprivileged processes from pushing IP so that
5862          * they can't send raw IP.
5863          */
5864         if (secpolicy_net_rawaccess(credp) != 0)
5865                 return (EPERM);
5866 
5867         ns = netstack_find_by_cred(credp);
5868         ASSERT(ns != NULL);
5869         ipst = ns->netstack_ip;
5870         ASSERT(ipst != NULL);
5871 
5872         /*
5873          * For exclusive stacks we set the zoneid to zero
5874          * to make IP operate as if in the global zone.
5875          */
5876         if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5877                 zoneid = GLOBAL_ZONEID;
5878         else
5879                 zoneid = crgetzoneid(credp);
5880 
5881         ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5882         q->q_ptr = WR(q)->q_ptr = ill;
5883         ill->ill_ipst = ipst;
5884         ill->ill_zoneid = zoneid;
5885 
5886         /*
5887          * ill_init initializes the ill fields and then sends down
5888          * down a DL_INFO_REQ after calling qprocson.
5889          */
5890         err = ill_init(q, ill);
5891 
5892         if (err != 0) {
5893                 mi_free(ill);
5894                 netstack_rele(ipst->ips_netstack);
5895                 q->q_ptr = NULL;
5896                 WR(q)->q_ptr = NULL;
5897                 return (err);
5898         }
5899 
5900         /*
5901          * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5902          *
5903          * ill_init initializes the ipsq marking this thread as
5904          * writer
5905          */
5906         ipsq_exit(ill->ill_phyint->phyint_ipsq);
5907         err = ip_wait_for_info_ack(ill);
5908         if (err == 0)
5909                 ill->ill_credp = credp;
5910         else
5911                 goto fail;
5912 
5913         crhold(credp);
5914 
5915         mutex_enter(&ipst->ips_ip_mi_lock);
5916         err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5917             sflag, credp);
5918         mutex_exit(&ipst->ips_ip_mi_lock);
5919 fail:
5920         if (err) {
5921                 (void) ip_close(q, 0);
5922                 return (err);
5923         }
5924         return (0);
5925 }
5926 
5927 /* For /dev/ip aka AF_INET open */
5928 int
5929 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5930 {
5931         return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5932 }
5933 
5934 /* For /dev/ip6 aka AF_INET6 open */
5935 int
5936 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5937 {
5938         return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5939 }
5940 
5941 /* IP open routine. */
5942 int
5943 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5944     boolean_t isv6)
5945 {
5946         conn_t          *connp;
5947         major_t         maj;
5948         zoneid_t        zoneid;
5949         netstack_t      *ns;
5950         ip_stack_t      *ipst;
5951 
5952         /* Allow reopen. */
5953         if (q->q_ptr != NULL)
5954                 return (0);
5955 
5956         if (sflag & MODOPEN) {
5957                 /* This is a module open */
5958                 return (ip_modopen(q, devp, flag, sflag, credp));
5959         }
5960 
5961         if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5962                 /*
5963                  * Non streams based socket looking for a stream
5964                  * to access IP
5965                  */
5966                 return (ip_helper_stream_setup(q, devp, flag, sflag,
5967                     credp, isv6));
5968         }
5969 
5970         ns = netstack_find_by_cred(credp);
5971         ASSERT(ns != NULL);
5972         ipst = ns->netstack_ip;
5973         ASSERT(ipst != NULL);
5974 
5975         /*
5976          * For exclusive stacks we set the zoneid to zero
5977          * to make IP operate as if in the global zone.
5978          */
5979         if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5980                 zoneid = GLOBAL_ZONEID;
5981         else
5982                 zoneid = crgetzoneid(credp);
5983 
5984         /*
5985          * We are opening as a device. This is an IP client stream, and we
5986          * allocate an conn_t as the instance data.
5987          */
5988         connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
5989 
5990         /*
5991          * ipcl_conn_create did a netstack_hold. Undo the hold that was
5992          * done by netstack_find_by_cred()
5993          */
5994         netstack_rele(ipst->ips_netstack);
5995 
5996         connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
5997         /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
5998         connp->conn_ixa->ixa_zoneid = zoneid;
5999         connp->conn_zoneid = zoneid;
6000 
6001         connp->conn_rq = q;
6002         q->q_ptr = WR(q)->q_ptr = connp;
6003 
6004         /* Minor tells us which /dev entry was opened */
6005         if (isv6) {
6006                 connp->conn_family = AF_INET6;
6007                 connp->conn_ipversion = IPV6_VERSION;
6008                 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
6009                 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
6010         } else {
6011                 connp->conn_family = AF_INET;
6012                 connp->conn_ipversion = IPV4_VERSION;
6013                 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6014         }
6015 
6016         if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6017             ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6018                 connp->conn_minor_arena = ip_minor_arena_la;
6019         } else {
6020                 /*
6021                  * Either minor numbers in the large arena were exhausted
6022                  * or a non socket application is doing the open.
6023                  * Try to allocate from the small arena.
6024                  */
6025                 if ((connp->conn_dev =
6026                     inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6027                         /* CONN_DEC_REF takes care of netstack_rele() */
6028                         q->q_ptr = WR(q)->q_ptr = NULL;
6029                         CONN_DEC_REF(connp);
6030                         return (EBUSY);
6031                 }
6032                 connp->conn_minor_arena = ip_minor_arena_sa;
6033         }
6034 
6035         maj = getemajor(*devp);
6036         *devp = makedevice(maj, (minor_t)connp->conn_dev);
6037 
6038         /*
6039          * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6040          */
6041         connp->conn_cred = credp;
6042         connp->conn_cpid = curproc->p_pid;
6043         /* Cache things in ixa without an extra refhold */
6044         ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
6045         connp->conn_ixa->ixa_cred = connp->conn_cred;
6046         connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6047         if (is_system_labeled())
6048                 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
6049 
6050         /*
6051          * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6052          */
6053         connp->conn_recv = ip_conn_input;
6054         connp->conn_recvicmp = ip_conn_input_icmp;
6055 
6056         crhold(connp->conn_cred);
6057 
6058         /*
6059          * If the caller has the process-wide flag set, then default to MAC
6060          * exempt mode.  This allows read-down to unlabeled hosts.
6061          */
6062         if (getpflags(NET_MAC_AWARE, credp) != 0)
6063                 connp->conn_mac_mode = CONN_MAC_AWARE;
6064 
6065         connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
6066 
6067         connp->conn_rq = q;
6068         connp->conn_wq = WR(q);
6069 
6070         /* Non-zero default values */
6071         connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
6072 
6073         /*
6074          * Make the conn globally visible to walkers
6075          */
6076         ASSERT(connp->conn_ref == 1);
6077         mutex_enter(&connp->conn_lock);
6078         connp->conn_state_flags &= ~CONN_INCIPIENT;
6079         mutex_exit(&connp->conn_lock);
6080 
6081         qprocson(q);
6082 
6083         return (0);
6084 }
6085 
6086 /*
6087  * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6088  * all of them are copied to the conn_t. If the req is "zero", the policy is
6089  * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6090  * fields.
6091  * We keep only the latest setting of the policy and thus policy setting
6092  * is not incremental/cumulative.
6093  *
6094  * Requests to set policies with multiple alternative actions will
6095  * go through a different API.
6096  */
6097 int
6098 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6099 {
6100         uint_t ah_req = 0;
6101         uint_t esp_req = 0;
6102         uint_t se_req = 0;
6103         ipsec_act_t *actp = NULL;
6104         uint_t nact;
6105         ipsec_policy_head_t *ph;
6106         boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6107         int error = 0;
6108         netstack_t      *ns = connp->conn_netstack;
6109         ip_stack_t      *ipst = ns->netstack_ip;
6110         ipsec_stack_t   *ipss = ns->netstack_ipsec;
6111 
6112 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
6113 
6114         /*
6115          * The IP_SEC_OPT option does not allow variable length parameters,
6116          * hence a request cannot be NULL.
6117          */
6118         if (req == NULL)
6119                 return (EINVAL);
6120 
6121         ah_req = req->ipsr_ah_req;
6122         esp_req = req->ipsr_esp_req;
6123         se_req = req->ipsr_self_encap_req;
6124 
6125         /* Don't allow setting self-encap without one or more of AH/ESP. */
6126         if (se_req != 0 && esp_req == 0 && ah_req == 0)
6127                 return (EINVAL);
6128 
6129         /*
6130          * Are we dealing with a request to reset the policy (i.e.
6131          * zero requests).
6132          */
6133         is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6134             (esp_req & REQ_MASK) == 0 &&
6135             (se_req & REQ_MASK) == 0);
6136 
6137         if (!is_pol_reset) {
6138                 /*
6139                  * If we couldn't load IPsec, fail with "protocol
6140                  * not supported".
6141                  * IPsec may not have been loaded for a request with zero
6142                  * policies, so we don't fail in this case.
6143                  */
6144                 mutex_enter(&ipss->ipsec_loader_lock);
6145                 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6146                         mutex_exit(&ipss->ipsec_loader_lock);
6147                         return (EPROTONOSUPPORT);
6148                 }
6149                 mutex_exit(&ipss->ipsec_loader_lock);
6150 
6151                 /*
6152                  * Test for valid requests. Invalid algorithms
6153                  * need to be tested by IPsec code because new
6154                  * algorithms can be added dynamically.
6155                  */
6156                 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6157                     (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6158                     (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6159                         return (EINVAL);
6160                 }
6161 
6162                 /*
6163                  * Only privileged users can issue these
6164                  * requests.
6165                  */
6166                 if (((ah_req & IPSEC_PREF_NEVER) ||
6167                     (esp_req & IPSEC_PREF_NEVER) ||
6168                     (se_req & IPSEC_PREF_NEVER)) &&
6169                     secpolicy_ip_config(cr, B_FALSE) != 0) {
6170                         return (EPERM);
6171                 }
6172 
6173                 /*
6174                  * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6175                  * are mutually exclusive.
6176                  */
6177                 if (((ah_req & REQ_MASK) == REQ_MASK) ||
6178                     ((esp_req & REQ_MASK) == REQ_MASK) ||
6179                     ((se_req & REQ_MASK) == REQ_MASK)) {
6180                         /* Both of them are set */
6181                         return (EINVAL);
6182                 }
6183         }
6184 
6185         ASSERT(MUTEX_HELD(&connp->conn_lock));
6186 
6187         /*
6188          * If we have already cached policies in conn_connect(), don't
6189          * let them change now. We cache policies for connections
6190          * whose src,dst [addr, port] is known.
6191          */
6192         if (connp->conn_policy_cached) {
6193                 return (EINVAL);
6194         }
6195 
6196         /*
6197          * We have a zero policies, reset the connection policy if already
6198          * set. This will cause the connection to inherit the
6199          * global policy, if any.
6200          */
6201         if (is_pol_reset) {
6202                 if (connp->conn_policy != NULL) {
6203                         IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6204                         connp->conn_policy = NULL;
6205                 }
6206                 connp->conn_in_enforce_policy = B_FALSE;
6207                 connp->conn_out_enforce_policy = B_FALSE;
6208                 return (0);
6209         }
6210 
6211         ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6212             ipst->ips_netstack);
6213         if (ph == NULL)
6214                 goto enomem;
6215 
6216         ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6217         if (actp == NULL)
6218                 goto enomem;
6219 
6220         /*
6221          * Always insert IPv4 policy entries, since they can also apply to
6222          * ipv6 sockets being used in ipv4-compat mode.
6223          */
6224         if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6225             IPSEC_TYPE_INBOUND, ns))
6226                 goto enomem;
6227         is_pol_inserted = B_TRUE;
6228         if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6229             IPSEC_TYPE_OUTBOUND, ns))
6230                 goto enomem;
6231 
6232         /*
6233          * We're looking at a v6 socket, also insert the v6-specific
6234          * entries.
6235          */
6236         if (connp->conn_family == AF_INET6) {
6237                 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6238                     IPSEC_TYPE_INBOUND, ns))
6239                         goto enomem;
6240                 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6241                     IPSEC_TYPE_OUTBOUND, ns))
6242                         goto enomem;
6243         }
6244 
6245         ipsec_actvec_free(actp, nact);
6246 
6247         /*
6248          * If the requests need security, set enforce_policy.
6249          * If the requests are IPSEC_PREF_NEVER, one should
6250          * still set conn_out_enforce_policy so that ip_set_destination
6251          * marks the ip_xmit_attr_t appropriatly. This is needed so that
6252          * for connections that we don't cache policy in at connect time,
6253          * if global policy matches in ip_output_attach_policy, we
6254          * don't wrongly inherit global policy. Similarly, we need
6255          * to set conn_in_enforce_policy also so that we don't verify
6256          * policy wrongly.
6257          */
6258         if ((ah_req & REQ_MASK) != 0 ||
6259             (esp_req & REQ_MASK) != 0 ||
6260             (se_req & REQ_MASK) != 0) {
6261                 connp->conn_in_enforce_policy = B_TRUE;
6262                 connp->conn_out_enforce_policy = B_TRUE;
6263         }
6264 
6265         return (error);
6266 #undef REQ_MASK
6267 
6268         /*
6269          * Common memory-allocation-failure exit path.
6270          */
6271 enomem:
6272         if (actp != NULL)
6273                 ipsec_actvec_free(actp, nact);
6274         if (is_pol_inserted)
6275                 ipsec_polhead_flush(ph, ns);
6276         return (ENOMEM);
6277 }
6278 
6279 /*
6280  * Set socket options for joining and leaving multicast groups.
6281  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6282  * The caller has already check that the option name is consistent with
6283  * the address family of the socket.
6284  */
6285 int
6286 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6287     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6288 {
6289         int             *i1 = (int *)invalp;
6290         int             error = 0;
6291         ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
6292         struct ip_mreq  *v4_mreqp;
6293         struct ipv6_mreq *v6_mreqp;
6294         struct group_req *greqp;
6295         ire_t *ire;
6296         boolean_t done = B_FALSE;
6297         ipaddr_t ifaddr;
6298         in6_addr_t v6group;
6299         uint_t ifindex;
6300         boolean_t mcast_opt = B_TRUE;
6301         mcast_record_t fmode;
6302         int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6303             ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6304 
6305         switch (name) {
6306         case IP_ADD_MEMBERSHIP:
6307         case IPV6_JOIN_GROUP:
6308                 mcast_opt = B_FALSE;
6309                 /* FALLTHRU */
6310         case MCAST_JOIN_GROUP:
6311                 fmode = MODE_IS_EXCLUDE;
6312                 optfn = ip_opt_add_group;
6313                 break;
6314 
6315         case IP_DROP_MEMBERSHIP:
6316         case IPV6_LEAVE_GROUP:
6317                 mcast_opt = B_FALSE;
6318                 /* FALLTHRU */
6319         case MCAST_LEAVE_GROUP:
6320                 fmode = MODE_IS_INCLUDE;
6321                 optfn = ip_opt_delete_group;
6322                 break;
6323         default:
6324                 ASSERT(0);
6325         }
6326 
6327         if (mcast_opt) {
6328                 struct sockaddr_in *sin;
6329                 struct sockaddr_in6 *sin6;
6330 
6331                 greqp = (struct group_req *)i1;
6332                 if (greqp->gr_group.ss_family == AF_INET) {
6333                         sin = (struct sockaddr_in *)&(greqp->gr_group);
6334                         IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6335                 } else {
6336                         if (!inet6)
6337                                 return (EINVAL);        /* Not on INET socket */
6338 
6339                         sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6340                         v6group = sin6->sin6_addr;
6341                 }
6342                 ifaddr = INADDR_ANY;
6343                 ifindex = greqp->gr_interface;
6344         } else if (inet6) {
6345                 v6_mreqp = (struct ipv6_mreq *)i1;
6346                 v6group = v6_mreqp->ipv6mr_multiaddr;
6347                 ifaddr = INADDR_ANY;
6348                 ifindex = v6_mreqp->ipv6mr_interface;
6349         } else {
6350                 v4_mreqp = (struct ip_mreq *)i1;
6351                 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6352                 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6353                 ifindex = 0;
6354         }
6355 
6356         /*
6357          * In the multirouting case, we need to replicate
6358          * the request on all interfaces that will take part
6359          * in replication.  We do so because multirouting is
6360          * reflective, thus we will probably receive multi-
6361          * casts on those interfaces.
6362          * The ip_multirt_apply_membership() succeeds if
6363          * the operation succeeds on at least one interface.
6364          */
6365         if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6366                 ipaddr_t group;
6367 
6368                 IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6369 
6370                 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6371                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6372                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6373         } else {
6374                 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6375                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6376                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6377         }
6378         if (ire != NULL) {
6379                 if (ire->ire_flags & RTF_MULTIRT) {
6380                         error = ip_multirt_apply_membership(optfn, ire, connp,
6381                             checkonly, &v6group, fmode, &ipv6_all_zeros);
6382                         done = B_TRUE;
6383                 }
6384                 ire_refrele(ire);
6385         }
6386 
6387         if (!done) {
6388                 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6389                     fmode, &ipv6_all_zeros);
6390         }
6391         return (error);
6392 }
6393 
6394 /*
6395  * Set socket options for joining and leaving multicast groups
6396  * for specific sources.
6397  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6398  * The caller has already check that the option name is consistent with
6399  * the address family of the socket.
6400  */
6401 int
6402 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6403     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6404 {
6405         int             *i1 = (int *)invalp;
6406         int             error = 0;
6407         ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
6408         struct ip_mreq_source *imreqp;
6409         struct group_source_req *gsreqp;
6410         in6_addr_t v6group, v6src;
6411         uint32_t ifindex;
6412         ipaddr_t ifaddr;
6413         boolean_t mcast_opt = B_TRUE;
6414         mcast_record_t fmode;
6415         ire_t *ire;
6416         boolean_t done = B_FALSE;
6417         int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6418             ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6419 
6420         switch (name) {
6421         case IP_BLOCK_SOURCE:
6422                 mcast_opt = B_FALSE;
6423                 /* FALLTHRU */
6424         case MCAST_BLOCK_SOURCE:
6425                 fmode = MODE_IS_EXCLUDE;
6426                 optfn = ip_opt_add_group;
6427                 break;
6428 
6429         case IP_UNBLOCK_SOURCE:
6430                 mcast_opt = B_FALSE;
6431                 /* FALLTHRU */
6432         case MCAST_UNBLOCK_SOURCE:
6433                 fmode = MODE_IS_EXCLUDE;
6434                 optfn = ip_opt_delete_group;
6435                 break;
6436 
6437         case IP_ADD_SOURCE_MEMBERSHIP:
6438                 mcast_opt = B_FALSE;
6439                 /* FALLTHRU */
6440         case MCAST_JOIN_SOURCE_GROUP:
6441                 fmode = MODE_IS_INCLUDE;
6442                 optfn = ip_opt_add_group;
6443                 break;
6444 
6445         case IP_DROP_SOURCE_MEMBERSHIP:
6446                 mcast_opt = B_FALSE;
6447                 /* FALLTHRU */
6448         case MCAST_LEAVE_SOURCE_GROUP:
6449                 fmode = MODE_IS_INCLUDE;
6450                 optfn = ip_opt_delete_group;
6451                 break;
6452         default:
6453                 ASSERT(0);
6454         }
6455 
6456         if (mcast_opt) {
6457                 gsreqp = (struct group_source_req *)i1;
6458                 ifindex = gsreqp->gsr_interface;
6459                 if (gsreqp->gsr_group.ss_family == AF_INET) {
6460                         struct sockaddr_in *s;
6461                         s = (struct sockaddr_in *)&gsreqp->gsr_group;
6462                         IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6463                         s = (struct sockaddr_in *)&gsreqp->gsr_source;
6464                         IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6465                 } else {
6466                         struct sockaddr_in6 *s6;
6467 
6468                         if (!inet6)
6469                                 return (EINVAL);        /* Not on INET socket */
6470 
6471                         s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6472                         v6group = s6->sin6_addr;
6473                         s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6474                         v6src = s6->sin6_addr;
6475                 }
6476                 ifaddr = INADDR_ANY;
6477         } else {
6478                 imreqp = (struct ip_mreq_source *)i1;
6479                 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6480                 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6481                 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6482                 ifindex = 0;
6483         }
6484 
6485         /*
6486          * Handle src being mapped INADDR_ANY by changing it to unspecified.
6487          */
6488         if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6489                 v6src = ipv6_all_zeros;
6490 
6491         /*
6492          * In the multirouting case, we need to replicate
6493          * the request as noted in the mcast cases above.
6494          */
6495         if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6496                 ipaddr_t group;
6497 
6498                 IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6499 
6500                 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6501                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6502                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6503         } else {
6504                 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6505                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6506                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6507         }
6508         if (ire != NULL) {
6509                 if (ire->ire_flags & RTF_MULTIRT) {
6510                         error = ip_multirt_apply_membership(optfn, ire, connp,
6511                             checkonly, &v6group, fmode, &v6src);
6512                         done = B_TRUE;
6513                 }
6514                 ire_refrele(ire);
6515         }
6516         if (!done) {
6517                 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6518                     fmode, &v6src);
6519         }
6520         return (error);
6521 }
6522 
6523 /*
6524  * Given a destination address and a pointer to where to put the information
6525  * this routine fills in the mtuinfo.
6526  * The socket must be connected.
6527  * For sctp conn_faddr is the primary address.
6528  */
6529 int
6530 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6531 {
6532         uint32_t        pmtu = IP_MAXPACKET;
6533         uint_t          scopeid;
6534 
6535         if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6536                 return (-1);
6537 
6538         /* In case we never sent or called ip_set_destination_v4/v6 */
6539         if (ixa->ixa_ire != NULL)
6540                 pmtu = ip_get_pmtu(ixa);
6541 
6542         if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6543                 scopeid = ixa->ixa_scopeid;
6544         else
6545                 scopeid = 0;
6546 
6547         bzero(mtuinfo, sizeof (*mtuinfo));
6548         mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6549         mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6550         mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6551         mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6552         mtuinfo->ip6m_mtu = pmtu;
6553 
6554         return (sizeof (struct ip6_mtuinfo));
6555 }
6556 
6557 /*
6558  * When the src multihoming is changed from weak to [strong, preferred]
6559  * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6560  * and identify routes that were created by user-applications in the
6561  * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6562  * currently defined. These routes are then 'rebound', i.e., their ire_ill
6563  * is selected by finding an interface route for the gateway.
6564  */
6565 /* ARGSUSED */
6566 void
6567 ip_ire_rebind_walker(ire_t *ire, void *notused)
6568 {
6569         if (!ire->ire_unbound || ire->ire_ill != NULL)
6570                 return;
6571         ire_rebind(ire);
6572         ire_delete(ire);
6573 }
6574 
6575 /*
6576  * When the src multihoming is changed from  [strong, preferred] to weak,
6577  * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6578  * set any entries that were created by user-applications in the unbound state
6579  * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6580  */
6581 /* ARGSUSED */
6582 void
6583 ip_ire_unbind_walker(ire_t *ire, void *notused)
6584 {
6585         ire_t *new_ire;
6586 
6587         if (!ire->ire_unbound || ire->ire_ill == NULL)
6588                 return;
6589         if (ire->ire_ipversion == IPV6_VERSION) {
6590                 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6591                     &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6592                     ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6593         } else {
6594                 new_ire = ire_create((uchar_t *)&ire->ire_addr,
6595                     (uchar_t *)&ire->ire_mask,
6596                     (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6597                     ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6598         }
6599         if (new_ire == NULL)
6600                 return;
6601         new_ire->ire_unbound = B_TRUE;
6602         /*
6603          * The bound ire must first be deleted so that we don't return
6604          * the existing one on the attempt to add the unbound new_ire.
6605          */
6606         ire_delete(ire);
6607         new_ire = ire_add(new_ire);
6608         if (new_ire != NULL)
6609                 ire_refrele(new_ire);
6610 }
6611 
6612 /*
6613  * When the settings of ip*_strict_src_multihoming tunables are changed,
6614  * all cached routes need to be recomputed. This recomputation needs to be
6615  * done when going from weaker to stronger modes so that the cached ire
6616  * for the connection does not violate the current ip*_strict_src_multihoming
6617  * setting. It also needs to be done when going from stronger to weaker modes,
6618  * so that we fall back to matching on the longest-matching-route (as opposed
6619  * to a shorter match that may have been selected in the strong mode
6620  * to satisfy src_multihoming settings).
6621  *
6622  * The cached ixa_ire entires for all conn_t entries are marked as
6623  * "verify" so that they will be recomputed for the next packet.
6624  */
6625 void
6626 conn_ire_revalidate(conn_t *connp, void *arg)
6627 {
6628         boolean_t isv6 = (boolean_t)arg;
6629 
6630         if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6631             (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6632                 return;
6633         connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6634 }
6635 
6636 /*
6637  * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6638  * When an ipf is passed here for the first time, if
6639  * we already have in-order fragments on the queue, we convert from the fast-
6640  * path reassembly scheme to the hard-case scheme.  From then on, additional
6641  * fragments are reassembled here.  We keep track of the start and end offsets
6642  * of each piece, and the number of holes in the chain.  When the hole count
6643  * goes to zero, we are done!
6644  *
6645  * The ipf_count will be updated to account for any mblk(s) added (pointed to
6646  * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6647  * ipfb_count and ill_frag_count by the difference of ipf_count before and
6648  * after the call to ip_reassemble().
6649  */
6650 int
6651 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6652     size_t msg_len)
6653 {
6654         uint_t  end;
6655         mblk_t  *next_mp;
6656         mblk_t  *mp1;
6657         uint_t  offset;
6658         boolean_t incr_dups = B_TRUE;
6659         boolean_t offset_zero_seen = B_FALSE;
6660         boolean_t pkt_boundary_checked = B_FALSE;
6661 
6662         /* If start == 0 then ipf_nf_hdr_len has to be set. */
6663         ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
6664 
6665         /* Add in byte count */
6666         ipf->ipf_count += msg_len;
6667         if (ipf->ipf_end) {
6668                 /*
6669                  * We were part way through in-order reassembly, but now there
6670                  * is a hole.  We walk through messages already queued, and
6671                  * mark them for hard case reassembly.  We know that up till
6672                  * now they were in order starting from offset zero.
6673                  */
6674                 offset = 0;
6675                 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6676                         IP_REASS_SET_START(mp1, offset);
6677                         if (offset == 0) {
6678                                 ASSERT(ipf->ipf_nf_hdr_len != 0);
6679                                 offset = -ipf->ipf_nf_hdr_len;
6680                         }
6681                         offset += mp1->b_wptr - mp1->b_rptr;
6682                         IP_REASS_SET_END(mp1, offset);
6683                 }
6684                 /* One hole at the end. */
6685                 ipf->ipf_hole_cnt = 1;
6686                 /* Brand it as a hard case, forever. */
6687                 ipf->ipf_end = 0;
6688         }
6689         /* Walk through all the new pieces. */
6690         do {
6691                 end = start + (mp->b_wptr - mp->b_rptr);
6692                 /*
6693                  * If start is 0, decrease 'end' only for the first mblk of
6694                  * the fragment. Otherwise 'end' can get wrong value in the
6695                  * second pass of the loop if first mblk is exactly the
6696                  * size of ipf_nf_hdr_len.
6697                  */
6698                 if (start == 0 && !offset_zero_seen) {
6699                         /* First segment */
6700                         ASSERT(ipf->ipf_nf_hdr_len != 0);
6701                         end -= ipf->ipf_nf_hdr_len;
6702                         offset_zero_seen = B_TRUE;
6703                 }
6704                 next_mp = mp->b_cont;
6705                 /*
6706                  * We are checking to see if there is any interesing data
6707                  * to process.  If there isn't and the mblk isn't the
6708                  * one which carries the unfragmentable header then we
6709                  * drop it.  It's possible to have just the unfragmentable
6710                  * header come through without any data.  That needs to be
6711                  * saved.
6712                  *
6713                  * If the assert at the top of this function holds then the
6714                  * term "ipf->ipf_nf_hdr_len != 0" isn't needed.  This code
6715                  * is infrequently traveled enough that the test is left in
6716                  * to protect against future code changes which break that
6717                  * invariant.
6718                  */
6719                 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6720                         /* Empty.  Blast it. */
6721                         IP_REASS_SET_START(mp, 0);
6722                         IP_REASS_SET_END(mp, 0);
6723                         /*
6724                          * If the ipf points to the mblk we are about to free,
6725                          * update ipf to point to the next mblk (or NULL
6726                          * if none).
6727                          */
6728                         if (ipf->ipf_mp->b_cont == mp)
6729                                 ipf->ipf_mp->b_cont = next_mp;
6730                         freeb(mp);
6731                         continue;
6732                 }
6733                 mp->b_cont = NULL;
6734                 IP_REASS_SET_START(mp, start);
6735                 IP_REASS_SET_END(mp, end);
6736                 if (!ipf->ipf_tail_mp) {
6737                         ipf->ipf_tail_mp = mp;
6738                         ipf->ipf_mp->b_cont = mp;
6739                         if (start == 0 || !more) {
6740                                 ipf->ipf_hole_cnt = 1;
6741                                 /*
6742                                  * if the first fragment comes in more than one
6743                                  * mblk, this loop will be executed for each
6744                                  * mblk. Need to adjust hole count so exiting
6745                                  * this routine will leave hole count at 1.
6746                                  */
6747                                 if (next_mp)
6748                                         ipf->ipf_hole_cnt++;
6749                         } else
6750                                 ipf->ipf_hole_cnt = 2;
6751                         continue;
6752                 } else if (ipf->ipf_last_frag_seen && !more &&
6753                     !pkt_boundary_checked) {
6754                         /*
6755                          * We check datagram boundary only if this fragment
6756                          * claims to be the last fragment and we have seen a
6757                          * last fragment in the past too. We do this only
6758                          * once for a given fragment.
6759                          *
6760                          * start cannot be 0 here as fragments with start=0
6761                          * and MF=0 gets handled as a complete packet. These
6762                          * fragments should not reach here.
6763                          */
6764 
6765                         if (start + msgdsize(mp) !=
6766                             IP_REASS_END(ipf->ipf_tail_mp)) {
6767                                 /*
6768                                  * We have two fragments both of which claim
6769                                  * to be the last fragment but gives conflicting
6770                                  * information about the whole datagram size.
6771                                  * Something fishy is going on. Drop the
6772                                  * fragment and free up the reassembly list.
6773                                  */
6774                                 return (IP_REASS_FAILED);
6775                         }
6776 
6777                         /*
6778                          * We shouldn't come to this code block again for this
6779                          * particular fragment.
6780                          */
6781                         pkt_boundary_checked = B_TRUE;
6782                 }
6783 
6784                 /* New stuff at or beyond tail? */
6785                 offset = IP_REASS_END(ipf->ipf_tail_mp);
6786                 if (start >= offset) {
6787                         if (ipf->ipf_last_frag_seen) {
6788                                 /* current fragment is beyond last fragment */
6789                                 return (IP_REASS_FAILED);
6790                         }
6791                         /* Link it on end. */
6792                         ipf->ipf_tail_mp->b_cont = mp;
6793                         ipf->ipf_tail_mp = mp;
6794                         if (more) {
6795                                 if (start != offset)
6796                                         ipf->ipf_hole_cnt++;
6797                         } else if (start == offset && next_mp == NULL)
6798                                         ipf->ipf_hole_cnt--;
6799                         continue;
6800                 }
6801                 mp1 = ipf->ipf_mp->b_cont;
6802                 offset = IP_REASS_START(mp1);
6803                 /* New stuff at the front? */
6804                 if (start < offset) {
6805                         if (start == 0) {
6806                                 if (end >= offset) {
6807                                         /* Nailed the hole at the begining. */
6808                                         ipf->ipf_hole_cnt--;
6809                                 }
6810                         } else if (end < offset) {
6811                                 /*
6812                                  * A hole, stuff, and a hole where there used
6813                                  * to be just a hole.
6814                                  */
6815                                 ipf->ipf_hole_cnt++;
6816                         }
6817                         mp->b_cont = mp1;
6818                         /* Check for overlap. */
6819                         while (end > offset) {
6820                                 if (end < IP_REASS_END(mp1)) {
6821                                         mp->b_wptr -= end - offset;
6822                                         IP_REASS_SET_END(mp, offset);
6823                                         BUMP_MIB(ill->ill_ip_mib,
6824                                             ipIfStatsReasmPartDups);
6825                                         break;
6826                                 }
6827                                 /* Did we cover another hole? */
6828                                 if ((mp1->b_cont &&
6829                                     IP_REASS_END(mp1) !=
6830                                     IP_REASS_START(mp1->b_cont) &&
6831                                     end >= IP_REASS_START(mp1->b_cont)) ||
6832                                     (!ipf->ipf_last_frag_seen && !more)) {
6833                                         ipf->ipf_hole_cnt--;
6834                                 }
6835                                 /* Clip out mp1. */
6836                                 if ((mp->b_cont = mp1->b_cont) == NULL) {
6837                                         /*
6838                                          * After clipping out mp1, this guy
6839                                          * is now hanging off the end.
6840                                          */
6841                                         ipf->ipf_tail_mp = mp;
6842                                 }
6843                                 IP_REASS_SET_START(mp1, 0);
6844                                 IP_REASS_SET_END(mp1, 0);
6845                                 /* Subtract byte count */
6846                                 ipf->ipf_count -= mp1->b_datap->db_lim -
6847                                     mp1->b_datap->db_base;
6848                                 freeb(mp1);
6849                                 BUMP_MIB(ill->ill_ip_mib,
6850                                     ipIfStatsReasmPartDups);
6851                                 mp1 = mp->b_cont;
6852                                 if (!mp1)
6853                                         break;
6854                                 offset = IP_REASS_START(mp1);
6855                         }
6856                         ipf->ipf_mp->b_cont = mp;
6857                         continue;
6858                 }
6859                 /*
6860                  * The new piece starts somewhere between the start of the head
6861                  * and before the end of the tail.
6862                  */
6863                 for (; mp1; mp1 = mp1->b_cont) {
6864                         offset = IP_REASS_END(mp1);
6865                         if (start < offset) {
6866                                 if (end <= offset) {
6867                                         /* Nothing new. */
6868                                         IP_REASS_SET_START(mp, 0);
6869                                         IP_REASS_SET_END(mp, 0);
6870                                         /* Subtract byte count */
6871                                         ipf->ipf_count -= mp->b_datap->db_lim -
6872                                             mp->b_datap->db_base;
6873                                         if (incr_dups) {
6874                                                 ipf->ipf_num_dups++;
6875                                                 incr_dups = B_FALSE;
6876                                         }
6877                                         freeb(mp);
6878                                         BUMP_MIB(ill->ill_ip_mib,
6879                                             ipIfStatsReasmDuplicates);
6880                                         break;
6881                                 }
6882                                 /*
6883                                  * Trim redundant stuff off beginning of new
6884                                  * piece.
6885                                  */
6886                                 IP_REASS_SET_START(mp, offset);
6887                                 mp->b_rptr += offset - start;
6888                                 BUMP_MIB(ill->ill_ip_mib,
6889                                     ipIfStatsReasmPartDups);
6890                                 start = offset;
6891                                 if (!mp1->b_cont) {
6892                                         /*
6893                                          * After trimming, this guy is now
6894                                          * hanging off the end.
6895                                          */
6896                                         mp1->b_cont = mp;
6897                                         ipf->ipf_tail_mp = mp;
6898                                         if (!more) {
6899                                                 ipf->ipf_hole_cnt--;
6900                                         }
6901                                         break;
6902                                 }
6903                         }
6904                         if (start >= IP_REASS_START(mp1->b_cont))
6905                                 continue;
6906                         /* Fill a hole */
6907                         if (start > offset)
6908                                 ipf->ipf_hole_cnt++;
6909                         mp->b_cont = mp1->b_cont;
6910                         mp1->b_cont = mp;
6911                         mp1 = mp->b_cont;
6912                         offset = IP_REASS_START(mp1);
6913                         if (end >= offset) {
6914                                 ipf->ipf_hole_cnt--;
6915                                 /* Check for overlap. */
6916                                 while (end > offset) {
6917                                         if (end < IP_REASS_END(mp1)) {
6918                                                 mp->b_wptr -= end - offset;
6919                                                 IP_REASS_SET_END(mp, offset);
6920                                                 /*
6921                                                  * TODO we might bump
6922                                                  * this up twice if there is
6923                                                  * overlap at both ends.
6924                                                  */
6925                                                 BUMP_MIB(ill->ill_ip_mib,
6926                                                     ipIfStatsReasmPartDups);
6927                                                 break;
6928                                         }
6929                                         /* Did we cover another hole? */
6930                                         if ((mp1->b_cont &&
6931                                             IP_REASS_END(mp1)
6932                                             != IP_REASS_START(mp1->b_cont) &&
6933                                             end >=
6934                                             IP_REASS_START(mp1->b_cont)) ||
6935                                             (!ipf->ipf_last_frag_seen &&
6936                                             !more)) {
6937                                                 ipf->ipf_hole_cnt--;
6938                                         }
6939                                         /* Clip out mp1. */
6940                                         if ((mp->b_cont = mp1->b_cont) ==
6941                                             NULL) {
6942                                                 /*
6943                                                  * After clipping out mp1,
6944                                                  * this guy is now hanging
6945                                                  * off the end.
6946                                                  */
6947                                                 ipf->ipf_tail_mp = mp;
6948                                         }
6949                                         IP_REASS_SET_START(mp1, 0);
6950                                         IP_REASS_SET_END(mp1, 0);
6951                                         /* Subtract byte count */
6952                                         ipf->ipf_count -=
6953                                             mp1->b_datap->db_lim -
6954                                             mp1->b_datap->db_base;
6955                                         freeb(mp1);
6956                                         BUMP_MIB(ill->ill_ip_mib,
6957                                             ipIfStatsReasmPartDups);
6958                                         mp1 = mp->b_cont;
6959                                         if (!mp1)
6960                                                 break;
6961                                         offset = IP_REASS_START(mp1);
6962                                 }
6963                         }
6964                         break;
6965                 }
6966         } while (start = end, mp = next_mp);
6967 
6968         /* Fragment just processed could be the last one. Remember this fact */
6969         if (!more)
6970                 ipf->ipf_last_frag_seen = B_TRUE;
6971 
6972         /* Still got holes? */
6973         if (ipf->ipf_hole_cnt)
6974                 return (IP_REASS_PARTIAL);
6975         /* Clean up overloaded fields to avoid upstream disasters. */
6976         for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6977                 IP_REASS_SET_START(mp1, 0);
6978                 IP_REASS_SET_END(mp1, 0);
6979         }
6980         return (IP_REASS_COMPLETE);
6981 }
6982 
6983 /*
6984  * Fragmentation reassembly.  Each ILL has a hash table for
6985  * queuing packets undergoing reassembly for all IPIFs
6986  * associated with the ILL.  The hash is based on the packet
6987  * IP ident field.  The ILL frag hash table was allocated
6988  * as a timer block at the time the ILL was created.  Whenever
6989  * there is anything on the reassembly queue, the timer will
6990  * be running.  Returns the reassembled packet if reassembly completes.
6991  */
6992 mblk_t *
6993 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
6994 {
6995         uint32_t        frag_offset_flags;
6996         mblk_t          *t_mp;
6997         ipaddr_t        dst;
6998         uint8_t         proto = ipha->ipha_protocol;
6999         uint32_t        sum_val;
7000         uint16_t        sum_flags;
7001         ipf_t           *ipf;
7002         ipf_t           **ipfp;
7003         ipfb_t          *ipfb;
7004         uint16_t        ident;
7005         uint32_t        offset;
7006         ipaddr_t        src;
7007         uint_t          hdr_length;
7008         uint32_t        end;
7009         mblk_t          *mp1;
7010         mblk_t          *tail_mp;
7011         size_t          count;
7012         size_t          msg_len;
7013         uint8_t         ecn_info = 0;
7014         uint32_t        packet_size;
7015         boolean_t       pruned = B_FALSE;
7016         ill_t           *ill = ira->ira_ill;
7017         ip_stack_t      *ipst = ill->ill_ipst;
7018 
7019         /*
7020          * Drop the fragmented as early as possible, if
7021          * we don't have resource(s) to re-assemble.
7022          */
7023         if (ipst->ips_ip_reass_queue_bytes == 0) {
7024                 freemsg(mp);
7025                 return (NULL);
7026         }
7027 
7028         /* Check for fragmentation offset; return if there's none */
7029         if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7030             (IPH_MF | IPH_OFFSET)) == 0)
7031                 return (mp);
7032 
7033         /*
7034          * We utilize hardware computed checksum info only for UDP since
7035          * IP fragmentation is a normal occurrence for the protocol.  In
7036          * addition, checksum offload support for IP fragments carrying
7037          * UDP payload is commonly implemented across network adapters.
7038          */
7039         ASSERT(ira->ira_rill != NULL);
7040         if (proto == IPPROTO_UDP && dohwcksum &&
7041             ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7042             (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7043                 mblk_t *mp1 = mp->b_cont;
7044                 int32_t len;
7045 
7046                 /* Record checksum information from the packet */
7047                 sum_val = (uint32_t)DB_CKSUM16(mp);
7048                 sum_flags = DB_CKSUMFLAGS(mp);
7049 
7050                 /* IP payload offset from beginning of mblk */
7051                 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
7052 
7053                 if ((sum_flags & HCK_PARTIALCKSUM) &&
7054                     (mp1 == NULL || mp1->b_cont == NULL) &&
7055                     offset >= DB_CKSUMSTART(mp) &&
7056                     ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7057                         uint32_t adj;
7058                         /*
7059                          * Partial checksum has been calculated by hardware
7060                          * and attached to the packet; in addition, any
7061                          * prepended extraneous data is even byte aligned.
7062                          * If any such data exists, we adjust the checksum;
7063                          * this would also handle any postpended data.
7064                          */
7065                         IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7066                             mp, mp1, len, adj);
7067 
7068                         /* One's complement subtract extraneous checksum */
7069                         if (adj >= sum_val)
7070                                 sum_val = ~(adj - sum_val) & 0xFFFF;
7071                         else
7072                                 sum_val -= adj;
7073                 }
7074         } else {
7075                 sum_val = 0;
7076                 sum_flags = 0;
7077         }
7078 
7079         /* Clear hardware checksumming flag */
7080         DB_CKSUMFLAGS(mp) = 0;
7081 
7082         ident = ipha->ipha_ident;
7083         offset = (frag_offset_flags << 3) & 0xFFFF;
7084         src = ipha->ipha_src;
7085         dst = ipha->ipha_dst;
7086         hdr_length = IPH_HDR_LENGTH(ipha);
7087         end = ntohs(ipha->ipha_length) - hdr_length;
7088 
7089         /* If end == 0 then we have a packet with no data, so just free it */
7090         if (end == 0) {
7091                 freemsg(mp);
7092                 return (NULL);
7093         }
7094 
7095         /* Record the ECN field info. */
7096         ecn_info = (ipha->ipha_type_of_service & 0x3);
7097         if (offset != 0) {
7098                 /*
7099                  * If this isn't the first piece, strip the header, and
7100                  * add the offset to the end value.
7101                  */
7102                 mp->b_rptr += hdr_length;
7103                 end += offset;
7104         }
7105 
7106         /* Handle vnic loopback of fragments */
7107         if (mp->b_datap->db_ref > 2)
7108                 msg_len = 0;
7109         else
7110                 msg_len = MBLKSIZE(mp);
7111 
7112         tail_mp = mp;
7113         while (tail_mp->b_cont != NULL) {
7114                 tail_mp = tail_mp->b_cont;
7115                 if (tail_mp->b_datap->db_ref <= 2)
7116                         msg_len += MBLKSIZE(tail_mp);
7117         }
7118 
7119         /* If the reassembly list for this ILL will get too big, prune it */
7120         if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7121             ipst->ips_ip_reass_queue_bytes) {
7122                 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7123                     uint_t, ill->ill_frag_count,
7124                     uint_t, ipst->ips_ip_reass_queue_bytes);
7125                 ill_frag_prune(ill,
7126                     (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7127                     (ipst->ips_ip_reass_queue_bytes - msg_len));
7128                 pruned = B_TRUE;
7129         }
7130 
7131         ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7132         mutex_enter(&ipfb->ipfb_lock);
7133 
7134         ipfp = &ipfb->ipfb_ipf;
7135         /* Try to find an existing fragment queue for this packet. */
7136         for (;;) {
7137                 ipf = ipfp[0];
7138                 if (ipf != NULL) {
7139                         /*
7140                          * It has to match on ident and src/dst address.
7141                          */
7142                         if (ipf->ipf_ident == ident &&
7143                             ipf->ipf_src == src &&
7144                             ipf->ipf_dst == dst &&
7145                             ipf->ipf_protocol == proto) {
7146                                 /*
7147                                  * If we have received too many
7148                                  * duplicate fragments for this packet
7149                                  * free it.
7150                                  */
7151                                 if (ipf->ipf_num_dups > ip_max_frag_dups) {
7152                                         ill_frag_free_pkts(ill, ipfb, ipf, 1);
7153                                         freemsg(mp);
7154                                         mutex_exit(&ipfb->ipfb_lock);
7155                                         return (NULL);
7156                                 }
7157                                 /* Found it. */
7158                                 break;
7159                         }
7160                         ipfp = &ipf->ipf_hash_next;
7161                         continue;
7162                 }
7163 
7164                 /*
7165                  * If we pruned the list, do we want to store this new
7166                  * fragment?. We apply an optimization here based on the
7167                  * fact that most fragments will be received in order.
7168                  * So if the offset of this incoming fragment is zero,
7169                  * it is the first fragment of a new packet. We will
7170                  * keep it.  Otherwise drop the fragment, as we have
7171                  * probably pruned the packet already (since the
7172                  * packet cannot be found).
7173                  */
7174                 if (pruned && offset != 0) {
7175                         mutex_exit(&ipfb->ipfb_lock);
7176                         freemsg(mp);
7177                         return (NULL);
7178                 }
7179 
7180                 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst))  {
7181                         /*
7182                          * Too many fragmented packets in this hash
7183                          * bucket. Free the oldest.
7184                          */
7185                         ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7186                 }
7187 
7188                 /* New guy.  Allocate a frag message. */
7189                 mp1 = allocb(sizeof (*ipf), BPRI_MED);
7190                 if (mp1 == NULL) {
7191                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7192                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7193                         freemsg(mp);
7194 reass_done:
7195                         mutex_exit(&ipfb->ipfb_lock);
7196                         return (NULL);
7197                 }
7198 
7199                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7200                 mp1->b_cont = mp;
7201 
7202                 /* Initialize the fragment header. */
7203                 ipf = (ipf_t *)mp1->b_rptr;
7204                 ipf->ipf_mp = mp1;
7205                 ipf->ipf_ptphn = ipfp;
7206                 ipfp[0] = ipf;
7207                 ipf->ipf_hash_next = NULL;
7208                 ipf->ipf_ident = ident;
7209                 ipf->ipf_protocol = proto;
7210                 ipf->ipf_src = src;
7211                 ipf->ipf_dst = dst;
7212                 ipf->ipf_nf_hdr_len = 0;
7213                 /* Record reassembly start time. */
7214                 ipf->ipf_timestamp = gethrestime_sec();
7215                 /* Record ipf generation and account for frag header */
7216                 ipf->ipf_gen = ill->ill_ipf_gen++;
7217                 ipf->ipf_count = MBLKSIZE(mp1);
7218                 ipf->ipf_last_frag_seen = B_FALSE;
7219                 ipf->ipf_ecn = ecn_info;
7220                 ipf->ipf_num_dups = 0;
7221                 ipfb->ipfb_frag_pkts++;
7222                 ipf->ipf_checksum = 0;
7223                 ipf->ipf_checksum_flags = 0;
7224 
7225                 /* Store checksum value in fragment header */
7226                 if (sum_flags != 0) {
7227                         sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7228                         sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7229                         ipf->ipf_checksum = sum_val;
7230                         ipf->ipf_checksum_flags = sum_flags;
7231                 }
7232 
7233                 /*
7234                  * We handle reassembly two ways.  In the easy case,
7235                  * where all the fragments show up in order, we do
7236                  * minimal bookkeeping, and just clip new pieces on
7237                  * the end.  If we ever see a hole, then we go off
7238                  * to ip_reassemble which has to mark the pieces and
7239                  * keep track of the number of holes, etc.  Obviously,
7240                  * the point of having both mechanisms is so we can
7241                  * handle the easy case as efficiently as possible.
7242                  */
7243                 if (offset == 0) {
7244                         /* Easy case, in-order reassembly so far. */
7245                         ipf->ipf_count += msg_len;
7246                         ipf->ipf_tail_mp = tail_mp;
7247                         /*
7248                          * Keep track of next expected offset in
7249                          * ipf_end.
7250                          */
7251                         ipf->ipf_end = end;
7252                         ipf->ipf_nf_hdr_len = hdr_length;
7253                 } else {
7254                         /* Hard case, hole at the beginning. */
7255                         ipf->ipf_tail_mp = NULL;
7256                         /*
7257                          * ipf_end == 0 means that we have given up
7258                          * on easy reassembly.
7259                          */
7260                         ipf->ipf_end = 0;
7261 
7262                         /* Forget checksum offload from now on */
7263                         ipf->ipf_checksum_flags = 0;
7264 
7265                         /*
7266                          * ipf_hole_cnt is set by ip_reassemble.
7267                          * ipf_count is updated by ip_reassemble.
7268                          * No need to check for return value here
7269                          * as we don't expect reassembly to complete
7270                          * or fail for the first fragment itself.
7271                          */
7272                         (void) ip_reassemble(mp, ipf,
7273                             (frag_offset_flags & IPH_OFFSET) << 3,
7274                             (frag_offset_flags & IPH_MF), ill, msg_len);
7275                 }
7276                 /* Update per ipfb and ill byte counts */
7277                 ipfb->ipfb_count += ipf->ipf_count;
7278                 ASSERT(ipfb->ipfb_count > 0);     /* Wraparound */
7279                 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7280                 /* If the frag timer wasn't already going, start it. */
7281                 mutex_enter(&ill->ill_lock);
7282                 ill_frag_timer_start(ill);
7283                 mutex_exit(&ill->ill_lock);
7284                 goto reass_done;
7285         }
7286 
7287         /*
7288          * If the packet's flag has changed (it could be coming up
7289          * from an interface different than the previous, therefore
7290          * possibly different checksum capability), then forget about
7291          * any stored checksum states.  Otherwise add the value to
7292          * the existing one stored in the fragment header.
7293          */
7294         if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7295                 sum_val += ipf->ipf_checksum;
7296                 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7297                 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7298                 ipf->ipf_checksum = sum_val;
7299         } else if (ipf->ipf_checksum_flags != 0) {
7300                 /* Forget checksum offload from now on */
7301                 ipf->ipf_checksum_flags = 0;
7302         }
7303 
7304         /*
7305          * We have a new piece of a datagram which is already being
7306          * reassembled.  Update the ECN info if all IP fragments
7307          * are ECN capable.  If there is one which is not, clear
7308          * all the info.  If there is at least one which has CE
7309          * code point, IP needs to report that up to transport.
7310          */
7311         if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7312                 if (ecn_info == IPH_ECN_CE)
7313                         ipf->ipf_ecn = IPH_ECN_CE;
7314         } else {
7315                 ipf->ipf_ecn = IPH_ECN_NECT;
7316         }
7317         if (offset && ipf->ipf_end == offset) {
7318                 /* The new fragment fits at the end */
7319                 ipf->ipf_tail_mp->b_cont = mp;
7320                 /* Update the byte count */
7321                 ipf->ipf_count += msg_len;
7322                 /* Update per ipfb and ill byte counts */
7323                 ipfb->ipfb_count += msg_len;
7324                 ASSERT(ipfb->ipfb_count > 0);     /* Wraparound */
7325                 atomic_add_32(&ill->ill_frag_count, msg_len);
7326                 if (frag_offset_flags & IPH_MF) {
7327                         /* More to come. */
7328                         ipf->ipf_end = end;
7329                         ipf->ipf_tail_mp = tail_mp;
7330                         goto reass_done;
7331                 }
7332         } else {
7333                 /* Go do the hard cases. */
7334                 int ret;
7335 
7336                 if (offset == 0)
7337                         ipf->ipf_nf_hdr_len = hdr_length;
7338 
7339                 /* Save current byte count */
7340                 count = ipf->ipf_count;
7341                 ret = ip_reassemble(mp, ipf,
7342                     (frag_offset_flags & IPH_OFFSET) << 3,
7343                     (frag_offset_flags & IPH_MF), ill, msg_len);
7344                 /* Count of bytes added and subtracted (freeb()ed) */
7345                 count = ipf->ipf_count - count;
7346                 if (count) {
7347                         /* Update per ipfb and ill byte counts */
7348                         ipfb->ipfb_count += count;
7349                         ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7350                         atomic_add_32(&ill->ill_frag_count, count);
7351                 }
7352                 if (ret == IP_REASS_PARTIAL) {
7353                         goto reass_done;
7354                 } else if (ret == IP_REASS_FAILED) {
7355                         /* Reassembly failed. Free up all resources */
7356                         ill_frag_free_pkts(ill, ipfb, ipf, 1);
7357                         for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7358                                 IP_REASS_SET_START(t_mp, 0);
7359                                 IP_REASS_SET_END(t_mp, 0);
7360                         }
7361                         freemsg(mp);
7362                         goto reass_done;
7363                 }
7364                 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */
7365         }
7366         /*
7367          * We have completed reassembly.  Unhook the frag header from
7368          * the reassembly list.
7369          *
7370          * Before we free the frag header, record the ECN info
7371          * to report back to the transport.
7372          */
7373         ecn_info = ipf->ipf_ecn;
7374         BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7375         ipfp = ipf->ipf_ptphn;
7376 
7377         /* We need to supply these to caller */
7378         if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7379                 sum_val = ipf->ipf_checksum;
7380         else
7381                 sum_val = 0;
7382 
7383         mp1 = ipf->ipf_mp;
7384         count = ipf->ipf_count;
7385         ipf = ipf->ipf_hash_next;
7386         if (ipf != NULL)
7387                 ipf->ipf_ptphn = ipfp;
7388         ipfp[0] = ipf;
7389         atomic_add_32(&ill->ill_frag_count, -count);
7390         ASSERT(ipfb->ipfb_count >= count);
7391         ipfb->ipfb_count -= count;
7392         ipfb->ipfb_frag_pkts--;
7393         mutex_exit(&ipfb->ipfb_lock);
7394         /* Ditch the frag header. */
7395         mp = mp1->b_cont;
7396 
7397         freeb(mp1);
7398 
7399         /* Restore original IP length in header. */
7400         packet_size = (uint32_t)msgdsize(mp);
7401         if (packet_size > IP_MAXPACKET) {
7402                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7403                 ip_drop_input("Reassembled packet too large", mp, ill);
7404                 freemsg(mp);
7405                 return (NULL);
7406         }
7407 
7408         if (DB_REF(mp) > 1) {
7409                 mblk_t *mp2 = copymsg(mp);
7410 
7411                 if (mp2 == NULL) {
7412                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7413                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7414                         freemsg(mp);
7415                         return (NULL);
7416                 }
7417                 freemsg(mp);
7418                 mp = mp2;
7419         }
7420         ipha = (ipha_t *)mp->b_rptr;
7421 
7422         ipha->ipha_length = htons((uint16_t)packet_size);
7423         /* We're now complete, zip the frag state */
7424         ipha->ipha_fragment_offset_and_flags = 0;
7425         /* Record the ECN info. */
7426         ipha->ipha_type_of_service &= 0xFC;
7427         ipha->ipha_type_of_service |= ecn_info;
7428 
7429         /* Update the receive attributes */
7430         ira->ira_pktlen = packet_size;
7431         ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
7432 
7433         /* Reassembly is successful; set checksum information in packet */
7434         DB_CKSUM16(mp) = (uint16_t)sum_val;
7435         DB_CKSUMFLAGS(mp) = sum_flags;
7436         DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
7437 
7438         return (mp);
7439 }
7440 
7441 /*
7442  * Pullup function that should be used for IP input in order to
7443  * ensure we do not loose the L2 source address; we need the l2 source
7444  * address for IP_RECVSLLA and for ndp_input.
7445  *
7446  * We return either NULL or b_rptr.
7447  */
7448 void *
7449 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7450 {
7451         ill_t           *ill = ira->ira_ill;
7452 
7453         if (ip_rput_pullups++ == 0) {
7454                 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7455                     "ip_pullup: %s forced us to "
7456                     " pullup pkt, hdr len %ld, hdr addr %p",
7457                     ill->ill_name, len, (void *)mp->b_rptr);
7458         }
7459         if (!(ira->ira_flags & IRAF_L2SRC_SET))
7460                 ip_setl2src(mp, ira, ira->ira_rill);
7461         ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7462         if (!pullupmsg(mp, len))
7463                 return (NULL);
7464         else
7465                 return (mp->b_rptr);
7466 }
7467 
7468 /*
7469  * Make sure ira_l2src has an address. If we don't have one fill with zeros.
7470  * When called from the ULP ira_rill will be NULL hence the caller has to
7471  * pass in the ill.
7472  */
7473 /* ARGSUSED */
7474 void
7475 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7476 {
7477         const uchar_t *addr;
7478         int alen;
7479 
7480         if (ira->ira_flags & IRAF_L2SRC_SET)
7481                 return;
7482 
7483         ASSERT(ill != NULL);
7484         alen = ill->ill_phys_addr_length;
7485         ASSERT(alen <= sizeof (ira->ira_l2src));
7486         if (ira->ira_mhip != NULL &&
7487             (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7488                 bcopy(addr, ira->ira_l2src, alen);
7489         } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7490             (addr = ill->ill_phys_addr) != NULL) {
7491                 bcopy(addr, ira->ira_l2src, alen);
7492         } else {
7493                 bzero(ira->ira_l2src, alen);
7494         }
7495         ira->ira_flags |= IRAF_L2SRC_SET;
7496 }
7497 
7498 /*
7499  * check ip header length and align it.
7500  */
7501 mblk_t *
7502 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7503 {
7504         ill_t   *ill = ira->ira_ill;
7505         ssize_t len;
7506 
7507         len = MBLKL(mp);
7508 
7509         if (!OK_32PTR(mp->b_rptr))
7510                 IP_STAT(ill->ill_ipst, ip_notaligned);
7511         else
7512                 IP_STAT(ill->ill_ipst, ip_recv_pullup);
7513 
7514         /* Guard against bogus device drivers */
7515         if (len < 0) {
7516                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7517                 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7518                 freemsg(mp);
7519                 return (NULL);
7520         }
7521 
7522         if (len == 0) {
7523                 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7524                 mblk_t *mp1 = mp->b_cont;
7525 
7526                 if (!(ira->ira_flags & IRAF_L2SRC_SET))
7527                         ip_setl2src(mp, ira, ira->ira_rill);
7528                 ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7529 
7530                 freeb(mp);
7531                 mp = mp1;
7532                 if (mp == NULL)
7533                         return (NULL);
7534 
7535                 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7536                         return (mp);
7537         }
7538         if (ip_pullup(mp, min_size, ira) == NULL) {
7539                 if (msgdsize(mp) < min_size) {
7540                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7541                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7542                 } else {
7543                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7544                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7545                 }
7546                 freemsg(mp);
7547                 return (NULL);
7548         }
7549         return (mp);
7550 }
7551 
7552 /*
7553  * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7554  */
7555 mblk_t *
7556 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len,
7557     uint_t min_size, ip_recv_attr_t *ira)
7558 {
7559         ill_t   *ill = ira->ira_ill;
7560 
7561         /*
7562          * Make sure we have data length consistent
7563          * with the IP header.
7564          */
7565         if (mp->b_cont == NULL) {
7566                 /* pkt_len is based on ipha_len, not the mblk length */
7567                 if (pkt_len < min_size) {
7568                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7569                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7570                         freemsg(mp);
7571                         return (NULL);
7572                 }
7573                 if (len < 0) {
7574                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7575                         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7576                         freemsg(mp);
7577                         return (NULL);
7578                 }
7579                 /* Drop any pad */
7580                 mp->b_wptr = rptr + pkt_len;
7581         } else if ((len += msgdsize(mp->b_cont)) != 0) {
7582                 ASSERT(pkt_len >= min_size);
7583                 if (pkt_len < min_size) {
7584                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7585                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7586                         freemsg(mp);
7587                         return (NULL);
7588                 }
7589                 if (len < 0) {
7590                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7591                         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7592                         freemsg(mp);
7593                         return (NULL);
7594                 }
7595                 /* Drop any pad */
7596                 (void) adjmsg(mp, -len);
7597                 /*
7598                  * adjmsg may have freed an mblk from the chain, hence
7599                  * invalidate any hw checksum here. This will force IP to
7600                  * calculate the checksum in sw, but only for this packet.
7601                  */
7602                 DB_CKSUMFLAGS(mp) = 0;
7603                 IP_STAT(ill->ill_ipst, ip_multimblk);
7604         }
7605         return (mp);
7606 }
7607 
7608 /*
7609  * Check that the IPv4 opt_len is consistent with the packet and pullup
7610  * the options.
7611  */
7612 mblk_t *
7613 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7614     ip_recv_attr_t *ira)
7615 {
7616         ill_t   *ill = ira->ira_ill;
7617         ssize_t len;
7618 
7619         /* Assume no IPv6 packets arrive over the IPv4 queue */
7620         if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7621                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7622                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7623                 ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7624                 freemsg(mp);
7625                 return (NULL);
7626         }
7627 
7628         if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7629                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7630                 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7631                 freemsg(mp);
7632                 return (NULL);
7633         }
7634         /*
7635          * Recompute complete header length and make sure we
7636          * have access to all of it.
7637          */
7638         len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7639         if (len > (mp->b_wptr - mp->b_rptr)) {
7640                 if (len > pkt_len) {
7641                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7642                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7643                         freemsg(mp);
7644                         return (NULL);
7645                 }
7646                 if (ip_pullup(mp, len, ira) == NULL) {
7647                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7648                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7649                         freemsg(mp);
7650                         return (NULL);
7651                 }
7652         }
7653         return (mp);
7654 }
7655 
7656 /*
7657  * Returns a new ire, or the same ire, or NULL.
7658  * If a different IRE is returned, then it is held; the caller
7659  * needs to release it.
7660  * In no case is there any hold/release on the ire argument.
7661  */
7662 ire_t *
7663 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7664 {
7665         ire_t           *new_ire;
7666         ill_t           *ire_ill;
7667         uint_t          ifindex;
7668         ip_stack_t      *ipst = ill->ill_ipst;
7669         boolean_t       strict_check = B_FALSE;
7670 
7671         /*
7672          * IPMP common case: if IRE and ILL are in the same group, there's no
7673          * issue (e.g. packet received on an underlying interface matched an
7674          * IRE_LOCAL on its associated group interface).
7675          */
7676         ASSERT(ire->ire_ill != NULL);
7677         if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7678                 return (ire);
7679 
7680         /*
7681          * Do another ire lookup here, using the ingress ill, to see if the
7682          * interface is in a usesrc group.
7683          * As long as the ills belong to the same group, we don't consider
7684          * them to be arriving on the wrong interface. Thus, if the switch
7685          * is doing inbound load spreading, we won't drop packets when the
7686          * ip*_strict_dst_multihoming switch is on.
7687          * We also need to check for IPIF_UNNUMBERED point2point interfaces
7688          * where the local address may not be unique. In this case we were
7689          * at the mercy of the initial ire lookup and the IRE_LOCAL it
7690          * actually returned. The new lookup, which is more specific, should
7691          * only find the IRE_LOCAL associated with the ingress ill if one
7692          * exists.
7693          */
7694         if (ire->ire_ipversion == IPV4_VERSION) {
7695                 if (ipst->ips_ip_strict_dst_multihoming)
7696                         strict_check = B_TRUE;
7697                 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7698                     IRE_LOCAL, ill, ALL_ZONES, NULL,
7699                     (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7700         } else {
7701                 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7702                 if (ipst->ips_ipv6_strict_dst_multihoming)
7703                         strict_check = B_TRUE;
7704                 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7705                     IRE_LOCAL, ill, ALL_ZONES, NULL,
7706                     (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7707         }
7708         /*
7709          * If the same ire that was returned in ip_input() is found then this
7710          * is an indication that usesrc groups are in use. The packet
7711          * arrived on a different ill in the group than the one associated with
7712          * the destination address.  If a different ire was found then the same
7713          * IP address must be hosted on multiple ills. This is possible with
7714          * unnumbered point2point interfaces. We switch to use this new ire in
7715          * order to have accurate interface statistics.
7716          */
7717         if (new_ire != NULL) {
7718                 /* Note: held in one case but not the other? Caller handles */
7719                 if (new_ire != ire)
7720                         return (new_ire);
7721                 /* Unchanged */
7722                 ire_refrele(new_ire);
7723                 return (ire);
7724         }
7725 
7726         /*
7727          * Chase pointers once and store locally.
7728          */
7729         ASSERT(ire->ire_ill != NULL);
7730         ire_ill = ire->ire_ill;
7731         ifindex = ill->ill_usesrc_ifindex;
7732 
7733         /*
7734          * Check if it's a legal address on the 'usesrc' interface.
7735          * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7736          * can just check phyint_ifindex.
7737          */
7738         if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7739                 return (ire);
7740         }
7741 
7742         /*
7743          * If the ip*_strict_dst_multihoming switch is on then we can
7744          * only accept this packet if the interface is marked as routing.
7745          */
7746         if (!(strict_check))
7747                 return (ire);
7748 
7749         if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7750                 return (ire);
7751         }
7752         return (NULL);
7753 }
7754 
7755 /*
7756  * This function is used to construct a mac_header_info_s from a
7757  * DL_UNITDATA_IND message.
7758  * The address fields in the mhi structure points into the message,
7759  * thus the caller can't use those fields after freeing the message.
7760  *
7761  * We determine whether the packet received is a non-unicast packet
7762  * and in doing so, determine whether or not it is broadcast vs multicast.
7763  * For it to be a broadcast packet, we must have the appropriate mblk_t
7764  * hanging off the ill_t.  If this is either not present or doesn't match
7765  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7766  * to be multicast.  Thus NICs that have no broadcast address (or no
7767  * capability for one, such as point to point links) cannot return as
7768  * the packet being broadcast.
7769  */
7770 void
7771 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7772 {
7773         dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7774         mblk_t *bmp;
7775         uint_t extra_offset;
7776 
7777         bzero(mhip, sizeof (struct mac_header_info_s));
7778 
7779         mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7780 
7781         if (ill->ill_sap_length < 0)
7782                 extra_offset = 0;
7783         else
7784                 extra_offset = ill->ill_sap_length;
7785 
7786         mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7787             extra_offset;
7788         mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7789             extra_offset;
7790 
7791         if (!ind->dl_group_address)
7792                 return;
7793 
7794         /* Multicast or broadcast */
7795         mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7796 
7797         if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7798             ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7799             (bmp = ill->ill_bcast_mp) != NULL) {
7800                 dl_unitdata_req_t *dlur;
7801                 uint8_t *bphys_addr;
7802 
7803                 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7804                 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7805                     extra_offset;
7806 
7807                 if (bcmp(mhip->mhi_daddr, bphys_addr,
7808                     ind->dl_dest_addr_length) == 0)
7809                         mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7810         }
7811 }
7812 
7813 /*
7814  * This function is used to construct a mac_header_info_s from a
7815  * M_DATA fastpath message from a DLPI driver.
7816  * The address fields in the mhi structure points into the message,
7817  * thus the caller can't use those fields after freeing the message.
7818  *
7819  * We determine whether the packet received is a non-unicast packet
7820  * and in doing so, determine whether or not it is broadcast vs multicast.
7821  * For it to be a broadcast packet, we must have the appropriate mblk_t
7822  * hanging off the ill_t.  If this is either not present or doesn't match
7823  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7824  * to be multicast.  Thus NICs that have no broadcast address (or no
7825  * capability for one, such as point to point links) cannot return as
7826  * the packet being broadcast.
7827  */
7828 void
7829 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7830 {
7831         mblk_t *bmp;
7832         struct ether_header *pether;
7833 
7834         bzero(mhip, sizeof (struct mac_header_info_s));
7835 
7836         mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7837 
7838         pether = (struct ether_header *)((char *)mp->b_rptr
7839             - sizeof (struct ether_header));
7840 
7841         /*
7842          * Make sure the interface is an ethernet type, since we don't
7843          * know the header format for anything but Ethernet. Also make
7844          * sure we are pointing correctly above db_base.
7845          */
7846         if (ill->ill_type != IFT_ETHER)
7847                 return;
7848 
7849 retry:
7850         if ((uchar_t *)pether < mp->b_datap->db_base)
7851                 return;
7852 
7853         /* Is there a VLAN tag? */
7854         if (ill->ill_isv6) {
7855                 if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
7856                         pether = (struct ether_header *)((char *)pether - 4);
7857                         goto retry;
7858                 }
7859         } else {
7860                 if (pether->ether_type != htons(ETHERTYPE_IP)) {
7861                         pether = (struct ether_header *)((char *)pether - 4);
7862                         goto retry;
7863                 }
7864         }
7865         mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7866         mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
7867 
7868         if (!(mhip->mhi_daddr[0] & 0x01))
7869                 return;
7870 
7871         /* Multicast or broadcast */
7872         mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7873 
7874         if ((bmp = ill->ill_bcast_mp) != NULL) {
7875                 dl_unitdata_req_t *dlur;
7876                 uint8_t *bphys_addr;
7877                 uint_t  addrlen;
7878 
7879                 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7880                 addrlen = dlur->dl_dest_addr_length;
7881                 if (ill->ill_sap_length < 0) {
7882                         bphys_addr = (uchar_t *)dlur +
7883                             dlur->dl_dest_addr_offset;
7884                         addrlen += ill->ill_sap_length;
7885                 } else {
7886                         bphys_addr = (uchar_t *)dlur +
7887                             dlur->dl_dest_addr_offset +
7888                             ill->ill_sap_length;
7889                         addrlen -= ill->ill_sap_length;
7890                 }
7891                 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7892                         mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7893         }
7894 }
7895 
7896 /*
7897  * Handle anything but M_DATA messages
7898  * We see the DL_UNITDATA_IND which are part
7899  * of the data path, and also the other messages from the driver.
7900  */
7901 void
7902 ip_rput_notdata(ill_t *ill, mblk_t *mp)
7903 {
7904         mblk_t          *first_mp;
7905         struct iocblk   *iocp;
7906         struct mac_header_info_s mhi;
7907 
7908         switch (DB_TYPE(mp)) {
7909         case M_PROTO:
7910         case M_PCPROTO: {
7911                 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7912                     DL_UNITDATA_IND) {
7913                         /* Go handle anything other than data elsewhere. */
7914                         ip_rput_dlpi(ill, mp);
7915                         return;
7916                 }
7917 
7918                 first_mp = mp;
7919                 mp = first_mp->b_cont;
7920                 first_mp->b_cont = NULL;
7921 
7922                 if (mp == NULL) {
7923                         freeb(first_mp);
7924                         return;
7925                 }
7926                 ip_dlur_to_mhi(ill, first_mp, &mhi);
7927                 if (ill->ill_isv6)
7928                         ip_input_v6(ill, NULL, mp, &mhi);
7929                 else
7930                         ip_input(ill, NULL, mp, &mhi);
7931 
7932                 /* Ditch the DLPI header. */
7933                 freeb(first_mp);
7934                 return;
7935         }
7936         case M_IOCACK:
7937                 iocp = (struct iocblk *)mp->b_rptr;
7938                 switch (iocp->ioc_cmd) {
7939                 case DL_IOC_HDR_INFO:
7940                         ill_fastpath_ack(ill, mp);
7941                         return;
7942                 default:
7943                         putnext(ill->ill_rq, mp);
7944                         return;
7945                 }
7946                 /* FALLTHRU */
7947         case M_ERROR:
7948         case M_HANGUP:
7949                 mutex_enter(&ill->ill_lock);
7950                 if (ill->ill_state_flags & ILL_CONDEMNED) {
7951                         mutex_exit(&ill->ill_lock);
7952                         freemsg(mp);
7953                         return;
7954                 }
7955                 ill_refhold_locked(ill);
7956                 mutex_exit(&ill->ill_lock);
7957                 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7958                     B_FALSE);
7959                 return;
7960         case M_CTL:
7961                 putnext(ill->ill_rq, mp);
7962                 return;
7963         case M_IOCNAK:
7964                 ip1dbg(("got iocnak "));
7965                 iocp = (struct iocblk *)mp->b_rptr;
7966                 switch (iocp->ioc_cmd) {
7967                 case DL_IOC_HDR_INFO:
7968                         ip_rput_other(NULL, ill->ill_rq, mp, NULL);
7969                         return;
7970                 default:
7971                         break;
7972                 }
7973                 /* FALLTHRU */
7974         default:
7975                 putnext(ill->ill_rq, mp);
7976                 return;
7977         }
7978 }
7979 
7980 /* Read side put procedure.  Packets coming from the wire arrive here. */
7981 void
7982 ip_rput(queue_t *q, mblk_t *mp)
7983 {
7984         ill_t   *ill;
7985         union DL_primitives *dl;
7986 
7987         ill = (ill_t *)q->q_ptr;
7988 
7989         if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
7990                 /*
7991                  * If things are opening or closing, only accept high-priority
7992                  * DLPI messages.  (On open ill->ill_ipif has not yet been
7993                  * created; on close, things hanging off the ill may have been
7994                  * freed already.)
7995                  */
7996                 dl = (union DL_primitives *)mp->b_rptr;
7997                 if (DB_TYPE(mp) != M_PCPROTO ||
7998                     dl->dl_primitive == DL_UNITDATA_IND) {
7999                         inet_freemsg(mp);
8000                         return;
8001                 }
8002         }
8003         if (DB_TYPE(mp) == M_DATA) {
8004                 struct mac_header_info_s mhi;
8005 
8006                 ip_mdata_to_mhi(ill, mp, &mhi);
8007                 ip_input(ill, NULL, mp, &mhi);
8008         } else {
8009                 ip_rput_notdata(ill, mp);
8010         }
8011 }
8012 
8013 /*
8014  * Move the information to a copy.
8015  */
8016 mblk_t *
8017 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8018 {
8019         mblk_t          *mp1;
8020         ill_t           *ill = ira->ira_ill;
8021         ip_stack_t      *ipst = ill->ill_ipst;
8022 
8023         IP_STAT(ipst, ip_db_ref);
8024 
8025         /* Make sure we have ira_l2src before we loose the original mblk */
8026         if (!(ira->ira_flags & IRAF_L2SRC_SET))
8027                 ip_setl2src(mp, ira, ira->ira_rill);
8028 
8029         mp1 = copymsg(mp);
8030         if (mp1 == NULL) {
8031                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8032                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
8033                 freemsg(mp);
8034                 return (NULL);
8035         }
8036         /* preserve the hardware checksum flags and data, if present */
8037         if (DB_CKSUMFLAGS(mp) != 0) {
8038                 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8039                 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8040                 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8041                 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8042                 DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8043         }
8044         freemsg(mp);
8045         return (mp1);
8046 }
8047 
8048 static void
8049 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8050     t_uscalar_t err)
8051 {
8052         if (dl_err == DL_SYSERR) {
8053                 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8054                     "%s: %s failed: DL_SYSERR (errno %u)\n",
8055                     ill->ill_name, dl_primstr(prim), err);
8056                 return;
8057         }
8058 
8059         (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8060             "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8061             dl_errstr(dl_err));
8062 }
8063 
8064 /*
8065  * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8066  * than DL_UNITDATA_IND messages. If we need to process this message
8067  * exclusively, we call qwriter_ip, in which case we also need to call
8068  * ill_refhold before that, since qwriter_ip does an ill_refrele.
8069  */
8070 void
8071 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8072 {
8073         dl_ok_ack_t     *dloa = (dl_ok_ack_t *)mp->b_rptr;
8074         dl_error_ack_t  *dlea = (dl_error_ack_t *)dloa;
8075         queue_t         *q = ill->ill_rq;
8076         t_uscalar_t     prim = dloa->dl_primitive;
8077         t_uscalar_t     reqprim = DL_PRIM_INVAL;
8078 
8079         DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8080             char *, dl_primstr(prim), ill_t *, ill);
8081         ip1dbg(("ip_rput_dlpi"));
8082 
8083         /*
8084          * If we received an ACK but didn't send a request for it, then it
8085          * can't be part of any pending operation; discard up-front.
8086          */
8087         switch (prim) {
8088         case DL_ERROR_ACK:
8089                 reqprim = dlea->dl_error_primitive;
8090                 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8091                     "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8092                     reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8093                     dlea->dl_unix_errno));
8094                 break;
8095         case DL_OK_ACK:
8096                 reqprim = dloa->dl_correct_primitive;
8097                 break;
8098         case DL_INFO_ACK:
8099                 reqprim = DL_INFO_REQ;
8100                 break;
8101         case DL_BIND_ACK:
8102                 reqprim = DL_BIND_REQ;
8103                 break;
8104         case DL_PHYS_ADDR_ACK:
8105                 reqprim = DL_PHYS_ADDR_REQ;
8106                 break;
8107         case DL_NOTIFY_ACK:
8108                 reqprim = DL_NOTIFY_REQ;
8109                 break;
8110         case DL_CAPABILITY_ACK:
8111                 reqprim = DL_CAPABILITY_REQ;
8112                 break;
8113         }
8114 
8115         if (prim != DL_NOTIFY_IND) {
8116                 if (reqprim == DL_PRIM_INVAL ||
8117                     !ill_dlpi_pending(ill, reqprim)) {
8118                         /* Not a DLPI message we support or expected */
8119                         freemsg(mp);
8120                         return;
8121                 }
8122                 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8123                     dl_primstr(reqprim)));
8124         }
8125 
8126         switch (reqprim) {
8127         case DL_UNBIND_REQ:
8128                 /*
8129                  * NOTE: we mark the unbind as complete even if we got a
8130                  * DL_ERROR_ACK, since there's not much else we can do.
8131                  */
8132                 mutex_enter(&ill->ill_lock);
8133                 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8134                 cv_signal(&ill->ill_cv);
8135                 mutex_exit(&ill->ill_lock);
8136                 break;
8137 
8138         case DL_ENABMULTI_REQ:
8139                 if (prim == DL_OK_ACK) {
8140                         if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8141                                 ill->ill_dlpi_multicast_state = IDS_OK;
8142                 }
8143                 break;
8144         }
8145 
8146         /*
8147          * The message is one we're waiting for (or DL_NOTIFY_IND), but we
8148          * need to become writer to continue to process it.  Because an
8149          * exclusive operation doesn't complete until replies to all queued
8150          * DLPI messages have been received, we know we're in the middle of an
8151          * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8152          *
8153          * As required by qwriter_ip(), we refhold the ill; it will refrele.
8154          * Since this is on the ill stream we unconditionally bump up the
8155          * refcount without doing ILL_CAN_LOOKUP().
8156          */
8157         ill_refhold(ill);
8158         if (prim == DL_NOTIFY_IND)
8159                 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8160         else
8161                 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8162 }
8163 
8164 /*
8165  * Handling of DLPI messages that require exclusive access to the ipsq.
8166  *
8167  * Need to do ipsq_pending_mp_get on ioctl completion, which could
8168  * happen here. (along with mi_copy_done)
8169  */
8170 /* ARGSUSED */
8171 static void
8172 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8173 {
8174         dl_ok_ack_t     *dloa = (dl_ok_ack_t *)mp->b_rptr;
8175         dl_error_ack_t  *dlea = (dl_error_ack_t *)dloa;
8176         int             err = 0;
8177         ill_t           *ill = (ill_t *)q->q_ptr;
8178         ipif_t          *ipif = NULL;
8179         mblk_t          *mp1 = NULL;
8180         conn_t          *connp = NULL;
8181         t_uscalar_t     paddrreq;
8182         mblk_t          *mp_hw;
8183         boolean_t       success;
8184         boolean_t       ioctl_aborted = B_FALSE;
8185         boolean_t       log = B_TRUE;
8186 
8187         DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8188             char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
8189 
8190         ip1dbg(("ip_rput_dlpi_writer .."));
8191         ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8192         ASSERT(IAM_WRITER_ILL(ill));
8193 
8194         ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8195         /*
8196          * The current ioctl could have been aborted by the user and a new
8197          * ioctl to bring up another ill could have started. We could still
8198          * get a response from the driver later.
8199          */
8200         if (ipif != NULL && ipif->ipif_ill != ill)
8201                 ioctl_aborted = B_TRUE;
8202 
8203         switch (dloa->dl_primitive) {
8204         case DL_ERROR_ACK:
8205                 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8206                     dl_primstr(dlea->dl_error_primitive)));
8207 
8208                 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8209                     char *, dl_primstr(dlea->dl_error_primitive),
8210                     ill_t *, ill);
8211 
8212                 switch (dlea->dl_error_primitive) {
8213                 case DL_DISABMULTI_REQ:
8214                         ill_dlpi_done(ill, dlea->dl_error_primitive);
8215                         break;
8216                 case DL_PROMISCON_REQ:
8217                 case DL_PROMISCOFF_REQ:
8218                 case DL_UNBIND_REQ:
8219                 case DL_ATTACH_REQ:
8220                 case DL_INFO_REQ:
8221                         ill_dlpi_done(ill, dlea->dl_error_primitive);
8222                         break;
8223                 case DL_NOTIFY_REQ:
8224                         ill_dlpi_done(ill, DL_NOTIFY_REQ);
8225                         log = B_FALSE;
8226                         break;
8227                 case DL_PHYS_ADDR_REQ:
8228                         /*
8229                          * For IPv6 only, there are two additional
8230                          * phys_addr_req's sent to the driver to get the
8231                          * IPv6 token and lla. This allows IP to acquire
8232                          * the hardware address format for a given interface
8233                          * without having built in knowledge of the hardware
8234                          * address. ill_phys_addr_pend keeps track of the last
8235                          * DL_PAR sent so we know which response we are
8236                          * dealing with. ill_dlpi_done will update
8237                          * ill_phys_addr_pend when it sends the next req.
8238                          * We don't complete the IOCTL until all three DL_PARs
8239                          * have been attempted, so set *_len to 0 and break.
8240                          */
8241                         paddrreq = ill->ill_phys_addr_pend;
8242                         ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8243                         if (paddrreq == DL_IPV6_TOKEN) {
8244                                 ill->ill_token_length = 0;
8245                                 log = B_FALSE;
8246                                 break;
8247                         } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8248                                 ill->ill_nd_lla_len = 0;
8249                                 log = B_FALSE;
8250                                 break;
8251                         }
8252                         /*
8253                          * Something went wrong with the DL_PHYS_ADDR_REQ.
8254                          * We presumably have an IOCTL hanging out waiting
8255                          * for completion. Find it and complete the IOCTL
8256                          * with the error noted.
8257                          * However, ill_dl_phys was called on an ill queue
8258                          * (from SIOCSLIFNAME), thus conn_pending_ill is not
8259                          * set. But the ioctl is known to be pending on ill_wq.
8260                          */
8261                         if (!ill->ill_ifname_pending)
8262                                 break;
8263                         ill->ill_ifname_pending = 0;
8264                         if (!ioctl_aborted)
8265                                 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8266                         if (mp1 != NULL) {
8267                                 /*
8268                                  * This operation (SIOCSLIFNAME) must have
8269                                  * happened on the ill. Assert there is no conn
8270                                  */
8271                                 ASSERT(connp == NULL);
8272                                 q = ill->ill_wq;
8273                         }
8274                         break;
8275                 case DL_BIND_REQ:
8276                         ill_dlpi_done(ill, DL_BIND_REQ);
8277                         if (ill->ill_ifname_pending)
8278                                 break;
8279                         mutex_enter(&ill->ill_lock);
8280                         ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8281                         mutex_exit(&ill->ill_lock);
8282                         /*
8283                          * Something went wrong with the bind.  We presumably
8284                          * have an IOCTL hanging out waiting for completion.
8285                          * Find it, take down the interface that was coming
8286                          * up, and complete the IOCTL with the error noted.
8287                          */
8288                         if (!ioctl_aborted)
8289                                 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8290                         if (mp1 != NULL) {
8291                                 /*
8292                                  * This might be a result of a DL_NOTE_REPLUMB
8293                                  * notification. In that case, connp is NULL.
8294                                  */
8295                                 if (connp != NULL)
8296                                         q = CONNP_TO_WQ(connp);
8297 
8298                                 (void) ipif_down(ipif, NULL, NULL);
8299                                 /* error is set below the switch */
8300                         }
8301                         break;
8302                 case DL_ENABMULTI_REQ:
8303                         ill_dlpi_done(ill, DL_ENABMULTI_REQ);
8304 
8305                         if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8306                                 ill->ill_dlpi_multicast_state = IDS_FAILED;
8307                         if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
8308 
8309                                 printf("ip: joining multicasts failed (%d)"
8310                                     " on %s - will use link layer "
8311                                     "broadcasts for multicast\n",
8312                                     dlea->dl_errno, ill->ill_name);
8313 
8314                                 /*
8315                                  * Set up for multi_bcast; We are the
8316                                  * writer, so ok to access ill->ill_ipif
8317                                  * without any lock.
8318                                  */
8319                                 mutex_enter(&ill->ill_phyint->phyint_lock);
8320                                 ill->ill_phyint->phyint_flags |=
8321                                     PHYI_MULTI_BCAST;
8322                                 mutex_exit(&ill->ill_phyint->phyint_lock);
8323 
8324                         }
8325                         freemsg(mp);    /* Don't want to pass this up */
8326                         return;
8327                 case DL_CAPABILITY_REQ:
8328                         ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8329                             "DL_CAPABILITY REQ\n"));
8330                         if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8331                                 ill->ill_dlpi_capab_state = IDCS_FAILED;
8332                         ill_capability_done(ill);
8333                         freemsg(mp);
8334                         return;
8335                 }
8336                 /*
8337                  * Note the error for IOCTL completion (mp1 is set when
8338                  * ready to complete ioctl). If ill_ifname_pending_err is
8339                  * set, an error occured during plumbing (ill_ifname_pending),
8340                  * so we want to report that error.
8341                  *
8342                  * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
8343                  * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8344                  * expected to get errack'd if the driver doesn't support
8345                  * these flags (e.g. ethernet). log will be set to B_FALSE
8346                  * if these error conditions are encountered.
8347                  */
8348                 if (mp1 != NULL) {
8349                         if (ill->ill_ifname_pending_err != 0)  {
8350                                 err = ill->ill_ifname_pending_err;
8351                                 ill->ill_ifname_pending_err = 0;
8352                         } else {
8353                                 err = dlea->dl_unix_errno ?
8354                                     dlea->dl_unix_errno : ENXIO;
8355                         }
8356                 /*
8357                  * If we're plumbing an interface and an error hasn't already
8358                  * been saved, set ill_ifname_pending_err to the error passed
8359                  * up. Ignore the error if log is B_FALSE (see comment above).
8360                  */
8361                 } else if (log && ill->ill_ifname_pending &&
8362                     ill->ill_ifname_pending_err == 0) {
8363                         ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8364                             dlea->dl_unix_errno : ENXIO;
8365                 }
8366 
8367                 if (log)
8368                         ip_dlpi_error(ill, dlea->dl_error_primitive,
8369                             dlea->dl_errno, dlea->dl_unix_errno);
8370                 break;
8371         case DL_CAPABILITY_ACK:
8372                 ill_capability_ack(ill, mp);
8373                 /*
8374                  * The message has been handed off to ill_capability_ack
8375                  * and must not be freed below
8376                  */
8377                 mp = NULL;
8378                 break;
8379 
8380         case DL_INFO_ACK:
8381                 /* Call a routine to handle this one. */
8382                 ill_dlpi_done(ill, DL_INFO_REQ);
8383                 ip_ll_subnet_defaults(ill, mp);
8384                 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8385                 return;
8386         case DL_BIND_ACK:
8387                 /*
8388                  * We should have an IOCTL waiting on this unless
8389                  * sent by ill_dl_phys, in which case just return
8390                  */
8391                 ill_dlpi_done(ill, DL_BIND_REQ);
8392 
8393                 if (ill->ill_ifname_pending) {
8394                         DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8395                             ill_t *, ill, mblk_t *, mp);
8396                         break;
8397                 }
8398                 mutex_enter(&ill->ill_lock);
8399                 ill->ill_dl_up = 1;
8400                 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8401                 mutex_exit(&ill->ill_lock);
8402 
8403                 if (!ioctl_aborted)
8404                         mp1 = ipsq_pending_mp_get(ipsq, &connp);
8405                 if (mp1 == NULL) {
8406                         DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8407                         break;
8408                 }
8409                 /*
8410                  * mp1 was added by ill_dl_up(). if that is a result of
8411                  * a DL_NOTE_REPLUMB notification, connp could be NULL.
8412                  */
8413                 if (connp != NULL)
8414                         q = CONNP_TO_WQ(connp);
8415                 /*
8416                  * We are exclusive. So nothing can change even after
8417                  * we get the pending mp.
8418                  */
8419                 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8420                 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8421                 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
8422 
8423                 /*
8424                  * Now bring up the resolver; when that is complete, we'll
8425                  * create IREs.  Note that we intentionally mirror what
8426                  * ipif_up() would have done, because we got here by way of
8427                  * ill_dl_up(), which stopped ipif_up()'s processing.
8428                  */
8429                 if (ill->ill_isv6) {
8430                         /*
8431                          * v6 interfaces.
8432                          * Unlike ARP which has to do another bind
8433                          * and attach, once we get here we are
8434                          * done with NDP
8435                          */
8436                         (void) ipif_resolver_up(ipif, Res_act_initial);
8437                         if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8438                                 err = ipif_up_done_v6(ipif);
8439                 } else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8440                         /*
8441                          * ARP and other v4 external resolvers.
8442                          * Leave the pending mblk intact so that
8443                          * the ioctl completes in ip_rput().
8444                          */
8445                         if (connp != NULL)
8446                                 mutex_enter(&connp->conn_lock);
8447                         mutex_enter(&ill->ill_lock);
8448                         success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8449                         mutex_exit(&ill->ill_lock);
8450                         if (connp != NULL)
8451                                 mutex_exit(&connp->conn_lock);
8452                         if (success) {
8453                                 err = ipif_resolver_up(ipif, Res_act_initial);
8454                                 if (err == EINPROGRESS) {
8455                                         freemsg(mp);
8456                                         return;
8457                                 }
8458                                 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8459                         } else {
8460                                 /* The conn has started closing */
8461                                 err = EINTR;
8462                         }
8463                 } else {
8464                         /*
8465                          * This one is complete. Reply to pending ioctl.
8466                          */
8467                         (void) ipif_resolver_up(ipif, Res_act_initial);
8468                         err = ipif_up_done(ipif);
8469                 }
8470 
8471                 if ((err == 0) && (ill->ill_up_ipifs)) {
8472                         err = ill_up_ipifs(ill, q, mp1);
8473                         if (err == EINPROGRESS) {
8474                                 freemsg(mp);
8475                                 return;
8476                         }
8477                 }
8478 
8479                 /*
8480                  * If we have a moved ipif to bring up, and everything has
8481                  * succeeded to this point, bring it up on the IPMP ill.
8482                  * Otherwise, leave it down -- the admin can try to bring it
8483                  * up by hand if need be.
8484                  */
8485                 if (ill->ill_move_ipif != NULL) {
8486                         if (err != 0) {
8487                                 ill->ill_move_ipif = NULL;
8488                         } else {
8489                                 ipif = ill->ill_move_ipif;
8490                                 ill->ill_move_ipif = NULL;
8491                                 err = ipif_up(ipif, q, mp1);
8492                                 if (err == EINPROGRESS) {
8493                                         freemsg(mp);
8494                                         return;
8495                                 }
8496                         }
8497                 }
8498                 break;
8499 
8500         case DL_NOTIFY_IND: {
8501                 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8502                 uint_t orig_mtu, orig_mc_mtu;
8503 
8504                 switch (notify->dl_notification) {
8505                 case DL_NOTE_PHYS_ADDR:
8506                         err = ill_set_phys_addr(ill, mp);
8507                         break;
8508 
8509                 case DL_NOTE_REPLUMB:
8510                         /*
8511                          * Directly return after calling ill_replumb().
8512                          * Note that we should not free mp as it is reused
8513                          * in the ill_replumb() function.
8514                          */
8515                         err = ill_replumb(ill, mp);
8516                         return;
8517 
8518                 case DL_NOTE_FASTPATH_FLUSH:
8519                         nce_flush(ill, B_FALSE);
8520                         break;
8521 
8522                 case DL_NOTE_SDU_SIZE:
8523                 case DL_NOTE_SDU_SIZE2:
8524                         /*
8525                          * The dce and fragmentation code can cope with
8526                          * this changing while packets are being sent.
8527                          * When packets are sent ip_output will discover
8528                          * a change.
8529                          *
8530                          * Change the MTU size of the interface.
8531                          */
8532                         mutex_enter(&ill->ill_lock);
8533                         orig_mtu = ill->ill_mtu;
8534                         orig_mc_mtu = ill->ill_mc_mtu;
8535                         switch (notify->dl_notification) {
8536                         case DL_NOTE_SDU_SIZE:
8537                                 ill->ill_current_frag =
8538                                     (uint_t)notify->dl_data;
8539                                 ill->ill_mc_mtu = (uint_t)notify->dl_data;
8540                                 break;
8541                         case DL_NOTE_SDU_SIZE2:
8542                                 ill->ill_current_frag =
8543                                     (uint_t)notify->dl_data1;
8544                                 ill->ill_mc_mtu = (uint_t)notify->dl_data2;
8545                                 break;
8546                         }
8547                         if (ill->ill_current_frag > ill->ill_max_frag)
8548                                 ill->ill_max_frag = ill->ill_current_frag;
8549 
8550                         if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8551                                 ill->ill_mtu = ill->ill_current_frag;
8552 
8553                                 /*
8554                                  * If ill_user_mtu was set (via
8555                                  * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8556                                  */
8557                                 if (ill->ill_user_mtu != 0 &&
8558                                     ill->ill_user_mtu < ill->ill_mtu)
8559                                         ill->ill_mtu = ill->ill_user_mtu;
8560 
8561                                 if (ill->ill_user_mtu != 0 &&
8562                                     ill->ill_user_mtu < ill->ill_mc_mtu)
8563                                         ill->ill_mc_mtu = ill->ill_user_mtu;
8564 
8565                                 if (ill->ill_isv6) {
8566                                         if (ill->ill_mtu < IPV6_MIN_MTU)
8567                                                 ill->ill_mtu = IPV6_MIN_MTU;
8568                                         if (ill->ill_mc_mtu < IPV6_MIN_MTU)
8569                                                 ill->ill_mc_mtu = IPV6_MIN_MTU;
8570                                 } else {
8571                                         if (ill->ill_mtu < IP_MIN_MTU)
8572                                                 ill->ill_mtu = IP_MIN_MTU;
8573                                         if (ill->ill_mc_mtu < IP_MIN_MTU)
8574                                                 ill->ill_mc_mtu = IP_MIN_MTU;
8575                                 }
8576                         } else if (ill->ill_mc_mtu > ill->ill_mtu) {
8577                                 ill->ill_mc_mtu = ill->ill_mtu;
8578                         }
8579 
8580                         mutex_exit(&ill->ill_lock);
8581                         /*
8582                          * Make sure all dce_generation checks find out
8583                          * that ill_mtu/ill_mc_mtu has changed.
8584                          */
8585                         if (orig_mtu != ill->ill_mtu ||
8586                             orig_mc_mtu != ill->ill_mc_mtu) {
8587                                 dce_increment_all_generations(ill->ill_isv6,
8588                                     ill->ill_ipst);
8589                         }
8590 
8591                         /*
8592                          * Refresh IPMP meta-interface MTU if necessary.
8593                          */
8594                         if (IS_UNDER_IPMP(ill))
8595                                 ipmp_illgrp_refresh_mtu(ill->ill_grp);
8596                         break;
8597 
8598                 case DL_NOTE_LINK_UP:
8599                 case DL_NOTE_LINK_DOWN: {
8600                         /*
8601                          * We are writer. ill / phyint / ipsq assocs stable.
8602                          * The RUNNING flag reflects the state of the link.
8603                          */
8604                         phyint_t *phyint = ill->ill_phyint;
8605                         uint64_t new_phyint_flags;
8606                         boolean_t changed = B_FALSE;
8607                         boolean_t went_up;
8608 
8609                         went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8610                         mutex_enter(&phyint->phyint_lock);
8611 
8612                         new_phyint_flags = went_up ?
8613                             phyint->phyint_flags | PHYI_RUNNING :
8614                             phyint->phyint_flags & ~PHYI_RUNNING;
8615 
8616                         if (IS_IPMP(ill)) {
8617                                 new_phyint_flags = went_up ?
8618                                     new_phyint_flags & ~PHYI_FAILED :
8619                                     new_phyint_flags | PHYI_FAILED;
8620                         }
8621 
8622                         if (new_phyint_flags != phyint->phyint_flags) {
8623                                 phyint->phyint_flags = new_phyint_flags;
8624                                 changed = B_TRUE;
8625                         }
8626                         mutex_exit(&phyint->phyint_lock);
8627                         /*
8628                          * ill_restart_dad handles the DAD restart and routing
8629                          * socket notification logic.
8630                          */
8631                         if (changed) {
8632                                 ill_restart_dad(phyint->phyint_illv4, went_up);
8633                                 ill_restart_dad(phyint->phyint_illv6, went_up);
8634                         }
8635                         break;
8636                 }
8637                 case DL_NOTE_PROMISC_ON_PHYS: {
8638                         phyint_t *phyint = ill->ill_phyint;
8639 
8640                         mutex_enter(&phyint->phyint_lock);
8641                         phyint->phyint_flags |= PHYI_PROMISC;
8642                         mutex_exit(&phyint->phyint_lock);
8643                         break;
8644                 }
8645                 case DL_NOTE_PROMISC_OFF_PHYS: {
8646                         phyint_t *phyint = ill->ill_phyint;
8647 
8648                         mutex_enter(&phyint->phyint_lock);
8649                         phyint->phyint_flags &= ~PHYI_PROMISC;
8650                         mutex_exit(&phyint->phyint_lock);
8651                         break;
8652                 }
8653                 case DL_NOTE_CAPAB_RENEG:
8654                         /*
8655                          * Something changed on the driver side.
8656                          * It wants us to renegotiate the capabilities
8657                          * on this ill. One possible cause is the aggregation
8658                          * interface under us where a port got added or
8659                          * went away.
8660                          *
8661                          * If the capability negotiation is already done
8662                          * or is in progress, reset the capabilities and
8663                          * mark the ill's ill_capab_reneg to be B_TRUE,
8664                          * so that when the ack comes back, we can start
8665                          * the renegotiation process.
8666                          *
8667                          * Note that if ill_capab_reneg is already B_TRUE
8668                          * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8669                          * the capability resetting request has been sent
8670                          * and the renegotiation has not been started yet;
8671                          * nothing needs to be done in this case.
8672                          */
8673                         ipsq_current_start(ipsq, ill->ill_ipif, 0);
8674                         ill_capability_reset(ill, B_TRUE);
8675                         ipsq_current_finish(ipsq);
8676                         break;
8677 
8678                 case DL_NOTE_ALLOWED_IPS:
8679                         ill_set_allowed_ips(ill, mp);
8680                         break;
8681                 default:
8682                         ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8683                             "type 0x%x for DL_NOTIFY_IND\n",
8684                             notify->dl_notification));
8685                         break;
8686                 }
8687 
8688                 /*
8689                  * As this is an asynchronous operation, we
8690                  * should not call ill_dlpi_done
8691                  */
8692                 break;
8693         }
8694         case DL_NOTIFY_ACK: {
8695                 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
8696 
8697                 if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8698                         ill->ill_note_link = 1;
8699                 ill_dlpi_done(ill, DL_NOTIFY_REQ);
8700                 break;
8701         }
8702         case DL_PHYS_ADDR_ACK: {
8703                 /*
8704                  * As part of plumbing the interface via SIOCSLIFNAME,
8705                  * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8706                  * whose answers we receive here.  As each answer is received,
8707                  * we call ill_dlpi_done() to dispatch the next request as
8708                  * we're processing the current one.  Once all answers have
8709                  * been received, we use ipsq_pending_mp_get() to dequeue the
8710                  * outstanding IOCTL and reply to it.  (Because ill_dl_phys()
8711                  * is invoked from an ill queue, conn_oper_pending_ill is not
8712                  * available, but we know the ioctl is pending on ill_wq.)
8713                  */
8714                 uint_t  paddrlen, paddroff;
8715                 uint8_t *addr;
8716 
8717                 paddrreq = ill->ill_phys_addr_pend;
8718                 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8719                 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8720                 addr = mp->b_rptr + paddroff;
8721 
8722                 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8723                 if (paddrreq == DL_IPV6_TOKEN) {
8724                         /*
8725                          * bcopy to low-order bits of ill_token
8726                          *
8727                          * XXX Temporary hack - currently, all known tokens
8728                          * are 64 bits, so I'll cheat for the moment.
8729                          */
8730                         bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8731                         ill->ill_token_length = paddrlen;
8732                         break;
8733                 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8734                         ASSERT(ill->ill_nd_lla_mp == NULL);
8735                         ill_set_ndmp(ill, mp, paddroff, paddrlen);
8736                         mp = NULL;
8737                         break;
8738                 } else if (paddrreq == DL_CURR_DEST_ADDR) {
8739                         ASSERT(ill->ill_dest_addr_mp == NULL);
8740                         ill->ill_dest_addr_mp = mp;
8741                         ill->ill_dest_addr = addr;
8742                         mp = NULL;
8743                         if (ill->ill_isv6) {
8744                                 ill_setdesttoken(ill);
8745                                 ipif_setdestlinklocal(ill->ill_ipif);
8746                         }
8747                         break;
8748                 }
8749 
8750                 ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8751                 ASSERT(ill->ill_phys_addr_mp == NULL);
8752                 if (!ill->ill_ifname_pending)
8753                         break;
8754                 ill->ill_ifname_pending = 0;
8755                 if (!ioctl_aborted)
8756                         mp1 = ipsq_pending_mp_get(ipsq, &connp);
8757                 if (mp1 != NULL) {
8758                         ASSERT(connp == NULL);
8759                         q = ill->ill_wq;
8760                 }
8761                 /*
8762                  * If any error acks received during the plumbing sequence,
8763                  * ill_ifname_pending_err will be set. Break out and send up
8764                  * the error to the pending ioctl.
8765                  */
8766                 if (ill->ill_ifname_pending_err != 0) {
8767                         err = ill->ill_ifname_pending_err;
8768                         ill->ill_ifname_pending_err = 0;
8769                         break;
8770                 }
8771 
8772                 ill->ill_phys_addr_mp = mp;
8773                 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8774                 mp = NULL;
8775 
8776                 /*
8777                  * If paddrlen or ill_phys_addr_length is zero, the DLPI
8778                  * provider doesn't support physical addresses.  We check both
8779                  * paddrlen and ill_phys_addr_length because sppp (PPP) does
8780                  * not have physical addresses, but historically adversises a
8781                  * physical address length of 0 in its DL_INFO_ACK, but 6 in
8782                  * its DL_PHYS_ADDR_ACK.
8783                  */
8784                 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8785                         ill->ill_phys_addr = NULL;
8786                 } else if (paddrlen != ill->ill_phys_addr_length) {
8787                         ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8788                             paddrlen, ill->ill_phys_addr_length));
8789                         err = EINVAL;
8790                         break;
8791                 }
8792 
8793                 if (ill->ill_nd_lla_mp == NULL) {
8794                         if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8795                                 err = ENOMEM;
8796                                 break;
8797                         }
8798                         ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8799                 }
8800 
8801                 if (ill->ill_isv6) {
8802                         ill_setdefaulttoken(ill);
8803                         ipif_setlinklocal(ill->ill_ipif);
8804                 }
8805                 break;
8806         }
8807         case DL_OK_ACK:
8808                 ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8809                     dl_primstr((int)dloa->dl_correct_primitive),
8810                     dloa->dl_correct_primitive));
8811                 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8812                     char *, dl_primstr(dloa->dl_correct_primitive),
8813                     ill_t *, ill);
8814 
8815                 switch (dloa->dl_correct_primitive) {
8816                 case DL_ENABMULTI_REQ:
8817                 case DL_DISABMULTI_REQ:
8818                         ill_dlpi_done(ill, dloa->dl_correct_primitive);
8819                         break;
8820                 case DL_PROMISCON_REQ:
8821                 case DL_PROMISCOFF_REQ:
8822                 case DL_UNBIND_REQ:
8823                 case DL_ATTACH_REQ:
8824                         ill_dlpi_done(ill, dloa->dl_correct_primitive);
8825                         break;
8826                 }
8827                 break;
8828         default:
8829                 break;
8830         }
8831 
8832         freemsg(mp);
8833         if (mp1 == NULL)
8834                 return;
8835 
8836         /*
8837          * The operation must complete without EINPROGRESS since
8838          * ipsq_pending_mp_get() has removed the mblk (mp1).  Otherwise,
8839          * the operation will be stuck forever inside the IPSQ.
8840          */
8841         ASSERT(err != EINPROGRESS);
8842 
8843         DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8844             int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8845             ipif_t *, NULL);
8846 
8847         switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8848         case 0:
8849                 ipsq_current_finish(ipsq);
8850                 break;
8851 
8852         case SIOCSLIFNAME:
8853         case IF_UNITSEL: {
8854                 ill_t *ill_other = ILL_OTHER(ill);
8855 
8856                 /*
8857                  * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8858                  * ill has a peer which is in an IPMP group, then place ill
8859                  * into the same group.  One catch: although ifconfig plumbs
8860                  * the appropriate IPMP meta-interface prior to plumbing this
8861                  * ill, it is possible for multiple ifconfig applications to
8862                  * race (or for another application to adjust plumbing), in
8863                  * which case the IPMP meta-interface we need will be missing.
8864                  * If so, kick the phyint out of the group.
8865                  */
8866                 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8867                         ipmp_grp_t      *grp = ill->ill_phyint->phyint_grp;
8868                         ipmp_illgrp_t   *illg;
8869 
8870                         illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8871                         if (illg == NULL)
8872                                 ipmp_phyint_leave_grp(ill->ill_phyint);
8873                         else
8874                                 ipmp_ill_join_illgrp(ill, illg);
8875                 }
8876 
8877                 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8878                         ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8879                 else
8880                         ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8881                 break;
8882         }
8883         case SIOCLIFADDIF:
8884                 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8885                 break;
8886 
8887         default:
8888                 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8889                 break;
8890         }
8891 }
8892 
8893 /*
8894  * ip_rput_other is called by ip_rput to handle messages modifying the global
8895  * state in IP.  If 'ipsq' is non-NULL, caller is writer on it.
8896  */
8897 /* ARGSUSED */
8898 void
8899 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8900 {
8901         ill_t           *ill = q->q_ptr;
8902         struct iocblk   *iocp;
8903 
8904         ip1dbg(("ip_rput_other "));
8905         if (ipsq != NULL) {
8906                 ASSERT(IAM_WRITER_IPSQ(ipsq));
8907                 ASSERT(ipsq->ipsq_xop ==
8908                     ill->ill_phyint->phyint_ipsq->ipsq_xop);
8909         }
8910 
8911         switch (mp->b_datap->db_type) {
8912         case M_ERROR:
8913         case M_HANGUP:
8914                 /*
8915                  * The device has a problem.  We force the ILL down.  It can
8916                  * be brought up again manually using SIOCSIFFLAGS (via
8917                  * ifconfig or equivalent).
8918                  */
8919                 ASSERT(ipsq != NULL);
8920                 if (mp->b_rptr < mp->b_wptr)
8921                         ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8922                 if (ill->ill_error == 0)
8923                         ill->ill_error = ENXIO;
8924                 if (!ill_down_start(q, mp))
8925                         return;
8926                 ipif_all_down_tail(ipsq, q, mp, NULL);
8927                 break;
8928         case M_IOCNAK: {
8929                 iocp = (struct iocblk *)mp->b_rptr;
8930 
8931                 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8932                 /*
8933                  * If this was the first attempt, turn off the fastpath
8934                  * probing.
8935                  */
8936                 mutex_enter(&ill->ill_lock);
8937                 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8938                         ill->ill_dlpi_fastpath_state = IDS_FAILED;
8939                         mutex_exit(&ill->ill_lock);
8940                         /*
8941                          * don't flush the nce_t entries: we use them
8942                          * as an index to the ncec itself.
8943                          */
8944                         ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8945                             ill->ill_name));
8946                 } else {
8947                         mutex_exit(&ill->ill_lock);
8948                 }
8949                 freemsg(mp);
8950                 break;
8951         }
8952         default:
8953                 ASSERT(0);
8954                 break;
8955         }
8956 }
8957 
8958 /*
8959  * Update any source route, record route or timestamp options
8960  * When it fails it has consumed the message and BUMPed the MIB.
8961  */
8962 boolean_t
8963 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8964     ip_recv_attr_t *ira)
8965 {
8966         ipoptp_t        opts;
8967         uchar_t         *opt;
8968         uint8_t         optval;
8969         uint8_t         optlen;
8970         ipaddr_t        dst;
8971         ipaddr_t        ifaddr;
8972         uint32_t        ts;
8973         timestruc_t     now;
8974         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
8975 
8976         ip2dbg(("ip_forward_options\n"));
8977         dst = ipha->ipha_dst;
8978         for (optval = ipoptp_first(&opts, ipha);
8979             optval != IPOPT_EOL;
8980             optval = ipoptp_next(&opts)) {
8981                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
8982                 opt = opts.ipoptp_cur;
8983                 optlen = opts.ipoptp_len;
8984                 ip2dbg(("ip_forward_options: opt %d, len %d\n",
8985                     optval, opts.ipoptp_len));
8986                 switch (optval) {
8987                         uint32_t off;
8988                 case IPOPT_SSRR:
8989                 case IPOPT_LSRR:
8990                         /* Check if adminstratively disabled */
8991                         if (!ipst->ips_ip_forward_src_routed) {
8992                                 BUMP_MIB(dst_ill->ill_ip_mib,
8993                                     ipIfStatsForwProhibits);
8994                                 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
8995                                     mp, dst_ill);
8996                                 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
8997                                     ira);
8998                                 return (B_FALSE);
8999                         }
9000                         if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9001                                 /*
9002                                  * Must be partial since ip_input_options
9003                                  * checked for strict.
9004                                  */
9005                                 break;
9006                         }
9007                         off = opt[IPOPT_OFFSET];
9008                         off--;
9009                 redo_srr:
9010                         if (optlen < IP_ADDR_LEN ||
9011                             off > optlen - IP_ADDR_LEN) {
9012                                 /* End of source route */
9013                                 ip1dbg((
9014                                     "ip_forward_options: end of SR\n"));
9015                                 break;
9016                         }
9017                         /* Pick a reasonable address on the outbound if */
9018                         ASSERT(dst_ill != NULL);
9019                         if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9020                             INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9021                             NULL) != 0) {
9022                                 /* No source! Shouldn't happen */
9023                                 ifaddr = INADDR_ANY;
9024                         }
9025                         bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9026                         bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9027                         ip1dbg(("ip_forward_options: next hop 0x%x\n",
9028                             ntohl(dst)));
9029 
9030                         /*
9031                          * Check if our address is present more than
9032                          * once as consecutive hops in source route.
9033                          */
9034                         if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9035                                 off += IP_ADDR_LEN;
9036                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9037                                 goto redo_srr;
9038                         }
9039                         ipha->ipha_dst = dst;
9040                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9041                         break;
9042                 case IPOPT_RR:
9043                         off = opt[IPOPT_OFFSET];
9044                         off--;
9045                         if (optlen < IP_ADDR_LEN ||
9046                             off > optlen - IP_ADDR_LEN) {
9047                                 /* No more room - ignore */
9048                                 ip1dbg((
9049                                     "ip_forward_options: end of RR\n"));
9050                                 break;
9051                         }
9052                         /* Pick a reasonable address on the outbound if */
9053                         ASSERT(dst_ill != NULL);
9054                         if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9055                             INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9056                             NULL) != 0) {
9057                                 /* No source! Shouldn't happen */
9058                                 ifaddr = INADDR_ANY;
9059                         }
9060                         bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9061                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9062                         break;
9063                 case IPOPT_TS:
9064                         /* Insert timestamp if there is room */
9065                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9066                         case IPOPT_TS_TSONLY:
9067                                 off = IPOPT_TS_TIMELEN;
9068                                 break;
9069                         case IPOPT_TS_PRESPEC:
9070                         case IPOPT_TS_PRESPEC_RFC791:
9071                                 /* Verify that the address matched */
9072                                 off = opt[IPOPT_OFFSET] - 1;
9073                                 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9074                                 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9075                                         /* Not for us */
9076                                         break;
9077                                 }
9078                                 /* FALLTHRU */
9079                         case IPOPT_TS_TSANDADDR:
9080                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9081                                 break;
9082                         default:
9083                                 /*
9084                                  * ip_*put_options should have already
9085                                  * dropped this packet.
9086                                  */
9087                                 cmn_err(CE_PANIC, "ip_forward_options: "
9088                                     "unknown IT - bug in ip_input_options?\n");
9089                                 return (B_TRUE);        /* Keep "lint" happy */
9090                         }
9091                         if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9092                                 /* Increase overflow counter */
9093                                 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9094                                 opt[IPOPT_POS_OV_FLG] =
9095                                     (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9096                                     (off << 4));
9097                                 break;
9098                         }
9099                         off = opt[IPOPT_OFFSET] - 1;
9100                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9101                         case IPOPT_TS_PRESPEC:
9102                         case IPOPT_TS_PRESPEC_RFC791:
9103                         case IPOPT_TS_TSANDADDR:
9104                                 /* Pick a reasonable addr on the outbound if */
9105                                 ASSERT(dst_ill != NULL);
9106                                 if (ip_select_source_v4(dst_ill, INADDR_ANY,
9107                                     dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9108                                     NULL, NULL) != 0) {
9109                                         /* No source! Shouldn't happen */
9110                                         ifaddr = INADDR_ANY;
9111                                 }
9112                                 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9113                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9114                                 /* FALLTHRU */
9115                         case IPOPT_TS_TSONLY:
9116                                 off = opt[IPOPT_OFFSET] - 1;
9117                                 /* Compute # of milliseconds since midnight */
9118                                 gethrestime(&now);
9119                                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9120                                     now.tv_nsec / (NANOSEC / MILLISEC);
9121                                 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9122                                 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9123                                 break;
9124                         }
9125                         break;
9126                 }
9127         }
9128         return (B_TRUE);
9129 }
9130 
9131 /*
9132  * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9133  * returns 'true' if there are still fragments left on the queue, in
9134  * which case we restart the timer.
9135  */
9136 void
9137 ill_frag_timer(void *arg)
9138 {
9139         ill_t   *ill = (ill_t *)arg;
9140         boolean_t frag_pending;
9141         ip_stack_t *ipst = ill->ill_ipst;
9142         time_t  timeout;
9143 
9144         mutex_enter(&ill->ill_lock);
9145         ASSERT(!ill->ill_fragtimer_executing);
9146         if (ill->ill_state_flags & ILL_CONDEMNED) {
9147                 ill->ill_frag_timer_id = 0;
9148                 mutex_exit(&ill->ill_lock);
9149                 return;
9150         }
9151         ill->ill_fragtimer_executing = 1;
9152         mutex_exit(&ill->ill_lock);
9153 
9154         timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9155             ipst->ips_ip_reassembly_timeout);
9156 
9157         frag_pending = ill_frag_timeout(ill, timeout);
9158 
9159         /*
9160          * Restart the timer, if we have fragments pending or if someone
9161          * wanted us to be scheduled again.
9162          */
9163         mutex_enter(&ill->ill_lock);
9164         ill->ill_fragtimer_executing = 0;
9165         ill->ill_frag_timer_id = 0;
9166         if (frag_pending || ill->ill_fragtimer_needrestart)
9167                 ill_frag_timer_start(ill);
9168         mutex_exit(&ill->ill_lock);
9169 }
9170 
9171 void
9172 ill_frag_timer_start(ill_t *ill)
9173 {
9174         ip_stack_t *ipst = ill->ill_ipst;
9175         clock_t timeo_ms;
9176 
9177         ASSERT(MUTEX_HELD(&ill->ill_lock));
9178 
9179         /* If the ill is closing or opening don't proceed */
9180         if (ill->ill_state_flags & ILL_CONDEMNED)
9181                 return;
9182 
9183         if (ill->ill_fragtimer_executing) {
9184                 /*
9185                  * ill_frag_timer is currently executing. Just record the
9186                  * the fact that we want the timer to be restarted.
9187                  * ill_frag_timer will post a timeout before it returns,
9188                  * ensuring it will be called again.
9189                  */
9190                 ill->ill_fragtimer_needrestart = 1;
9191                 return;
9192         }
9193 
9194         if (ill->ill_frag_timer_id == 0) {
9195                 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9196                     ipst->ips_ip_reassembly_timeout) * SECONDS;
9197 
9198                 /*
9199                  * The timer is neither running nor is the timeout handler
9200                  * executing. Post a timeout so that ill_frag_timer will be
9201                  * called
9202                  */
9203                 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9204                     MSEC_TO_TICK(timeo_ms >> 1));
9205                 ill->ill_fragtimer_needrestart = 0;
9206         }
9207 }
9208 
9209 /*
9210  * Update any source route, record route or timestamp options.
9211  * Check that we are at end of strict source route.
9212  * The options have already been checked for sanity in ip_input_options().
9213  */
9214 boolean_t
9215 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9216 {
9217         ipoptp_t        opts;
9218         uchar_t         *opt;
9219         uint8_t         optval;
9220         uint8_t         optlen;
9221         ipaddr_t        dst;
9222         ipaddr_t        ifaddr;
9223         uint32_t        ts;
9224         timestruc_t     now;
9225         ill_t           *ill = ira->ira_ill;
9226         ip_stack_t      *ipst = ill->ill_ipst;
9227 
9228         ip2dbg(("ip_input_local_options\n"));
9229 
9230         for (optval = ipoptp_first(&opts, ipha);
9231             optval != IPOPT_EOL;
9232             optval = ipoptp_next(&opts)) {
9233                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9234                 opt = opts.ipoptp_cur;
9235                 optlen = opts.ipoptp_len;
9236                 ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9237                     optval, optlen));
9238                 switch (optval) {
9239                         uint32_t off;
9240                 case IPOPT_SSRR:
9241                 case IPOPT_LSRR:
9242                         off = opt[IPOPT_OFFSET];
9243                         off--;
9244                         if (optlen < IP_ADDR_LEN ||
9245                             off > optlen - IP_ADDR_LEN) {
9246                                 /* End of source route */
9247                                 ip1dbg(("ip_input_local_options: end of SR\n"));
9248                                 break;
9249                         }
9250                         /*
9251                          * This will only happen if two consecutive entries
9252                          * in the source route contains our address or if
9253                          * it is a packet with a loose source route which
9254                          * reaches us before consuming the whole source route
9255                          */
9256                         ip1dbg(("ip_input_local_options: not end of SR\n"));
9257                         if (optval == IPOPT_SSRR) {
9258                                 goto bad_src_route;
9259                         }
9260                         /*
9261                          * Hack: instead of dropping the packet truncate the
9262                          * source route to what has been used by filling the
9263                          * rest with IPOPT_NOP.
9264                          */
9265                         opt[IPOPT_OLEN] = (uint8_t)off;
9266                         while (off < optlen) {
9267                                 opt[off++] = IPOPT_NOP;
9268                         }
9269                         break;
9270                 case IPOPT_RR:
9271                         off = opt[IPOPT_OFFSET];
9272                         off--;
9273                         if (optlen < IP_ADDR_LEN ||
9274                             off > optlen - IP_ADDR_LEN) {
9275                                 /* No more room - ignore */
9276                                 ip1dbg((
9277                                     "ip_input_local_options: end of RR\n"));
9278                                 break;
9279                         }
9280                         /* Pick a reasonable address on the outbound if */
9281                         if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9282                             INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9283                             NULL) != 0) {
9284                                 /* No source! Shouldn't happen */
9285                                 ifaddr = INADDR_ANY;
9286                         }
9287                         bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9288                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9289                         break;
9290                 case IPOPT_TS:
9291                         /* Insert timestamp if there is romm */
9292                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9293                         case IPOPT_TS_TSONLY:
9294                                 off = IPOPT_TS_TIMELEN;
9295                                 break;
9296                         case IPOPT_TS_PRESPEC:
9297                         case IPOPT_TS_PRESPEC_RFC791:
9298                                 /* Verify that the address matched */
9299                                 off = opt[IPOPT_OFFSET] - 1;
9300                                 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9301                                 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9302                                         /* Not for us */
9303                                         break;
9304                                 }
9305                                 /* FALLTHRU */
9306                         case IPOPT_TS_TSANDADDR:
9307                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9308                                 break;
9309                         default:
9310                                 /*
9311                                  * ip_*put_options should have already
9312                                  * dropped this packet.
9313                                  */
9314                                 cmn_err(CE_PANIC, "ip_input_local_options: "
9315                                     "unknown IT - bug in ip_input_options?\n");
9316                                 return (B_TRUE);        /* Keep "lint" happy */
9317                         }
9318                         if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9319                                 /* Increase overflow counter */
9320                                 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9321                                 opt[IPOPT_POS_OV_FLG] =
9322                                     (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9323                                     (off << 4));
9324                                 break;
9325                         }
9326                         off = opt[IPOPT_OFFSET] - 1;
9327                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9328                         case IPOPT_TS_PRESPEC:
9329                         case IPOPT_TS_PRESPEC_RFC791:
9330                         case IPOPT_TS_TSANDADDR:
9331                                 /* Pick a reasonable addr on the outbound if */
9332                                 if (ip_select_source_v4(ill, INADDR_ANY,
9333                                     ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9334                                     &ifaddr, NULL, NULL) != 0) {
9335                                         /* No source! Shouldn't happen */
9336                                         ifaddr = INADDR_ANY;
9337                                 }
9338                                 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9339                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9340                                 /* FALLTHRU */
9341                         case IPOPT_TS_TSONLY:
9342                                 off = opt[IPOPT_OFFSET] - 1;
9343                                 /* Compute # of milliseconds since midnight */
9344                                 gethrestime(&now);
9345                                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9346                                     now.tv_nsec / (NANOSEC / MILLISEC);
9347                                 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9348                                 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9349                                 break;
9350                         }
9351                         break;
9352                 }
9353         }
9354         return (B_TRUE);
9355 
9356 bad_src_route:
9357         /* make sure we clear any indication of a hardware checksum */
9358         DB_CKSUMFLAGS(mp) = 0;
9359         ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9360         icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9361         return (B_FALSE);
9362 
9363 }
9364 
9365 /*
9366  * Process IP options in an inbound packet.  Always returns the nexthop.
9367  * Normally this is the passed in nexthop, but if there is an option
9368  * that effects the nexthop (such as a source route) that will be returned.
9369  * Sets *errorp if there is an error, in which case an ICMP error has been sent
9370  * and mp freed.
9371  */
9372 ipaddr_t
9373 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9374     ip_recv_attr_t *ira, int *errorp)
9375 {
9376         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
9377         ipoptp_t        opts;
9378         uchar_t         *opt;
9379         uint8_t         optval;
9380         uint8_t         optlen;
9381         intptr_t        code = 0;
9382         ire_t           *ire;
9383 
9384         ip2dbg(("ip_input_options\n"));
9385         *errorp = 0;
9386         for (optval = ipoptp_first(&opts, ipha);
9387             optval != IPOPT_EOL;
9388             optval = ipoptp_next(&opts)) {
9389                 opt = opts.ipoptp_cur;
9390                 optlen = opts.ipoptp_len;
9391                 ip2dbg(("ip_input_options: opt %d, len %d\n",
9392                     optval, optlen));
9393                 /*
9394                  * Note: we need to verify the checksum before we
9395                  * modify anything thus this routine only extracts the next
9396                  * hop dst from any source route.
9397                  */
9398                 switch (optval) {
9399                         uint32_t off;
9400                 case IPOPT_SSRR:
9401                 case IPOPT_LSRR:
9402                         if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9403                                 if (optval == IPOPT_SSRR) {
9404                                         ip1dbg(("ip_input_options: not next"
9405                                             " strict source route 0x%x\n",
9406                                             ntohl(dst)));
9407                                         code = (char *)&ipha->ipha_dst -
9408                                             (char *)ipha;
9409                                         goto param_prob; /* RouterReq's */
9410                                 }
9411                                 ip2dbg(("ip_input_options: "
9412                                     "not next source route 0x%x\n",
9413                                     ntohl(dst)));
9414                                 break;
9415                         }
9416 
9417                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9418                                 ip1dbg((
9419                                     "ip_input_options: bad option offset\n"));
9420                                 code = (char *)&opt[IPOPT_OLEN] -
9421                                     (char *)ipha;
9422                                 goto param_prob;
9423                         }
9424                         off = opt[IPOPT_OFFSET];
9425                         off--;
9426                 redo_srr:
9427                         if (optlen < IP_ADDR_LEN ||
9428                             off > optlen - IP_ADDR_LEN) {
9429                                 /* End of source route */
9430                                 ip1dbg(("ip_input_options: end of SR\n"));
9431                                 break;
9432                         }
9433                         bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9434                         ip1dbg(("ip_input_options: next hop 0x%x\n",
9435                             ntohl(dst)));
9436 
9437                         /*
9438                          * Check if our address is present more than
9439                          * once as consecutive hops in source route.
9440                          * XXX verify per-interface ip_forwarding
9441                          * for source route?
9442                          */
9443                         if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9444                                 off += IP_ADDR_LEN;
9445                                 goto redo_srr;
9446                         }
9447 
9448                         if (dst == htonl(INADDR_LOOPBACK)) {
9449                                 ip1dbg(("ip_input_options: loopback addr in "
9450                                     "source route!\n"));
9451                                 goto bad_src_route;
9452                         }
9453                         /*
9454                          * For strict: verify that dst is directly
9455                          * reachable.
9456                          */
9457                         if (optval == IPOPT_SSRR) {
9458                                 ire = ire_ftable_lookup_v4(dst, 0, 0,
9459                                     IRE_INTERFACE, NULL, ALL_ZONES,
9460                                     ira->ira_tsl,
9461                                     MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9462                                     NULL);
9463                                 if (ire == NULL) {
9464                                         ip1dbg(("ip_input_options: SSRR not "
9465                                             "directly reachable: 0x%x\n",
9466                                             ntohl(dst)));
9467                                         goto bad_src_route;
9468                                 }
9469                                 ire_refrele(ire);
9470                         }
9471                         /*
9472                          * Defer update of the offset and the record route
9473                          * until the packet is forwarded.
9474                          */
9475                         break;
9476                 case IPOPT_RR:
9477                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9478                                 ip1dbg((
9479                                     "ip_input_options: bad option offset\n"));
9480                                 code = (char *)&opt[IPOPT_OLEN] -
9481                                     (char *)ipha;
9482                                 goto param_prob;
9483                         }
9484                         break;
9485                 case IPOPT_TS:
9486                         /*
9487                          * Verify that length >= 5 and that there is either
9488                          * room for another timestamp or that the overflow
9489                          * counter is not maxed out.
9490                          */
9491                         code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9492                         if (optlen < IPOPT_MINLEN_IT) {
9493                                 goto param_prob;
9494                         }
9495                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9496                                 ip1dbg((
9497                                     "ip_input_options: bad option offset\n"));
9498                                 code = (char *)&opt[IPOPT_OFFSET] -
9499                                     (char *)ipha;
9500                                 goto param_prob;
9501                         }
9502                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9503                         case IPOPT_TS_TSONLY:
9504                                 off = IPOPT_TS_TIMELEN;
9505                                 break;
9506                         case IPOPT_TS_TSANDADDR:
9507                         case IPOPT_TS_PRESPEC:
9508                         case IPOPT_TS_PRESPEC_RFC791:
9509                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9510                                 break;
9511                         default:
9512                                 code = (char *)&opt[IPOPT_POS_OV_FLG] -
9513                                     (char *)ipha;
9514                                 goto param_prob;
9515                         }
9516                         if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9517                             (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9518                                 /*
9519                                  * No room and the overflow counter is 15
9520                                  * already.
9521                                  */
9522                                 goto param_prob;
9523                         }
9524                         break;
9525                 }
9526         }
9527 
9528         if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9529                 return (dst);
9530         }
9531 
9532         ip1dbg(("ip_input_options: error processing IP options."));
9533         code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
9534 
9535 param_prob:
9536         /* make sure we clear any indication of a hardware checksum */
9537         DB_CKSUMFLAGS(mp) = 0;
9538         ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9539         icmp_param_problem(mp, (uint8_t)code, ira);
9540         *errorp = -1;
9541         return (dst);
9542 
9543 bad_src_route:
9544         /* make sure we clear any indication of a hardware checksum */
9545         DB_CKSUMFLAGS(mp) = 0;
9546         ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9547         icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9548         *errorp = -1;
9549         return (dst);
9550 }
9551 
9552 /*
9553  * IP & ICMP info in >=14 msg's ...
9554  *  - ip fixed part (mib2_ip_t)
9555  *  - icmp fixed part (mib2_icmp_t)
9556  *  - ipAddrEntryTable (ip 20)          all IPv4 ipifs
9557  *  - ipRouteEntryTable (ip 21)         all IPv4 IREs
9558  *  - ipNetToMediaEntryTable (ip 22)    all IPv4 Neighbor Cache entries
9559  *  - ipRouteAttributeTable (ip 102)    labeled routes
9560  *  - ip multicast membership (ip_member_t)
9561  *  - ip multicast source filtering (ip_grpsrc_t)
9562  *  - igmp fixed part (struct igmpstat)
9563  *  - multicast routing stats (struct mrtstat)
9564  *  - multicast routing vifs (array of struct vifctl)
9565  *  - multicast routing routes (array of struct mfcctl)
9566  *  - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9567  *                                      One per ill plus one generic
9568  *  - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9569  *                                      One per ill plus one generic
9570  *  - ipv6RouteEntry                    all IPv6 IREs
9571  *  - ipv6RouteAttributeTable (ip6 102) labeled routes
9572  *  - ipv6NetToMediaEntry               all IPv6 Neighbor Cache entries
9573  *  - ipv6AddrEntry                     all IPv6 ipifs
9574  *  - ipv6 multicast membership (ipv6_member_t)
9575  *  - ipv6 multicast source filtering (ipv6_grpsrc_t)
9576  *
9577  * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
9578  * already filled in by the caller.
9579  * If legacy_req is true then MIB structures needs to be truncated to their
9580  * legacy sizes before being returned.
9581  * Return value of 0 indicates that no messages were sent and caller
9582  * should free mpctl.
9583  */
9584 int
9585 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
9586 {
9587         ip_stack_t *ipst;
9588         sctp_stack_t *sctps;
9589 
9590         if (q->q_next != NULL) {
9591                 ipst = ILLQ_TO_IPST(q);
9592         } else {
9593                 ipst = CONNQ_TO_IPST(q);
9594         }
9595         ASSERT(ipst != NULL);
9596         sctps = ipst->ips_netstack->netstack_sctp;
9597 
9598         if (mpctl == NULL || mpctl->b_cont == NULL) {
9599                 return (0);
9600         }
9601 
9602         /*
9603          * For the purposes of the (broken) packet shell use
9604          * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9605          * to make TCP and UDP appear first in the list of mib items.
9606          * TBD: We could expand this and use it in netstat so that
9607          * the kernel doesn't have to produce large tables (connections,
9608          * routes, etc) when netstat only wants the statistics or a particular
9609          * table.
9610          */
9611         if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9612                 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9613                         return (1);
9614                 }
9615         }
9616 
9617         if (level != MIB2_TCP) {
9618                 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9619                         return (1);
9620                 }
9621         }
9622 
9623         if (level != MIB2_UDP) {
9624                 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9625                         return (1);
9626                 }
9627         }
9628 
9629         if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9630             ipst, legacy_req)) == NULL) {
9631                 return (1);
9632         }
9633 
9634         if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
9635             legacy_req)) == NULL) {
9636                 return (1);
9637         }
9638 
9639         if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9640                 return (1);
9641         }
9642 
9643         if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9644                 return (1);
9645         }
9646 
9647         if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9648                 return (1);
9649         }
9650 
9651         if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9652                 return (1);
9653         }
9654 
9655         if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
9656             legacy_req)) == NULL) {
9657                 return (1);
9658         }
9659 
9660         if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
9661             legacy_req)) == NULL) {
9662                 return (1);
9663         }
9664 
9665         if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9666                 return (1);
9667         }
9668 
9669         if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9670                 return (1);
9671         }
9672 
9673         if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9674                 return (1);
9675         }
9676 
9677         if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9678                 return (1);
9679         }
9680 
9681         if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9682                 return (1);
9683         }
9684 
9685         if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9686                 return (1);
9687         }
9688 
9689         mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9690         if (mpctl == NULL)
9691                 return (1);
9692 
9693         mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9694         if (mpctl == NULL)
9695                 return (1);
9696 
9697         if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9698                 return (1);
9699         }
9700         if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9701                 return (1);
9702         }
9703         freemsg(mpctl);
9704         return (1);
9705 }
9706 
9707 /* Get global (legacy) IPv4 statistics */
9708 static mblk_t *
9709 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9710     ip_stack_t *ipst, boolean_t legacy_req)
9711 {
9712         mib2_ip_t               old_ip_mib;
9713         struct opthdr           *optp;
9714         mblk_t                  *mp2ctl;
9715         mib2_ipAddrEntry_t      mae;
9716 
9717         /*
9718          * make a copy of the original message
9719          */
9720         mp2ctl = copymsg(mpctl);
9721 
9722         /* fixed length IP structure... */
9723         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9724         optp->level = MIB2_IP;
9725         optp->name = 0;
9726         SET_MIB(old_ip_mib.ipForwarding,
9727             (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9728         SET_MIB(old_ip_mib.ipDefaultTTL,
9729             (uint32_t)ipst->ips_ip_def_ttl);
9730         SET_MIB(old_ip_mib.ipReasmTimeout,
9731             ipst->ips_ip_reassembly_timeout);
9732         SET_MIB(old_ip_mib.ipAddrEntrySize,
9733             (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9734             sizeof (mib2_ipAddrEntry_t));
9735         SET_MIB(old_ip_mib.ipRouteEntrySize,
9736             sizeof (mib2_ipRouteEntry_t));
9737         SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9738             sizeof (mib2_ipNetToMediaEntry_t));
9739         SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9740         SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9741         SET_MIB(old_ip_mib.ipRouteAttributeSize,
9742             sizeof (mib2_ipAttributeEntry_t));
9743         SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9744         SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
9745 
9746         /*
9747          * Grab the statistics from the new IP MIB
9748          */
9749         SET_MIB(old_ip_mib.ipInReceives,
9750             (uint32_t)ipmib->ipIfStatsHCInReceives);
9751         SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9752         SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9753         SET_MIB(old_ip_mib.ipForwDatagrams,
9754             (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9755         SET_MIB(old_ip_mib.ipInUnknownProtos,
9756             ipmib->ipIfStatsInUnknownProtos);
9757         SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9758         SET_MIB(old_ip_mib.ipInDelivers,
9759             (uint32_t)ipmib->ipIfStatsHCInDelivers);
9760         SET_MIB(old_ip_mib.ipOutRequests,
9761             (uint32_t)ipmib->ipIfStatsHCOutRequests);
9762         SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9763         SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9764         SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9765         SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9766         SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9767         SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9768         SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9769         SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
9770 
9771         /* ipRoutingDiscards is not being used */
9772         SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9773         SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9774         SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9775         SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9776         SET_MIB(old_ip_mib.ipReasmDuplicates,
9777             ipmib->ipIfStatsReasmDuplicates);
9778         SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9779         SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9780         SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9781         SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9782         SET_MIB(old_ip_mib.rawipInOverflows,
9783             ipmib->rawipIfStatsInOverflows);
9784 
9785         SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9786         SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9787         SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9788         SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9789         SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9790             ipmib->ipIfStatsOutSwitchIPVersion);
9791 
9792         if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9793             (int)sizeof (old_ip_mib))) {
9794                 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9795                     (uint_t)sizeof (old_ip_mib)));
9796         }
9797 
9798         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9799         ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9800             (int)optp->level, (int)optp->name, (int)optp->len));
9801         qreply(q, mpctl);
9802         return (mp2ctl);
9803 }
9804 
9805 /* Per interface IPv4 statistics */
9806 static mblk_t *
9807 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9808     boolean_t legacy_req)
9809 {
9810         struct opthdr           *optp;
9811         mblk_t                  *mp2ctl;
9812         ill_t                   *ill;
9813         ill_walk_context_t      ctx;
9814         mblk_t                  *mp_tail = NULL;
9815         mib2_ipIfStatsEntry_t   global_ip_mib;
9816         mib2_ipAddrEntry_t      mae;
9817 
9818         /*
9819          * Make a copy of the original message
9820          */
9821         mp2ctl = copymsg(mpctl);
9822 
9823         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9824         optp->level = MIB2_IP;
9825         optp->name = MIB2_IP_TRAFFIC_STATS;
9826         /* Include "unknown interface" ip_mib */
9827         ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9828         ipst->ips_ip_mib.ipIfStatsIfIndex =
9829             MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9830         SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9831             (ipst->ips_ip_forwarding ? 1 : 2));
9832         SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9833             (uint32_t)ipst->ips_ip_def_ttl);
9834         SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9835             sizeof (mib2_ipIfStatsEntry_t));
9836         SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9837             sizeof (mib2_ipAddrEntry_t));
9838         SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9839             sizeof (mib2_ipRouteEntry_t));
9840         SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9841             sizeof (mib2_ipNetToMediaEntry_t));
9842         SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9843             sizeof (ip_member_t));
9844         SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9845             sizeof (ip_grpsrc_t));
9846 
9847         bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
9848 
9849         if (legacy_req) {
9850                 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
9851                     LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
9852         }
9853 
9854         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9855             (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
9856                 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9857                     "failed to allocate %u bytes\n",
9858                     (uint_t)sizeof (global_ip_mib)));
9859         }
9860 
9861         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9862         ill = ILL_START_WALK_V4(&ctx, ipst);
9863         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9864                 ill->ill_ip_mib->ipIfStatsIfIndex =
9865                     ill->ill_phyint->phyint_ifindex;
9866                 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9867                     (ipst->ips_ip_forwarding ? 1 : 2));
9868                 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9869                     (uint32_t)ipst->ips_ip_def_ttl);
9870 
9871                 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9872                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9873                     (char *)ill->ill_ip_mib,
9874                     (int)sizeof (*ill->ill_ip_mib))) {
9875                         ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9876                             "failed to allocate %u bytes\n",
9877                             (uint_t)sizeof (*ill->ill_ip_mib)));
9878                 }
9879         }
9880         rw_exit(&ipst->ips_ill_g_lock);
9881 
9882         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9883         ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9884             "level %d, name %d, len %d\n",
9885             (int)optp->level, (int)optp->name, (int)optp->len));
9886         qreply(q, mpctl);
9887 
9888         if (mp2ctl == NULL)
9889                 return (NULL);
9890 
9891         return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
9892             legacy_req));
9893 }
9894 
9895 /* Global IPv4 ICMP statistics */
9896 static mblk_t *
9897 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9898 {
9899         struct opthdr           *optp;
9900         mblk_t                  *mp2ctl;
9901 
9902         /*
9903          * Make a copy of the original message
9904          */
9905         mp2ctl = copymsg(mpctl);
9906 
9907         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9908         optp->level = MIB2_ICMP;
9909         optp->name = 0;
9910         if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9911             (int)sizeof (ipst->ips_icmp_mib))) {
9912                 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9913                     (uint_t)sizeof (ipst->ips_icmp_mib)));
9914         }
9915         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9916         ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9917             (int)optp->level, (int)optp->name, (int)optp->len));
9918         qreply(q, mpctl);
9919         return (mp2ctl);
9920 }
9921 
9922 /* Global IPv4 IGMP statistics */
9923 static mblk_t *
9924 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9925 {
9926         struct opthdr           *optp;
9927         mblk_t                  *mp2ctl;
9928 
9929         /*
9930          * make a copy of the original message
9931          */
9932         mp2ctl = copymsg(mpctl);
9933 
9934         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9935         optp->level = EXPER_IGMP;
9936         optp->name = 0;
9937         if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9938             (int)sizeof (ipst->ips_igmpstat))) {
9939                 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9940                     (uint_t)sizeof (ipst->ips_igmpstat)));
9941         }
9942         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9943         ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9944             (int)optp->level, (int)optp->name, (int)optp->len));
9945         qreply(q, mpctl);
9946         return (mp2ctl);
9947 }
9948 
9949 /* Global IPv4 Multicast Routing statistics */
9950 static mblk_t *
9951 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9952 {
9953         struct opthdr           *optp;
9954         mblk_t                  *mp2ctl;
9955 
9956         /*
9957          * make a copy of the original message
9958          */
9959         mp2ctl = copymsg(mpctl);
9960 
9961         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9962         optp->level = EXPER_DVMRP;
9963         optp->name = 0;
9964         if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
9965                 ip0dbg(("ip_mroute_stats: failed\n"));
9966         }
9967         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9968         ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
9969             (int)optp->level, (int)optp->name, (int)optp->len));
9970         qreply(q, mpctl);
9971         return (mp2ctl);
9972 }
9973 
9974 /* IPv4 address information */
9975 static mblk_t *
9976 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9977     boolean_t legacy_req)
9978 {
9979         struct opthdr           *optp;
9980         mblk_t                  *mp2ctl;
9981         mblk_t                  *mp_tail = NULL;
9982         ill_t                   *ill;
9983         ipif_t                  *ipif;
9984         uint_t                  bitval;
9985         mib2_ipAddrEntry_t      mae;
9986         size_t                  mae_size;
9987         zoneid_t                zoneid;
9988         ill_walk_context_t      ctx;
9989 
9990         /*
9991          * make a copy of the original message
9992          */
9993         mp2ctl = copymsg(mpctl);
9994 
9995         mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9996             sizeof (mib2_ipAddrEntry_t);
9997 
9998         /* ipAddrEntryTable */
9999 
10000         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10001         optp->level = MIB2_IP;
10002         optp->name = MIB2_IP_ADDR;
10003         zoneid = Q_TO_CONN(q)->conn_zoneid;
10004 
10005         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10006         ill = ILL_START_WALK_V4(&ctx, ipst);
10007         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10008                 for (ipif = ill->ill_ipif; ipif != NULL;
10009                     ipif = ipif->ipif_next) {
10010                         if (ipif->ipif_zoneid != zoneid &&
10011                             ipif->ipif_zoneid != ALL_ZONES)
10012                                 continue;
10013                         /* Sum of count from dead IRE_LO* and our current */
10014                         mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10015                         if (ipif->ipif_ire_local != NULL) {
10016                                 mae.ipAdEntInfo.ae_ibcnt +=
10017                                     ipif->ipif_ire_local->ire_ib_pkt_count;
10018                         }
10019                         mae.ipAdEntInfo.ae_obcnt = 0;
10020                         mae.ipAdEntInfo.ae_focnt = 0;
10021 
10022                         ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
10023                             OCTET_LENGTH);
10024                         mae.ipAdEntIfIndex.o_length =
10025                             mi_strlen(mae.ipAdEntIfIndex.o_bytes);
10026                         mae.ipAdEntAddr = ipif->ipif_lcl_addr;
10027                         mae.ipAdEntNetMask = ipif->ipif_net_mask;
10028                         mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
10029                         mae.ipAdEntInfo.ae_subnet_len =
10030                             ip_mask_to_plen(ipif->ipif_net_mask);
10031                         mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
10032                         for (bitval = 1;
10033                             bitval &&
10034                             !(bitval & ipif->ipif_brd_addr);
10035                             bitval <<= 1)
10036                                 noop;
10037                         mae.ipAdEntBcastAddr = bitval;
10038                         mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10039                         mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10040                         mae.ipAdEntInfo.ae_metric  = ipif->ipif_ill->ill_metric;
10041                         mae.ipAdEntInfo.ae_broadcast_addr =
10042                             ipif->ipif_brd_addr;
10043                         mae.ipAdEntInfo.ae_pp_dst_addr =
10044                             ipif->ipif_pp_dst_addr;
10045                         mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10046                             ill->ill_flags | ill->ill_phyint->phyint_flags;
10047                         mae.ipAdEntRetransmitTime =
10048                             ill->ill_reachable_retrans_time;
10049 
10050                         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10051                             (char *)&mae, (int)mae_size)) {
10052                                 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
10053                                     "allocate %u bytes\n", (uint_t)mae_size));
10054                         }
10055                 }
10056         }
10057         rw_exit(&ipst->ips_ill_g_lock);
10058 
10059         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10060         ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10061             (int)optp->level, (int)optp->name, (int)optp->len));
10062         qreply(q, mpctl);
10063         return (mp2ctl);
10064 }
10065 
10066 /* IPv6 address information */
10067 static mblk_t *
10068 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10069     boolean_t legacy_req)
10070 {
10071         struct opthdr           *optp;
10072         mblk_t                  *mp2ctl;
10073         mblk_t                  *mp_tail = NULL;
10074         ill_t                   *ill;
10075         ipif_t                  *ipif;
10076         mib2_ipv6AddrEntry_t    mae6;
10077         size_t                  mae6_size;
10078         zoneid_t                zoneid;
10079         ill_walk_context_t      ctx;
10080 
10081         /*
10082          * make a copy of the original message
10083          */
10084         mp2ctl = copymsg(mpctl);
10085 
10086         mae6_size = (legacy_req) ?
10087             LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
10088             sizeof (mib2_ipv6AddrEntry_t);
10089 
10090         /* ipv6AddrEntryTable */
10091 
10092         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10093         optp->level = MIB2_IP6;
10094         optp->name = MIB2_IP6_ADDR;
10095         zoneid = Q_TO_CONN(q)->conn_zoneid;
10096 
10097         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10098         ill = ILL_START_WALK_V6(&ctx, ipst);
10099         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10100                 for (ipif = ill->ill_ipif; ipif != NULL;
10101                     ipif = ipif->ipif_next) {
10102                         if (ipif->ipif_zoneid != zoneid &&
10103                             ipif->ipif_zoneid != ALL_ZONES)
10104                                 continue;
10105                         /* Sum of count from dead IRE_LO* and our current */
10106                         mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10107                         if (ipif->ipif_ire_local != NULL) {
10108                                 mae6.ipv6AddrInfo.ae_ibcnt +=
10109                                     ipif->ipif_ire_local->ire_ib_pkt_count;
10110                         }
10111                         mae6.ipv6AddrInfo.ae_obcnt = 0;
10112                         mae6.ipv6AddrInfo.ae_focnt = 0;
10113 
10114                         ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10115                             OCTET_LENGTH);
10116                         mae6.ipv6AddrIfIndex.o_length =
10117                             mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10118                         mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10119                         mae6.ipv6AddrPfxLength =
10120                             ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10121                         mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10122                         mae6.ipv6AddrInfo.ae_subnet_len =
10123                             mae6.ipv6AddrPfxLength;
10124                         mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
10125 
10126                         /* Type: stateless(1), stateful(2), unknown(3) */
10127                         if (ipif->ipif_flags & IPIF_ADDRCONF)
10128                                 mae6.ipv6AddrType = 1;
10129                         else
10130                                 mae6.ipv6AddrType = 2;
10131                         /* Anycast: true(1), false(2) */
10132                         if (ipif->ipif_flags & IPIF_ANYCAST)
10133                                 mae6.ipv6AddrAnycastFlag = 1;
10134                         else
10135                                 mae6.ipv6AddrAnycastFlag = 2;
10136 
10137                         /*
10138                          * Address status: preferred(1), deprecated(2),
10139                          * invalid(3), inaccessible(4), unknown(5)
10140                          */
10141                         if (ipif->ipif_flags & IPIF_NOLOCAL)
10142                                 mae6.ipv6AddrStatus = 3;
10143                         else if (ipif->ipif_flags & IPIF_DEPRECATED)
10144                                 mae6.ipv6AddrStatus = 2;
10145                         else
10146                                 mae6.ipv6AddrStatus = 1;
10147                         mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10148                         mae6.ipv6AddrInfo.ae_metric  =
10149                             ipif->ipif_ill->ill_metric;
10150                         mae6.ipv6AddrInfo.ae_pp_dst_addr =
10151                             ipif->ipif_v6pp_dst_addr;
10152                         mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10153                             ill->ill_flags | ill->ill_phyint->phyint_flags;
10154                         mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10155                         mae6.ipv6AddrIdentifier = ill->ill_token;
10156                         mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10157                         mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10158                         mae6.ipv6AddrRetransmitTime =
10159                             ill->ill_reachable_retrans_time;
10160                         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10161                             (char *)&mae6, (int)mae6_size)) {
10162                                 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10163                                     "allocate %u bytes\n",
10164                                     (uint_t)mae6_size));
10165                         }
10166                 }
10167         }
10168         rw_exit(&ipst->ips_ill_g_lock);
10169 
10170         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10171         ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10172             (int)optp->level, (int)optp->name, (int)optp->len));
10173         qreply(q, mpctl);
10174         return (mp2ctl);
10175 }
10176 
10177 /* IPv4 multicast group membership. */
10178 static mblk_t *
10179 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10180 {
10181         struct opthdr           *optp;
10182         mblk_t                  *mp2ctl;
10183         ill_t                   *ill;
10184         ipif_t                  *ipif;
10185         ilm_t                   *ilm;
10186         ip_member_t             ipm;
10187         mblk_t                  *mp_tail = NULL;
10188         ill_walk_context_t      ctx;
10189         zoneid_t                zoneid;
10190 
10191         /*
10192          * make a copy of the original message
10193          */
10194         mp2ctl = copymsg(mpctl);
10195         zoneid = Q_TO_CONN(q)->conn_zoneid;
10196 
10197         /* ipGroupMember table */
10198         optp = (struct opthdr *)&mpctl->b_rptr[
10199             sizeof (struct T_optmgmt_ack)];
10200         optp->level = MIB2_IP;
10201         optp->name = EXPER_IP_GROUP_MEMBERSHIP;
10202 
10203         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10204         ill = ILL_START_WALK_V4(&ctx, ipst);
10205         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10206                 /* Make sure the ill isn't going away. */
10207                 if (!ill_check_and_refhold(ill))
10208                         continue;
10209                 rw_exit(&ipst->ips_ill_g_lock);
10210                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10211                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10212                         if (ilm->ilm_zoneid != zoneid &&
10213                             ilm->ilm_zoneid != ALL_ZONES)
10214                                 continue;
10215 
10216                         /* Is there an ipif for ilm_ifaddr? */
10217                         for (ipif = ill->ill_ipif; ipif != NULL;
10218                             ipif = ipif->ipif_next) {
10219                                 if (!IPIF_IS_CONDEMNED(ipif) &&
10220                                     ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10221                                     ilm->ilm_ifaddr != INADDR_ANY)
10222                                         break;
10223                         }
10224                         if (ipif != NULL) {
10225                                 ipif_get_name(ipif,
10226                                     ipm.ipGroupMemberIfIndex.o_bytes,
10227                                     OCTET_LENGTH);
10228                         } else {
10229                                 ill_get_name(ill,
10230                                     ipm.ipGroupMemberIfIndex.o_bytes,
10231                                     OCTET_LENGTH);
10232                         }
10233                         ipm.ipGroupMemberIfIndex.o_length =
10234                             mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
10235 
10236                         ipm.ipGroupMemberAddress = ilm->ilm_addr;
10237                         ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10238                         ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10239                         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10240                             (char *)&ipm, (int)sizeof (ipm))) {
10241                                 ip1dbg(("ip_snmp_get_mib2_ip_group: "
10242                                     "failed to allocate %u bytes\n",
10243                                     (uint_t)sizeof (ipm)));
10244                         }
10245                 }
10246                 rw_exit(&ill->ill_mcast_lock);
10247                 ill_refrele(ill);
10248                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10249         }
10250         rw_exit(&ipst->ips_ill_g_lock);
10251         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10252         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10253             (int)optp->level, (int)optp->name, (int)optp->len));
10254         qreply(q, mpctl);
10255         return (mp2ctl);
10256 }
10257 
10258 /* IPv6 multicast group membership. */
10259 static mblk_t *
10260 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10261 {
10262         struct opthdr           *optp;
10263         mblk_t                  *mp2ctl;
10264         ill_t                   *ill;
10265         ilm_t                   *ilm;
10266         ipv6_member_t           ipm6;
10267         mblk_t                  *mp_tail = NULL;
10268         ill_walk_context_t      ctx;
10269         zoneid_t                zoneid;
10270 
10271         /*
10272          * make a copy of the original message
10273          */
10274         mp2ctl = copymsg(mpctl);
10275         zoneid = Q_TO_CONN(q)->conn_zoneid;
10276 
10277         /* ip6GroupMember table */
10278         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10279         optp->level = MIB2_IP6;
10280         optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
10281 
10282         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10283         ill = ILL_START_WALK_V6(&ctx, ipst);
10284         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10285                 /* Make sure the ill isn't going away. */
10286                 if (!ill_check_and_refhold(ill))
10287                         continue;
10288                 rw_exit(&ipst->ips_ill_g_lock);
10289                 /*
10290                  * Normally we don't have any members on under IPMP interfaces.
10291                  * We report them as a debugging aid.
10292                  */
10293                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10294                 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10295                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10296                         if (ilm->ilm_zoneid != zoneid &&
10297                             ilm->ilm_zoneid != ALL_ZONES)
10298                                 continue;       /* not this zone */
10299                         ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10300                         ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10301                         ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10302                         if (!snmp_append_data2(mpctl->b_cont,
10303                             &mp_tail,
10304                             (char *)&ipm6, (int)sizeof (ipm6))) {
10305                                 ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10306                                     "failed to allocate %u bytes\n",
10307                                     (uint_t)sizeof (ipm6)));
10308                         }
10309                 }
10310                 rw_exit(&ill->ill_mcast_lock);
10311                 ill_refrele(ill);
10312                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10313         }
10314         rw_exit(&ipst->ips_ill_g_lock);
10315 
10316         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10317         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10318             (int)optp->level, (int)optp->name, (int)optp->len));
10319         qreply(q, mpctl);
10320         return (mp2ctl);
10321 }
10322 
10323 /* IP multicast filtered sources */
10324 static mblk_t *
10325 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10326 {
10327         struct opthdr           *optp;
10328         mblk_t                  *mp2ctl;
10329         ill_t                   *ill;
10330         ipif_t                  *ipif;
10331         ilm_t                   *ilm;
10332         ip_grpsrc_t             ips;
10333         mblk_t                  *mp_tail = NULL;
10334         ill_walk_context_t      ctx;
10335         zoneid_t                zoneid;
10336         int                     i;
10337         slist_t                 *sl;
10338 
10339         /*
10340          * make a copy of the original message
10341          */
10342         mp2ctl = copymsg(mpctl);
10343         zoneid = Q_TO_CONN(q)->conn_zoneid;
10344 
10345         /* ipGroupSource table */
10346         optp = (struct opthdr *)&mpctl->b_rptr[
10347             sizeof (struct T_optmgmt_ack)];
10348         optp->level = MIB2_IP;
10349         optp->name = EXPER_IP_GROUP_SOURCES;
10350 
10351         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10352         ill = ILL_START_WALK_V4(&ctx, ipst);
10353         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10354                 /* Make sure the ill isn't going away. */
10355                 if (!ill_check_and_refhold(ill))
10356                         continue;
10357                 rw_exit(&ipst->ips_ill_g_lock);
10358                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10359                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10360                         sl = ilm->ilm_filter;
10361                         if (ilm->ilm_zoneid != zoneid &&
10362                             ilm->ilm_zoneid != ALL_ZONES)
10363                                 continue;
10364                         if (SLIST_IS_EMPTY(sl))
10365                                 continue;
10366 
10367                         /* Is there an ipif for ilm_ifaddr? */
10368                         for (ipif = ill->ill_ipif; ipif != NULL;
10369                             ipif = ipif->ipif_next) {
10370                                 if (!IPIF_IS_CONDEMNED(ipif) &&
10371                                     ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10372                                     ilm->ilm_ifaddr != INADDR_ANY)
10373                                         break;
10374                         }
10375                         if (ipif != NULL) {
10376                                 ipif_get_name(ipif,
10377                                     ips.ipGroupSourceIfIndex.o_bytes,
10378                                     OCTET_LENGTH);
10379                         } else {
10380                                 ill_get_name(ill,
10381                                     ips.ipGroupSourceIfIndex.o_bytes,
10382                                     OCTET_LENGTH);
10383                         }
10384                         ips.ipGroupSourceIfIndex.o_length =
10385                             mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
10386 
10387                         ips.ipGroupSourceGroup = ilm->ilm_addr;
10388                         for (i = 0; i < sl->sl_numsrc; i++) {
10389                                 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10390                                         continue;
10391                                 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10392                                     ips.ipGroupSourceAddress);
10393                                 if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10394                                     (char *)&ips, (int)sizeof (ips)) == 0) {
10395                                         ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10396                                             " failed to allocate %u bytes\n",
10397                                             (uint_t)sizeof (ips)));
10398                                 }
10399                         }
10400                 }
10401                 rw_exit(&ill->ill_mcast_lock);
10402                 ill_refrele(ill);
10403                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10404         }
10405         rw_exit(&ipst->ips_ill_g_lock);
10406         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10407         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10408             (int)optp->level, (int)optp->name, (int)optp->len));
10409         qreply(q, mpctl);
10410         return (mp2ctl);
10411 }
10412 
10413 /* IPv6 multicast filtered sources. */
10414 static mblk_t *
10415 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10416 {
10417         struct opthdr           *optp;
10418         mblk_t                  *mp2ctl;
10419         ill_t                   *ill;
10420         ilm_t                   *ilm;
10421         ipv6_grpsrc_t           ips6;
10422         mblk_t                  *mp_tail = NULL;
10423         ill_walk_context_t      ctx;
10424         zoneid_t                zoneid;
10425         int                     i;
10426         slist_t                 *sl;
10427 
10428         /*
10429          * make a copy of the original message
10430          */
10431         mp2ctl = copymsg(mpctl);
10432         zoneid = Q_TO_CONN(q)->conn_zoneid;
10433 
10434         /* ip6GroupMember table */
10435         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10436         optp->level = MIB2_IP6;
10437         optp->name = EXPER_IP6_GROUP_SOURCES;
10438 
10439         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10440         ill = ILL_START_WALK_V6(&ctx, ipst);
10441         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10442                 /* Make sure the ill isn't going away. */
10443                 if (!ill_check_and_refhold(ill))
10444                         continue;
10445                 rw_exit(&ipst->ips_ill_g_lock);
10446                 /*
10447                  * Normally we don't have any members on under IPMP interfaces.
10448                  * We report them as a debugging aid.
10449                  */
10450                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10451                 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10452                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10453                         sl = ilm->ilm_filter;
10454                         if (ilm->ilm_zoneid != zoneid &&
10455                             ilm->ilm_zoneid != ALL_ZONES)
10456                                 continue;
10457                         if (SLIST_IS_EMPTY(sl))
10458                                 continue;
10459                         ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10460                         for (i = 0; i < sl->sl_numsrc; i++) {
10461                                 ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10462                                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10463                                     (char *)&ips6, (int)sizeof (ips6))) {
10464                                         ip1dbg(("ip_snmp_get_mib2_ip6_"
10465                                             "group_src: failed to allocate "
10466                                             "%u bytes\n",
10467                                             (uint_t)sizeof (ips6)));
10468                                 }
10469                         }
10470                 }
10471                 rw_exit(&ill->ill_mcast_lock);
10472                 ill_refrele(ill);
10473                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10474         }
10475         rw_exit(&ipst->ips_ill_g_lock);
10476 
10477         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10478         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10479             (int)optp->level, (int)optp->name, (int)optp->len));
10480         qreply(q, mpctl);
10481         return (mp2ctl);
10482 }
10483 
10484 /* Multicast routing virtual interface table. */
10485 static mblk_t *
10486 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10487 {
10488         struct opthdr           *optp;
10489         mblk_t                  *mp2ctl;
10490 
10491         /*
10492          * make a copy of the original message
10493          */
10494         mp2ctl = copymsg(mpctl);
10495 
10496         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10497         optp->level = EXPER_DVMRP;
10498         optp->name = EXPER_DVMRP_VIF;
10499         if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10500                 ip0dbg(("ip_mroute_vif: failed\n"));
10501         }
10502         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10503         ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10504             (int)optp->level, (int)optp->name, (int)optp->len));
10505         qreply(q, mpctl);
10506         return (mp2ctl);
10507 }
10508 
10509 /* Multicast routing table. */
10510 static mblk_t *
10511 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10512 {
10513         struct opthdr           *optp;
10514         mblk_t                  *mp2ctl;
10515 
10516         /*
10517          * make a copy of the original message
10518          */
10519         mp2ctl = copymsg(mpctl);
10520 
10521         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10522         optp->level = EXPER_DVMRP;
10523         optp->name = EXPER_DVMRP_MRT;
10524         if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10525                 ip0dbg(("ip_mroute_mrt: failed\n"));
10526         }
10527         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10528         ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10529             (int)optp->level, (int)optp->name, (int)optp->len));
10530         qreply(q, mpctl);
10531         return (mp2ctl);
10532 }
10533 
10534 /*
10535  * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10536  * in one IRE walk.
10537  */
10538 static mblk_t *
10539 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10540     ip_stack_t *ipst)
10541 {
10542         struct opthdr   *optp;
10543         mblk_t          *mp2ctl;        /* Returned */
10544         mblk_t          *mp3ctl;        /* nettomedia */
10545         mblk_t          *mp4ctl;        /* routeattrs */
10546         iproutedata_t   ird;
10547         zoneid_t        zoneid;
10548 
10549         /*
10550          * make copies of the original message
10551          *      - mp2ctl is returned unchanged to the caller for his use
10552          *      - mpctl is sent upstream as ipRouteEntryTable
10553          *      - mp3ctl is sent upstream as ipNetToMediaEntryTable
10554          *      - mp4ctl is sent upstream as ipRouteAttributeTable
10555          */
10556         mp2ctl = copymsg(mpctl);
10557         mp3ctl = copymsg(mpctl);
10558         mp4ctl = copymsg(mpctl);
10559         if (mp3ctl == NULL || mp4ctl == NULL) {
10560                 freemsg(mp4ctl);
10561                 freemsg(mp3ctl);
10562                 freemsg(mp2ctl);
10563                 freemsg(mpctl);
10564                 return (NULL);
10565         }
10566 
10567         bzero(&ird, sizeof (ird));
10568 
10569         ird.ird_route.lp_head = mpctl->b_cont;
10570         ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10571         ird.ird_attrs.lp_head = mp4ctl->b_cont;
10572         /*
10573          * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10574          * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10575          * intended a temporary solution until a proper MIB API is provided
10576          * that provides complete filtering/caller-opt-in.
10577          */
10578         if (level == EXPER_IP_AND_ALL_IRES)
10579                 ird.ird_flags |= IRD_REPORT_ALL;
10580 
10581         zoneid = Q_TO_CONN(q)->conn_zoneid;
10582         ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
10583 
10584         /* ipRouteEntryTable in mpctl */
10585         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10586         optp->level = MIB2_IP;
10587         optp->name = MIB2_IP_ROUTE;
10588         optp->len = msgdsize(ird.ird_route.lp_head);
10589         ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10590             (int)optp->level, (int)optp->name, (int)optp->len));
10591         qreply(q, mpctl);
10592 
10593         /* ipNetToMediaEntryTable in mp3ctl */
10594         ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
10595 
10596         optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10597         optp->level = MIB2_IP;
10598         optp->name = MIB2_IP_MEDIA;
10599         optp->len = msgdsize(ird.ird_netmedia.lp_head);
10600         ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10601             (int)optp->level, (int)optp->name, (int)optp->len));
10602         qreply(q, mp3ctl);
10603 
10604         /* ipRouteAttributeTable in mp4ctl */
10605         optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10606         optp->level = MIB2_IP;
10607         optp->name = EXPER_IP_RTATTR;
10608         optp->len = msgdsize(ird.ird_attrs.lp_head);
10609         ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10610             (int)optp->level, (int)optp->name, (int)optp->len));
10611         if (optp->len == 0)
10612                 freemsg(mp4ctl);
10613         else
10614                 qreply(q, mp4ctl);
10615 
10616         return (mp2ctl);
10617 }
10618 
10619 /*
10620  * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10621  * ipv6NetToMediaEntryTable in an NDP walk.
10622  */
10623 static mblk_t *
10624 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10625     ip_stack_t *ipst)
10626 {
10627         struct opthdr   *optp;
10628         mblk_t          *mp2ctl;        /* Returned */
10629         mblk_t          *mp3ctl;        /* nettomedia */
10630         mblk_t          *mp4ctl;        /* routeattrs */
10631         iproutedata_t   ird;
10632         zoneid_t        zoneid;
10633 
10634         /*
10635          * make copies of the original message
10636          *      - mp2ctl is returned unchanged to the caller for his use
10637          *      - mpctl is sent upstream as ipv6RouteEntryTable
10638          *      - mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10639          *      - mp4ctl is sent upstream as ipv6RouteAttributeTable
10640          */
10641         mp2ctl = copymsg(mpctl);
10642         mp3ctl = copymsg(mpctl);
10643         mp4ctl = copymsg(mpctl);
10644         if (mp3ctl == NULL || mp4ctl == NULL) {
10645                 freemsg(mp4ctl);
10646                 freemsg(mp3ctl);
10647                 freemsg(mp2ctl);
10648                 freemsg(mpctl);
10649                 return (NULL);
10650         }
10651 
10652         bzero(&ird, sizeof (ird));
10653 
10654         ird.ird_route.lp_head = mpctl->b_cont;
10655         ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10656         ird.ird_attrs.lp_head = mp4ctl->b_cont;
10657         /*
10658          * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10659          * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10660          * intended a temporary solution until a proper MIB API is provided
10661          * that provides complete filtering/caller-opt-in.
10662          */
10663         if (level == EXPER_IP_AND_ALL_IRES)
10664                 ird.ird_flags |= IRD_REPORT_ALL;
10665 
10666         zoneid = Q_TO_CONN(q)->conn_zoneid;
10667         ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
10668 
10669         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10670         optp->level = MIB2_IP6;
10671         optp->name = MIB2_IP6_ROUTE;
10672         optp->len = msgdsize(ird.ird_route.lp_head);
10673         ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10674             (int)optp->level, (int)optp->name, (int)optp->len));
10675         qreply(q, mpctl);
10676 
10677         /* ipv6NetToMediaEntryTable in mp3ctl */
10678         ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
10679 
10680         optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10681         optp->level = MIB2_IP6;
10682         optp->name = MIB2_IP6_MEDIA;
10683         optp->len = msgdsize(ird.ird_netmedia.lp_head);
10684         ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10685             (int)optp->level, (int)optp->name, (int)optp->len));
10686         qreply(q, mp3ctl);
10687 
10688         /* ipv6RouteAttributeTable in mp4ctl */
10689         optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10690         optp->level = MIB2_IP6;
10691         optp->name = EXPER_IP_RTATTR;
10692         optp->len = msgdsize(ird.ird_attrs.lp_head);
10693         ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10694             (int)optp->level, (int)optp->name, (int)optp->len));
10695         if (optp->len == 0)
10696                 freemsg(mp4ctl);
10697         else
10698                 qreply(q, mp4ctl);
10699 
10700         return (mp2ctl);
10701 }
10702 
10703 /*
10704  * IPv6 mib: One per ill
10705  */
10706 static mblk_t *
10707 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10708     boolean_t legacy_req)
10709 {
10710         struct opthdr           *optp;
10711         mblk_t                  *mp2ctl;
10712         ill_t                   *ill;
10713         ill_walk_context_t      ctx;
10714         mblk_t                  *mp_tail = NULL;
10715         mib2_ipv6AddrEntry_t    mae6;
10716         mib2_ipIfStatsEntry_t   *ise;
10717         size_t                  ise_size, iae_size;
10718 
10719         /*
10720          * Make a copy of the original message
10721          */
10722         mp2ctl = copymsg(mpctl);
10723 
10724         /* fixed length IPv6 structure ... */
10725 
10726         if (legacy_req) {
10727                 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
10728                     mib2_ipIfStatsEntry_t);
10729                 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
10730         } else {
10731                 ise_size = sizeof (mib2_ipIfStatsEntry_t);
10732                 iae_size = sizeof (mib2_ipv6AddrEntry_t);
10733         }
10734 
10735         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10736         optp->level = MIB2_IP6;
10737         optp->name = 0;
10738         /* Include "unknown interface" ip6_mib */
10739         ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10740         ipst->ips_ip6_mib.ipIfStatsIfIndex =
10741             MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10742         SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10743             ipst->ips_ipv6_forwarding ? 1 : 2);
10744         SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10745             ipst->ips_ipv6_def_hops);
10746         SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10747             sizeof (mib2_ipIfStatsEntry_t));
10748         SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10749             sizeof (mib2_ipv6AddrEntry_t));
10750         SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10751             sizeof (mib2_ipv6RouteEntry_t));
10752         SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10753             sizeof (mib2_ipv6NetToMediaEntry_t));
10754         SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10755             sizeof (ipv6_member_t));
10756         SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10757             sizeof (ipv6_grpsrc_t));
10758 
10759         /*
10760          * Synchronize 64- and 32-bit counters
10761          */
10762         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10763             ipIfStatsHCInReceives);
10764         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10765             ipIfStatsHCInDelivers);
10766         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10767             ipIfStatsHCOutRequests);
10768         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10769             ipIfStatsHCOutForwDatagrams);
10770         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10771             ipIfStatsHCOutMcastPkts);
10772         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10773             ipIfStatsHCInMcastPkts);
10774 
10775         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10776             (char *)&ipst->ips_ip6_mib, (int)ise_size)) {
10777                 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10778                     (uint_t)ise_size));
10779         } else if (legacy_req) {
10780                 /* Adjust the EntrySize fields for legacy requests. */
10781                 ise =
10782                     (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
10783                 SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10784                 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10785         }
10786 
10787         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10788         ill = ILL_START_WALK_V6(&ctx, ipst);
10789         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10790                 ill->ill_ip_mib->ipIfStatsIfIndex =
10791                     ill->ill_phyint->phyint_ifindex;
10792                 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10793                     ipst->ips_ipv6_forwarding ? 1 : 2);
10794                 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10795                     ill->ill_max_hops);
10796 
10797                 /*
10798                  * Synchronize 64- and 32-bit counters
10799                  */
10800                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10801                     ipIfStatsHCInReceives);
10802                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10803                     ipIfStatsHCInDelivers);
10804                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10805                     ipIfStatsHCOutRequests);
10806                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10807                     ipIfStatsHCOutForwDatagrams);
10808                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10809                     ipIfStatsHCOutMcastPkts);
10810                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10811                     ipIfStatsHCInMcastPkts);
10812 
10813                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10814                     (char *)ill->ill_ip_mib, (int)ise_size)) {
10815                         ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10816                         "%u bytes\n", (uint_t)ise_size));
10817                 } else if (legacy_req) {
10818                         /* Adjust the EntrySize fields for legacy requests. */
10819                         ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
10820                             (int)ise_size);
10821                         SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10822                         SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10823                 }
10824         }
10825         rw_exit(&ipst->ips_ill_g_lock);
10826 
10827         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10828         ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10829             (int)optp->level, (int)optp->name, (int)optp->len));
10830         qreply(q, mpctl);
10831         return (mp2ctl);
10832 }
10833 
10834 /*
10835  * ICMPv6 mib: One per ill
10836  */
10837 static mblk_t *
10838 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10839 {
10840         struct opthdr           *optp;
10841         mblk_t                  *mp2ctl;
10842         ill_t                   *ill;
10843         ill_walk_context_t      ctx;
10844         mblk_t                  *mp_tail = NULL;
10845         /*
10846          * Make a copy of the original message
10847          */
10848         mp2ctl = copymsg(mpctl);
10849 
10850         /* fixed length ICMPv6 structure ... */
10851 
10852         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10853         optp->level = MIB2_ICMP6;
10854         optp->name = 0;
10855         /* Include "unknown interface" icmp6_mib */
10856         ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10857             MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10858         ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10859             sizeof (mib2_ipv6IfIcmpEntry_t);
10860         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10861             (char *)&ipst->ips_icmp6_mib,
10862             (int)sizeof (ipst->ips_icmp6_mib))) {
10863                 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10864                     (uint_t)sizeof (ipst->ips_icmp6_mib)));
10865         }
10866 
10867         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10868         ill = ILL_START_WALK_V6(&ctx, ipst);
10869         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10870                 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10871                     ill->ill_phyint->phyint_ifindex;
10872                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10873                     (char *)ill->ill_icmp6_mib,
10874                     (int)sizeof (*ill->ill_icmp6_mib))) {
10875                         ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10876                             "%u bytes\n",
10877                             (uint_t)sizeof (*ill->ill_icmp6_mib)));
10878                 }
10879         }
10880         rw_exit(&ipst->ips_ill_g_lock);
10881 
10882         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10883         ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10884             (int)optp->level, (int)optp->name, (int)optp->len));
10885         qreply(q, mpctl);
10886         return (mp2ctl);
10887 }
10888 
10889 /*
10890  * ire_walk routine to create both ipRouteEntryTable and
10891  * ipRouteAttributeTable in one IRE walk
10892  */
10893 static void
10894 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10895 {
10896         ill_t                           *ill;
10897         mib2_ipRouteEntry_t             *re;
10898         mib2_ipAttributeEntry_t         iaes;
10899         tsol_ire_gw_secattr_t           *attrp;
10900         tsol_gc_t                       *gc = NULL;
10901         tsol_gcgrp_t                    *gcgrp = NULL;
10902         ip_stack_t                      *ipst = ire->ire_ipst;
10903 
10904         ASSERT(ire->ire_ipversion == IPV4_VERSION);
10905 
10906         if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10907                 if (ire->ire_testhidden)
10908                         return;
10909                 if (ire->ire_type & IRE_IF_CLONE)
10910                         return;
10911         }
10912 
10913         if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10914                 return;
10915 
10916         if ((attrp = ire->ire_gw_secattr) != NULL) {
10917                 mutex_enter(&attrp->igsa_lock);
10918                 if ((gc = attrp->igsa_gc) != NULL) {
10919                         gcgrp = gc->gc_grp;
10920                         ASSERT(gcgrp != NULL);
10921                         rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10922                 }
10923                 mutex_exit(&attrp->igsa_lock);
10924         }
10925         /*
10926          * Return all IRE types for route table... let caller pick and choose
10927          */
10928         re->ipRouteDest = ire->ire_addr;
10929         ill = ire->ire_ill;
10930         re->ipRouteIfIndex.o_length = 0;
10931         if (ill != NULL) {
10932                 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10933                 re->ipRouteIfIndex.o_length =
10934                     mi_strlen(re->ipRouteIfIndex.o_bytes);
10935         }
10936         re->ipRouteMetric1 = -1;
10937         re->ipRouteMetric2 = -1;
10938         re->ipRouteMetric3 = -1;
10939         re->ipRouteMetric4 = -1;
10940 
10941         re->ipRouteNextHop = ire->ire_gateway_addr;
10942         /* indirect(4), direct(3), or invalid(2) */
10943         if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10944                 re->ipRouteType = 2;
10945         else if (ire->ire_type & IRE_ONLINK)
10946                 re->ipRouteType = 3;
10947         else
10948                 re->ipRouteType = 4;
10949 
10950         re->ipRouteProto = -1;
10951         re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10952         re->ipRouteMask = ire->ire_mask;
10953         re->ipRouteMetric5 = -1;
10954         re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10955         if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10956                 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
10957 
10958         re->ipRouteInfo.re_frag_flag = 0;
10959         re->ipRouteInfo.re_rtt               = 0;
10960         re->ipRouteInfo.re_src_addr  = 0;
10961         re->ipRouteInfo.re_ref               = ire->ire_refcnt;
10962         re->ipRouteInfo.re_obpkt     = ire->ire_ob_pkt_count;
10963         re->ipRouteInfo.re_ibpkt     = ire->ire_ib_pkt_count;
10964         re->ipRouteInfo.re_flags     = ire->ire_flags;
10965 
10966         /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
10967         if (ire->ire_type & IRE_INTERFACE) {
10968                 ire_t *child;
10969 
10970                 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
10971                 child = ire->ire_dep_children;
10972                 while (child != NULL) {
10973                         re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
10974                         re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
10975                         child = child->ire_dep_sib_next;
10976                 }
10977                 rw_exit(&ipst->ips_ire_dep_lock);
10978         }
10979 
10980         if (ire->ire_flags & RTF_DYNAMIC) {
10981                 re->ipRouteInfo.re_ire_type  = IRE_HOST_REDIRECT;
10982         } else {
10983                 re->ipRouteInfo.re_ire_type  = ire->ire_type;
10984         }
10985 
10986         if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
10987             (char *)re, (int)sizeof (*re))) {
10988                 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
10989                     (uint_t)sizeof (*re)));
10990         }
10991 
10992         if (gc != NULL) {
10993                 iaes.iae_routeidx = ird->ird_idx;
10994                 iaes.iae_doi = gc->gc_db->gcdb_doi;
10995                 iaes.iae_slrange = gc->gc_db->gcdb_slrange;
10996 
10997                 if (!snmp_append_data2(ird->ird_attrs.lp_head,
10998                     &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
10999                         ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
11000                             "bytes\n", (uint_t)sizeof (iaes)));
11001                 }
11002         }
11003 
11004         /* bump route index for next pass */
11005         ird->ird_idx++;
11006 
11007         kmem_free(re, sizeof (*re));
11008         if (gcgrp != NULL)
11009                 rw_exit(&gcgrp->gcgrp_rwlock);
11010 }
11011 
11012 /*
11013  * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
11014  */
11015 static void
11016 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
11017 {
11018         ill_t                           *ill;
11019         mib2_ipv6RouteEntry_t           *re;
11020         mib2_ipAttributeEntry_t         iaes;
11021         tsol_ire_gw_secattr_t           *attrp;
11022         tsol_gc_t                       *gc = NULL;
11023         tsol_gcgrp_t                    *gcgrp = NULL;
11024         ip_stack_t                      *ipst = ire->ire_ipst;
11025 
11026         ASSERT(ire->ire_ipversion == IPV6_VERSION);
11027 
11028         if (!(ird->ird_flags & IRD_REPORT_ALL)) {
11029                 if (ire->ire_testhidden)
11030                         return;
11031                 if (ire->ire_type & IRE_IF_CLONE)
11032                         return;
11033         }
11034 
11035         if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11036                 return;
11037 
11038         if ((attrp = ire->ire_gw_secattr) != NULL) {
11039                 mutex_enter(&attrp->igsa_lock);
11040                 if ((gc = attrp->igsa_gc) != NULL) {
11041                         gcgrp = gc->gc_grp;
11042                         ASSERT(gcgrp != NULL);
11043                         rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11044                 }
11045                 mutex_exit(&attrp->igsa_lock);
11046         }
11047         /*
11048          * Return all IRE types for route table... let caller pick and choose
11049          */
11050         re->ipv6RouteDest = ire->ire_addr_v6;
11051         re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11052         re->ipv6RouteIndex = 0;      /* Unique when multiple with same dest/plen */
11053         re->ipv6RouteIfIndex.o_length = 0;
11054         ill = ire->ire_ill;
11055         if (ill != NULL) {
11056                 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11057                 re->ipv6RouteIfIndex.o_length =
11058                     mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11059         }
11060 
11061         ASSERT(!(ire->ire_type & IRE_BROADCAST));
11062 
11063         mutex_enter(&ire->ire_lock);
11064         re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11065         mutex_exit(&ire->ire_lock);
11066 
11067         /* remote(4), local(3), or discard(2) */
11068         if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11069                 re->ipv6RouteType = 2;
11070         else if (ire->ire_type & IRE_ONLINK)
11071                 re->ipv6RouteType = 3;
11072         else
11073                 re->ipv6RouteType = 4;
11074 
11075         re->ipv6RouteProtocol        = -1;
11076         re->ipv6RoutePolicy  = 0;
11077         re->ipv6RouteAge     = gethrestime_sec() - ire->ire_create_time;
11078         re->ipv6RouteNextHopRDI      = 0;
11079         re->ipv6RouteWeight  = 0;
11080         re->ipv6RouteMetric  = 0;
11081         re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11082         if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11083                 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
11084 
11085         re->ipv6RouteInfo.re_frag_flag       = 0;
11086         re->ipv6RouteInfo.re_rtt     = 0;
11087         re->ipv6RouteInfo.re_src_addr        = ipv6_all_zeros;
11088         re->ipv6RouteInfo.re_obpkt   = ire->ire_ob_pkt_count;
11089         re->ipv6RouteInfo.re_ibpkt   = ire->ire_ib_pkt_count;
11090         re->ipv6RouteInfo.re_ref     = ire->ire_refcnt;
11091         re->ipv6RouteInfo.re_flags   = ire->ire_flags;
11092 
11093         /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11094         if (ire->ire_type & IRE_INTERFACE) {
11095                 ire_t *child;
11096 
11097                 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11098                 child = ire->ire_dep_children;
11099                 while (child != NULL) {
11100                         re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11101                         re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11102                         child = child->ire_dep_sib_next;
11103                 }
11104                 rw_exit(&ipst->ips_ire_dep_lock);
11105         }
11106         if (ire->ire_flags & RTF_DYNAMIC) {
11107                 re->ipv6RouteInfo.re_ire_type        = IRE_HOST_REDIRECT;
11108         } else {
11109                 re->ipv6RouteInfo.re_ire_type        = ire->ire_type;
11110         }
11111 
11112         if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11113             (char *)re, (int)sizeof (*re))) {
11114                 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11115                     (uint_t)sizeof (*re)));
11116         }
11117 
11118         if (gc != NULL) {
11119                 iaes.iae_routeidx = ird->ird_idx;
11120                 iaes.iae_doi = gc->gc_db->gcdb_doi;
11121                 iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11122 
11123                 if (!snmp_append_data2(ird->ird_attrs.lp_head,
11124                     &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11125                         ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11126                             "bytes\n", (uint_t)sizeof (iaes)));
11127                 }
11128         }
11129 
11130         /* bump route index for next pass */
11131         ird->ird_idx++;
11132 
11133         kmem_free(re, sizeof (*re));
11134         if (gcgrp != NULL)
11135                 rw_exit(&gcgrp->gcgrp_rwlock);
11136 }
11137 
11138 /*
11139  * ncec_walk routine to create ipv6NetToMediaEntryTable
11140  */
11141 static int
11142 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird)
11143 {
11144         ill_t                           *ill;
11145         mib2_ipv6NetToMediaEntry_t      ntme;
11146 
11147         ill = ncec->ncec_ill;
11148         /* skip arpce entries, and loopback ncec entries */
11149         if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11150                 return (0);
11151         /*
11152          * Neighbor cache entry attached to IRE with on-link
11153          * destination.
11154          * We report all IPMP groups on ncec_ill which is normally the upper.
11155          */
11156         ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11157         ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11158         ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11159         if (ncec->ncec_lladdr != NULL) {
11160                 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11161                     ntme.ipv6NetToMediaPhysAddress.o_length);
11162         }
11163         /*
11164          * Note: Returns ND_* states. Should be:
11165          * reachable(1), stale(2), delay(3), probe(4),
11166          * invalid(5), unknown(6)
11167          */
11168         ntme.ipv6NetToMediaState = ncec->ncec_state;
11169         ntme.ipv6NetToMediaLastUpdated = 0;
11170 
11171         /* other(1), dynamic(2), static(3), local(4) */
11172         if (NCE_MYADDR(ncec)) {
11173                 ntme.ipv6NetToMediaType = 4;
11174         } else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11175                 ntme.ipv6NetToMediaType = 1; /* proxy */
11176         } else if (ncec->ncec_flags & NCE_F_STATIC) {
11177                 ntme.ipv6NetToMediaType = 3;
11178         } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11179                 ntme.ipv6NetToMediaType = 1;
11180         } else {
11181                 ntme.ipv6NetToMediaType = 2;
11182         }
11183 
11184         if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11185             &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11186                 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11187                     (uint_t)sizeof (ntme)));
11188         }
11189         return (0);
11190 }
11191 
11192 int
11193 nce2ace(ncec_t *ncec)
11194 {
11195         int flags = 0;
11196 
11197         if (NCE_ISREACHABLE(ncec))
11198                 flags |= ACE_F_RESOLVED;
11199         if (ncec->ncec_flags & NCE_F_AUTHORITY)
11200                 flags |= ACE_F_AUTHORITY;
11201         if (ncec->ncec_flags & NCE_F_PUBLISH)
11202                 flags |= ACE_F_PUBLISH;
11203         if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11204                 flags |= ACE_F_PERMANENT;
11205         if (NCE_MYADDR(ncec))
11206                 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11207         if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11208                 flags |= ACE_F_UNVERIFIED;
11209         if (ncec->ncec_flags & NCE_F_AUTHORITY)
11210                 flags |= ACE_F_AUTHORITY;
11211         if (ncec->ncec_flags & NCE_F_DELAYED)
11212                 flags |= ACE_F_DELAYED;
11213         return (flags);
11214 }
11215 
11216 /*
11217  * ncec_walk routine to create ipNetToMediaEntryTable
11218  */
11219 static int
11220 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird)
11221 {
11222         ill_t                           *ill;
11223         mib2_ipNetToMediaEntry_t        ntme;
11224         const char                      *name = "unknown";
11225         ipaddr_t                        ncec_addr;
11226 
11227         ill = ncec->ncec_ill;
11228         if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11229             ill->ill_net_type == IRE_LOOPBACK)
11230                 return (0);
11231 
11232         /* We report all IPMP groups on ncec_ill which is normally the upper. */
11233         name = ill->ill_name;
11234         /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11235         if (NCE_MYADDR(ncec)) {
11236                 ntme.ipNetToMediaType = 4;
11237         } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11238                 ntme.ipNetToMediaType = 1;
11239         } else {
11240                 ntme.ipNetToMediaType = 3;
11241         }
11242         ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11243         bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11244             ntme.ipNetToMediaIfIndex.o_length);
11245 
11246         IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11247         bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
11248 
11249         ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11250         ncec_addr = INADDR_BROADCAST;
11251         bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11252             sizeof (ncec_addr));
11253         /*
11254          * map all the flags to the ACE counterpart.
11255          */
11256         ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
11257 
11258         ntme.ipNetToMediaPhysAddress.o_length =
11259             MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
11260 
11261         if (!NCE_ISREACHABLE(ncec))
11262                 ntme.ipNetToMediaPhysAddress.o_length = 0;
11263         else {
11264                 if (ncec->ncec_lladdr != NULL) {
11265                         bcopy(ncec->ncec_lladdr,
11266                             ntme.ipNetToMediaPhysAddress.o_bytes,
11267                             ntme.ipNetToMediaPhysAddress.o_length);
11268                 }
11269         }
11270 
11271         if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11272             &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11273                 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11274                     (uint_t)sizeof (ntme)));
11275         }
11276         return (0);
11277 }
11278 
11279 /*
11280  * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11281  */
11282 /* ARGSUSED */
11283 int
11284 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11285 {
11286         switch (level) {
11287         case MIB2_IP:
11288         case MIB2_ICMP:
11289                 switch (name) {
11290                 default:
11291                         break;
11292                 }
11293                 return (1);
11294         default:
11295                 return (1);
11296         }
11297 }
11298 
11299 /*
11300  * When there exists both a 64- and 32-bit counter of a particular type
11301  * (i.e., InReceives), only the 64-bit counters are added.
11302  */
11303 void
11304 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11305 {
11306         UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11307         UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11308         UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11309         UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11310         UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11311         UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11312         UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11313         UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11314         UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11315         UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11316         UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11317         UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11318         UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11319         UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11320         UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11321         UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11322         UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11323         UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11324         UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11325         UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11326         UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11327         UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11328             o2->ipIfStatsInWrongIPVersion);
11329         UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11330             o2->ipIfStatsInWrongIPVersion);
11331         UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11332             o2->ipIfStatsOutSwitchIPVersion);
11333         UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11334         UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11335         UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11336             o2->ipIfStatsHCInForwDatagrams);
11337         UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11338         UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11339         UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11340             o2->ipIfStatsHCOutForwDatagrams);
11341         UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11342         UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11343         UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11344         UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11345         UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11346         UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11347         UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11348             o2->ipIfStatsHCOutMcastOctets);
11349         UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11350         UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11351         UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11352         UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11353         UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11354         UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11355         UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11356 }
11357 
11358 void
11359 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11360 {
11361         UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11362         UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11363         UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11364         UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11365         UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11366         UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11367         UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11368         UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11369         UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11370         UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11371             o2->ipv6IfIcmpInRouterSolicits);
11372         UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11373             o2->ipv6IfIcmpInRouterAdvertisements);
11374         UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11375             o2->ipv6IfIcmpInNeighborSolicits);
11376         UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11377             o2->ipv6IfIcmpInNeighborAdvertisements);
11378         UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11379         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11380             o2->ipv6IfIcmpInGroupMembQueries);
11381         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11382             o2->ipv6IfIcmpInGroupMembResponses);
11383         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11384             o2->ipv6IfIcmpInGroupMembReductions);
11385         UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11386         UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11387         UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11388             o2->ipv6IfIcmpOutDestUnreachs);
11389         UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11390             o2->ipv6IfIcmpOutAdminProhibs);
11391         UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11392         UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11393             o2->ipv6IfIcmpOutParmProblems);
11394         UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11395         UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11396         UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11397         UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11398             o2->ipv6IfIcmpOutRouterSolicits);
11399         UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11400             o2->ipv6IfIcmpOutRouterAdvertisements);
11401         UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11402             o2->ipv6IfIcmpOutNeighborSolicits);
11403         UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11404             o2->ipv6IfIcmpOutNeighborAdvertisements);
11405         UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11406         UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11407             o2->ipv6IfIcmpOutGroupMembQueries);
11408         UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11409             o2->ipv6IfIcmpOutGroupMembResponses);
11410         UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11411             o2->ipv6IfIcmpOutGroupMembReductions);
11412         UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11413         UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11414         UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11415             o2->ipv6IfIcmpInBadNeighborAdvertisements);
11416         UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11417             o2->ipv6IfIcmpInBadNeighborSolicitations);
11418         UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11419         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11420             o2->ipv6IfIcmpInGroupMembTotal);
11421         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11422             o2->ipv6IfIcmpInGroupMembBadQueries);
11423         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11424             o2->ipv6IfIcmpInGroupMembBadReports);
11425         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11426             o2->ipv6IfIcmpInGroupMembOurReports);
11427 }
11428 
11429 /*
11430  * Called before the options are updated to check if this packet will
11431  * be source routed from here.
11432  * This routine assumes that the options are well formed i.e. that they
11433  * have already been checked.
11434  */
11435 boolean_t
11436 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11437 {
11438         ipoptp_t        opts;
11439         uchar_t         *opt;
11440         uint8_t         optval;
11441         uint8_t         optlen;
11442         ipaddr_t        dst;
11443 
11444         if (IS_SIMPLE_IPH(ipha)) {
11445                 ip2dbg(("not source routed\n"));
11446                 return (B_FALSE);
11447         }
11448         dst = ipha->ipha_dst;
11449         for (optval = ipoptp_first(&opts, ipha);
11450             optval != IPOPT_EOL;
11451             optval = ipoptp_next(&opts)) {
11452                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11453                 opt = opts.ipoptp_cur;
11454                 optlen = opts.ipoptp_len;
11455                 ip2dbg(("ip_source_routed: opt %d, len %d\n",
11456                     optval, optlen));
11457                 switch (optval) {
11458                         uint32_t off;
11459                 case IPOPT_SSRR:
11460                 case IPOPT_LSRR:
11461                         /*
11462                          * If dst is one of our addresses and there are some
11463                          * entries left in the source route return (true).
11464                          */
11465                         if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11466                                 ip2dbg(("ip_source_routed: not next"
11467                                     " source route 0x%x\n",
11468                                     ntohl(dst)));
11469                                 return (B_FALSE);
11470                         }
11471                         off = opt[IPOPT_OFFSET];
11472                         off--;
11473                         if (optlen < IP_ADDR_LEN ||
11474                             off > optlen - IP_ADDR_LEN) {
11475                                 /* End of source route */
11476                                 ip1dbg(("ip_source_routed: end of SR\n"));
11477                                 return (B_FALSE);
11478                         }
11479                         return (B_TRUE);
11480                 }
11481         }
11482         ip2dbg(("not source routed\n"));
11483         return (B_FALSE);
11484 }
11485 
11486 /*
11487  * ip_unbind is called by the transports to remove a conn from
11488  * the fanout table.
11489  */
11490 void
11491 ip_unbind(conn_t *connp)
11492 {
11493 
11494         ASSERT(!MUTEX_HELD(&connp->conn_lock));
11495 
11496         if (is_system_labeled() && connp->conn_anon_port) {
11497                 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11498                     connp->conn_mlp_type, connp->conn_proto,
11499                     ntohs(connp->conn_lport), B_FALSE);
11500                 connp->conn_anon_port = 0;
11501         }
11502         connp->conn_mlp_type = mlptSingle;
11503 
11504         ipcl_hash_remove(connp);
11505 }
11506 
11507 /*
11508  * Used for deciding the MSS size for the upper layer. Thus
11509  * we need to check the outbound policy values in the conn.
11510  */
11511 int
11512 conn_ipsec_length(conn_t *connp)
11513 {
11514         ipsec_latch_t *ipl;
11515 
11516         ipl = connp->conn_latch;
11517         if (ipl == NULL)
11518                 return (0);
11519 
11520         if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11521                 return (0);
11522 
11523         return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11524 }
11525 
11526 /*
11527  * Returns an estimate of the IPsec headers size. This is used if
11528  * we don't want to call into IPsec to get the exact size.
11529  */
11530 int
11531 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11532 {
11533         ipsec_action_t *a;
11534 
11535         if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11536                 return (0);
11537 
11538         a = ixa->ixa_ipsec_action;
11539         if (a == NULL) {
11540                 ASSERT(ixa->ixa_ipsec_policy != NULL);
11541                 a = ixa->ixa_ipsec_policy->ipsp_act;
11542         }
11543         ASSERT(a != NULL);
11544 
11545         return (a->ipa_ovhd);
11546 }
11547 
11548 /*
11549  * If there are any source route options, return the true final
11550  * destination. Otherwise, return the destination.
11551  */
11552 ipaddr_t
11553 ip_get_dst(ipha_t *ipha)
11554 {
11555         ipoptp_t        opts;
11556         uchar_t         *opt;
11557         uint8_t         optval;
11558         uint8_t         optlen;
11559         ipaddr_t        dst;
11560         uint32_t off;
11561 
11562         dst = ipha->ipha_dst;
11563 
11564         if (IS_SIMPLE_IPH(ipha))
11565                 return (dst);
11566 
11567         for (optval = ipoptp_first(&opts, ipha);
11568             optval != IPOPT_EOL;
11569             optval = ipoptp_next(&opts)) {
11570                 opt = opts.ipoptp_cur;
11571                 optlen = opts.ipoptp_len;
11572                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11573                 switch (optval) {
11574                 case IPOPT_SSRR:
11575                 case IPOPT_LSRR:
11576                         off = opt[IPOPT_OFFSET];
11577                         /*
11578                          * If one of the conditions is true, it means
11579                          * end of options and dst already has the right
11580                          * value.
11581                          */
11582                         if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11583                                 off = optlen - IP_ADDR_LEN;
11584                                 bcopy(&opt[off], &dst, IP_ADDR_LEN);
11585                         }
11586                         return (dst);
11587                 default:
11588                         break;
11589                 }
11590         }
11591 
11592         return (dst);
11593 }
11594 
11595 /*
11596  * Outbound IP fragmentation routine.
11597  * Assumes the caller has checked whether or not fragmentation should
11598  * be allowed. Here we copy the DF bit from the header to all the generated
11599  * fragments.
11600  */
11601 int
11602 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11603     uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11604     zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11605 {
11606         int             i1;
11607         int             hdr_len;
11608         mblk_t          *hdr_mp;
11609         ipha_t          *ipha;
11610         int             ip_data_end;
11611         int             len;
11612         mblk_t          *mp = mp_orig;
11613         int             offset;
11614         ill_t           *ill = nce->nce_ill;
11615         ip_stack_t      *ipst = ill->ill_ipst;
11616         mblk_t          *carve_mp;
11617         uint32_t        frag_flag;
11618         uint_t          priority = mp->b_band;
11619         int             error = 0;
11620 
11621         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
11622 
11623         if (pkt_len != msgdsize(mp)) {
11624                 ip0dbg(("Packet length mismatch: %d, %ld\n",
11625                     pkt_len, msgdsize(mp)));
11626                 freemsg(mp);
11627                 return (EINVAL);
11628         }
11629 
11630         if (max_frag == 0) {
11631                 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11632                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11633                 ip_drop_output("FragFails: zero max_frag", mp, ill);
11634                 freemsg(mp);
11635                 return (EINVAL);
11636         }
11637 
11638         ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11639         ipha = (ipha_t *)mp->b_rptr;
11640         ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11641         frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
11642 
11643         /*
11644          * Establish the starting offset.  May not be zero if we are fragging
11645          * a fragment that is being forwarded.
11646          */
11647         offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
11648 
11649         /* TODO why is this test needed? */
11650         if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11651                 /* TODO: notify ulp somehow */
11652                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11653                 ip_drop_output("FragFails: bad starting offset", mp, ill);
11654                 freemsg(mp);
11655                 return (EINVAL);
11656         }
11657 
11658         hdr_len = IPH_HDR_LENGTH(ipha);
11659         ipha->ipha_hdr_checksum = 0;
11660 
11661         /*
11662          * Establish the number of bytes maximum per frag, after putting
11663          * in the header.
11664          */
11665         len = (max_frag - hdr_len) & ~7;
11666 
11667         /* Get a copy of the header for the trailing frags */
11668         hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11669             mp);
11670         if (hdr_mp == NULL) {
11671                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11672                 ip_drop_output("FragFails: no hdr_mp", mp, ill);
11673                 freemsg(mp);
11674                 return (ENOBUFS);
11675         }
11676 
11677         /* Store the starting offset, with the MoreFrags flag. */
11678         i1 = offset | IPH_MF | frag_flag;
11679         ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
11680 
11681         /* Establish the ending byte offset, based on the starting offset. */
11682         offset <<= 3;
11683         ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
11684 
11685         /* Store the length of the first fragment in the IP header. */
11686         i1 = len + hdr_len;
11687         ASSERT(i1 <= IP_MAXPACKET);
11688         ipha->ipha_length = htons((uint16_t)i1);
11689 
11690         /*
11691          * Compute the IP header checksum for the first frag.  We have to
11692          * watch out that we stop at the end of the header.
11693          */
11694         ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11695 
11696         /*
11697          * Now carve off the first frag.  Note that this will include the
11698          * original IP header.
11699          */
11700         if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11701                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11702                 ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11703                 freeb(hdr_mp);
11704                 freemsg(mp_orig);
11705                 return (ENOBUFS);
11706         }
11707 
11708         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11709 
11710         error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11711             ixa_cookie);
11712         if (error != 0 && error != EWOULDBLOCK) {
11713                 /* No point in sending the other fragments */
11714                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11715                 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11716                 freeb(hdr_mp);
11717                 freemsg(mp_orig);
11718                 return (error);
11719         }
11720 
11721         /* No need to redo state machine in loop */
11722         ixaflags &= ~IXAF_REACH_CONF;
11723 
11724         /* Advance the offset to the second frag starting point. */
11725         offset += len;
11726         /*
11727          * Update hdr_len from the copied header - there might be less options
11728          * in the later fragments.
11729          */
11730         hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11731         /* Loop until done. */
11732         for (;;) {
11733                 uint16_t        offset_and_flags;
11734                 uint16_t        ip_len;
11735 
11736                 if (ip_data_end - offset > len) {
11737                         /*
11738                          * Carve off the appropriate amount from the original
11739                          * datagram.
11740                          */
11741                         if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11742                                 mp = NULL;
11743                                 break;
11744                         }
11745                         /*
11746                          * More frags after this one.  Get another copy
11747                          * of the header.
11748                          */
11749                         if (carve_mp->b_datap->db_ref == 1 &&
11750                             hdr_mp->b_wptr - hdr_mp->b_rptr <
11751                             carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11752                                 /* Inline IP header */
11753                                 carve_mp->b_rptr -= hdr_mp->b_wptr -
11754                                     hdr_mp->b_rptr;
11755                                 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11756                                     hdr_mp->b_wptr - hdr_mp->b_rptr);
11757                                 mp = carve_mp;
11758                         } else {
11759                                 if (!(mp = copyb(hdr_mp))) {
11760                                         freemsg(carve_mp);
11761                                         break;
11762                                 }
11763                                 /* Get priority marking, if any. */
11764                                 mp->b_band = priority;
11765                                 mp->b_cont = carve_mp;
11766                         }
11767                         ipha = (ipha_t *)mp->b_rptr;
11768                         offset_and_flags = IPH_MF;
11769                 } else {
11770                         /*
11771                          * Last frag.  Consume the header. Set len to
11772                          * the length of this last piece.
11773                          */
11774                         len = ip_data_end - offset;
11775 
11776                         /*
11777                          * Carve off the appropriate amount from the original
11778                          * datagram.
11779                          */
11780                         if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11781                                 mp = NULL;
11782                                 break;
11783                         }
11784                         if (carve_mp->b_datap->db_ref == 1 &&
11785                             hdr_mp->b_wptr - hdr_mp->b_rptr <
11786                             carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11787                                 /* Inline IP header */
11788                                 carve_mp->b_rptr -= hdr_mp->b_wptr -
11789                                     hdr_mp->b_rptr;
11790                                 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11791                                     hdr_mp->b_wptr - hdr_mp->b_rptr);
11792                                 mp = carve_mp;
11793                                 freeb(hdr_mp);
11794                                 hdr_mp = mp;
11795                         } else {
11796                                 mp = hdr_mp;
11797                                 /* Get priority marking, if any. */
11798                                 mp->b_band = priority;
11799                                 mp->b_cont = carve_mp;
11800                         }
11801                         ipha = (ipha_t *)mp->b_rptr;
11802                         /* A frag of a frag might have IPH_MF non-zero */
11803                         offset_and_flags =
11804                             ntohs(ipha->ipha_fragment_offset_and_flags) &
11805                             IPH_MF;
11806                 }
11807                 offset_and_flags |= (uint16_t)(offset >> 3);
11808                 offset_and_flags |= (uint16_t)frag_flag;
11809                 /* Store the offset and flags in the IP header. */
11810                 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
11811 
11812                 /* Store the length in the IP header. */
11813                 ip_len = (uint16_t)(len + hdr_len);
11814                 ipha->ipha_length = htons(ip_len);
11815 
11816                 /*
11817                  * Set the IP header checksum.  Note that mp is just
11818                  * the header, so this is easy to pass to ip_csum.
11819                  */
11820                 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11821 
11822                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11823 
11824                 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11825                     nolzid, ixa_cookie);
11826                 /* All done if we just consumed the hdr_mp. */
11827                 if (mp == hdr_mp) {
11828                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11829                         return (error);
11830                 }
11831                 if (error != 0 && error != EWOULDBLOCK) {
11832                         DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11833                             mblk_t *, hdr_mp);
11834                         /* No point in sending the other fragments */
11835                         break;
11836                 }
11837 
11838                 /* Otherwise, advance and loop. */
11839                 offset += len;
11840         }
11841         /* Clean up following allocation failure. */
11842         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11843         ip_drop_output("FragFails: loop ended", NULL, ill);
11844         if (mp != hdr_mp)
11845                 freeb(hdr_mp);
11846         if (mp != mp_orig)
11847                 freemsg(mp_orig);
11848         return (error);
11849 }
11850 
11851 /*
11852  * Copy the header plus those options which have the copy bit set
11853  */
11854 static mblk_t *
11855 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11856     mblk_t *src)
11857 {
11858         mblk_t  *mp;
11859         uchar_t *up;
11860 
11861         /*
11862          * Quick check if we need to look for options without the copy bit
11863          * set
11864          */
11865         mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11866         if (!mp)
11867                 return (mp);
11868         mp->b_rptr += ipst->ips_ip_wroff_extra;
11869         if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11870                 bcopy(rptr, mp->b_rptr, hdr_len);
11871                 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11872                 return (mp);
11873         }
11874         up  = mp->b_rptr;
11875         bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11876         up += IP_SIMPLE_HDR_LENGTH;
11877         rptr += IP_SIMPLE_HDR_LENGTH;
11878         hdr_len -= IP_SIMPLE_HDR_LENGTH;
11879         while (hdr_len > 0) {
11880                 uint32_t optval;
11881                 uint32_t optlen;
11882 
11883                 optval = *rptr;
11884                 if (optval == IPOPT_EOL)
11885                         break;
11886                 if (optval == IPOPT_NOP)
11887                         optlen = 1;
11888                 else
11889                         optlen = rptr[1];
11890                 if (optval & IPOPT_COPY) {
11891                         bcopy(rptr, up, optlen);
11892                         up += optlen;
11893                 }
11894                 rptr += optlen;
11895                 hdr_len -= optlen;
11896         }
11897         /*
11898          * Make sure that we drop an even number of words by filling
11899          * with EOL to the next word boundary.
11900          */
11901         for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11902             hdr_len & 0x3; hdr_len++)
11903                 *up++ = IPOPT_EOL;
11904         mp->b_wptr = up;
11905         /* Update header length */
11906         mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11907         return (mp);
11908 }
11909 
11910 /*
11911  * Update any source route, record route, or timestamp options when
11912  * sending a packet back to ourselves.
11913  * Check that we are at end of strict source route.
11914  * The options have been sanity checked by ip_output_options().
11915  */
11916 void
11917 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11918 {
11919         ipoptp_t        opts;
11920         uchar_t         *opt;
11921         uint8_t         optval;
11922         uint8_t         optlen;
11923         ipaddr_t        dst;
11924         uint32_t        ts;
11925         timestruc_t     now;
11926 
11927         for (optval = ipoptp_first(&opts, ipha);
11928             optval != IPOPT_EOL;
11929             optval = ipoptp_next(&opts)) {
11930                 opt = opts.ipoptp_cur;
11931                 optlen = opts.ipoptp_len;
11932                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11933                 switch (optval) {
11934                         uint32_t off;
11935                 case IPOPT_SSRR:
11936                 case IPOPT_LSRR:
11937                         off = opt[IPOPT_OFFSET];
11938                         off--;
11939                         if (optlen < IP_ADDR_LEN ||
11940                             off > optlen - IP_ADDR_LEN) {
11941                                 /* End of source route */
11942                                 break;
11943                         }
11944                         /*
11945                          * This will only happen if two consecutive entries
11946                          * in the source route contains our address or if
11947                          * it is a packet with a loose source route which
11948                          * reaches us before consuming the whole source route
11949                          */
11950 
11951                         if (optval == IPOPT_SSRR) {
11952                                 return;
11953                         }
11954                         /*
11955                          * Hack: instead of dropping the packet truncate the
11956                          * source route to what has been used by filling the
11957                          * rest with IPOPT_NOP.
11958                          */
11959                         opt[IPOPT_OLEN] = (uint8_t)off;
11960                         while (off < optlen) {
11961                                 opt[off++] = IPOPT_NOP;
11962                         }
11963                         break;
11964                 case IPOPT_RR:
11965                         off = opt[IPOPT_OFFSET];
11966                         off--;
11967                         if (optlen < IP_ADDR_LEN ||
11968                             off > optlen - IP_ADDR_LEN) {
11969                                 /* No more room - ignore */
11970                                 ip1dbg((
11971                                     "ip_output_local_options: end of RR\n"));
11972                                 break;
11973                         }
11974                         dst = htonl(INADDR_LOOPBACK);
11975                         bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
11976                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
11977                         break;
11978                 case IPOPT_TS:
11979                         /* Insert timestamp if there is romm */
11980                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
11981                         case IPOPT_TS_TSONLY:
11982                                 off = IPOPT_TS_TIMELEN;
11983                                 break;
11984                         case IPOPT_TS_PRESPEC:
11985                         case IPOPT_TS_PRESPEC_RFC791:
11986                                 /* Verify that the address matched */
11987                                 off = opt[IPOPT_OFFSET] - 1;
11988                                 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
11989                                 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11990                                         /* Not for us */
11991                                         break;
11992                                 }
11993                                 /* FALLTHRU */
11994                         case IPOPT_TS_TSANDADDR:
11995                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
11996                                 break;
11997                         default:
11998                                 /*
11999                                  * ip_*put_options should have already
12000                                  * dropped this packet.
12001                                  */
12002                                 cmn_err(CE_PANIC, "ip_output_local_options: "
12003                                     "unknown IT - bug in ip_output_options?\n");
12004                                 return; /* Keep "lint" happy */
12005                         }
12006                         if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
12007                                 /* Increase overflow counter */
12008                                 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
12009                                 opt[IPOPT_POS_OV_FLG] = (uint8_t)
12010                                     (opt[IPOPT_POS_OV_FLG] & 0x0F) |
12011                                     (off << 4);
12012                                 break;
12013                         }
12014                         off = opt[IPOPT_OFFSET] - 1;
12015                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12016                         case IPOPT_TS_PRESPEC:
12017                         case IPOPT_TS_PRESPEC_RFC791:
12018                         case IPOPT_TS_TSANDADDR:
12019                                 dst = htonl(INADDR_LOOPBACK);
12020                                 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12021                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12022                                 /* FALLTHRU */
12023                         case IPOPT_TS_TSONLY:
12024                                 off = opt[IPOPT_OFFSET] - 1;
12025                                 /* Compute # of milliseconds since midnight */
12026                                 gethrestime(&now);
12027                                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
12028                                     now.tv_nsec / (NANOSEC / MILLISEC);
12029                                 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
12030                                 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
12031                                 break;
12032                         }
12033                         break;
12034                 }
12035         }
12036 }
12037 
12038 /*
12039  * Prepend an M_DATA fastpath header, and if none present prepend a
12040  * DL_UNITDATA_REQ. Frees the mblk on failure.
12041  *
12042  * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12043  * If there is a change to them, the nce will be deleted (condemned) and
12044  * a new nce_t will be created when packets are sent. Thus we need no locks
12045  * to access those fields.
12046  *
12047  * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12048  * we place b_band in dl_priority.dl_max.
12049  */
12050 static mblk_t *
12051 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12052 {
12053         uint_t  hlen;
12054         mblk_t *mp1;
12055         uint_t  priority;
12056         uchar_t *rptr;
12057 
12058         rptr = mp->b_rptr;
12059 
12060         ASSERT(DB_TYPE(mp) == M_DATA);
12061         priority = mp->b_band;
12062 
12063         ASSERT(nce != NULL);
12064         if ((mp1 = nce->nce_fp_mp) != NULL) {
12065                 hlen = MBLKL(mp1);
12066                 /*
12067                  * Check if we have enough room to prepend fastpath
12068                  * header
12069                  */
12070                 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12071                         rptr -= hlen;
12072                         bcopy(mp1->b_rptr, rptr, hlen);
12073                         /*
12074                          * Set the b_rptr to the start of the link layer
12075                          * header
12076                          */
12077                         mp->b_rptr = rptr;
12078                         return (mp);
12079                 }
12080                 mp1 = copyb(mp1);
12081                 if (mp1 == NULL) {
12082                         ill_t *ill = nce->nce_ill;
12083 
12084                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12085                         ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12086                         freemsg(mp);
12087                         return (NULL);
12088                 }
12089                 mp1->b_band = priority;
12090                 mp1->b_cont = mp;
12091                 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12092                 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12093                 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12094                 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12095                 DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12096                 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12097                 /*
12098                  * XXX disable ICK_VALID and compute checksum
12099                  * here; can happen if nce_fp_mp changes and
12100                  * it can't be copied now due to insufficient
12101                  * space. (unlikely, fp mp can change, but it
12102                  * does not increase in length)
12103                  */
12104                 return (mp1);
12105         }
12106         mp1 = copyb(nce->nce_dlur_mp);
12107 
12108         if (mp1 == NULL) {
12109                 ill_t *ill = nce->nce_ill;
12110 
12111                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12112                 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12113                 freemsg(mp);
12114                 return (NULL);
12115         }
12116         mp1->b_cont = mp;
12117         if (priority != 0) {
12118                 mp1->b_band = priority;
12119                 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12120                     priority;
12121         }
12122         return (mp1);
12123 #undef rptr
12124 }
12125 
12126 /*
12127  * Finish the outbound IPsec processing. This function is called from
12128  * ipsec_out_process() if the IPsec packet was processed
12129  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12130  * asynchronously.
12131  *
12132  * This is common to IPv4 and IPv6.
12133  */
12134 int
12135 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12136 {
12137         iaflags_t       ixaflags = ixa->ixa_flags;
12138         uint_t          pktlen;
12139 
12140 
12141         /* AH/ESP don't update ixa_pktlen when they modify the packet */
12142         if (ixaflags & IXAF_IS_IPV4) {
12143                 ipha_t          *ipha = (ipha_t *)mp->b_rptr;
12144 
12145                 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12146                 pktlen = ntohs(ipha->ipha_length);
12147         } else {
12148                 ip6_t           *ip6h = (ip6_t *)mp->b_rptr;
12149 
12150                 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12151                 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12152         }
12153 
12154         /*
12155          * We release any hard reference on the SAs here to make
12156          * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12157          * on the SAs.
12158          * If in the future we want the hard latching of the SAs in the
12159          * ip_xmit_attr_t then we should remove this.
12160          */
12161         if (ixa->ixa_ipsec_esp_sa != NULL) {
12162                 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12163                 ixa->ixa_ipsec_esp_sa = NULL;
12164         }
12165         if (ixa->ixa_ipsec_ah_sa != NULL) {
12166                 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12167                 ixa->ixa_ipsec_ah_sa = NULL;
12168         }
12169 
12170         /* Do we need to fragment? */
12171         if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12172             pktlen > ixa->ixa_fragsize) {
12173                 if (ixaflags & IXAF_IS_IPV4) {
12174                         ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12175                         /*
12176                          * We check for the DF case in ipsec_out_process
12177                          * hence this only handles the non-DF case.
12178                          */
12179                         return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12180                             pktlen, ixa->ixa_fragsize,
12181                             ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12182                             ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12183                             &ixa->ixa_cookie));
12184                 } else {
12185                         mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12186                         if (mp == NULL) {
12187                                 /* MIB and ip_drop_output already done */
12188                                 return (ENOMEM);
12189                         }
12190                         pktlen += sizeof (ip6_frag_t);
12191                         if (pktlen > ixa->ixa_fragsize) {
12192                                 return (ip_fragment_v6(mp, ixa->ixa_nce,
12193                                     ixa->ixa_flags, pktlen,
12194                                     ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12195                                     ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12196                                     ixa->ixa_postfragfn, &ixa->ixa_cookie));
12197                         }
12198                 }
12199         }
12200         return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12201             pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12202             ixa->ixa_no_loop_zoneid, NULL));
12203 }
12204 
12205 /*
12206  * Finish the inbound IPsec processing. This function is called from
12207  * ipsec_out_process() if the IPsec packet was processed
12208  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12209  * asynchronously.
12210  *
12211  * This is common to IPv4 and IPv6.
12212  */
12213 void
12214 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12215 {
12216         iaflags_t       iraflags = ira->ira_flags;
12217 
12218         /* Length might have changed */
12219         if (iraflags & IRAF_IS_IPV4) {
12220                 ipha_t          *ipha = (ipha_t *)mp->b_rptr;
12221 
12222                 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12223                 ira->ira_pktlen = ntohs(ipha->ipha_length);
12224                 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12225                 ira->ira_protocol = ipha->ipha_protocol;
12226 
12227                 ip_fanout_v4(mp, ipha, ira);
12228         } else {
12229                 ip6_t           *ip6h = (ip6_t *)mp->b_rptr;
12230                 uint8_t         *nexthdrp;
12231 
12232                 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12233                 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12234                 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12235                     &nexthdrp)) {
12236                         /* Malformed packet */
12237                         BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12238                         ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12239                         freemsg(mp);
12240                         return;
12241                 }
12242                 ira->ira_protocol = *nexthdrp;
12243                 ip_fanout_v6(mp, ip6h, ira);
12244         }
12245 }
12246 
12247 /*
12248  * Select which AH & ESP SA's to use (if any) for the outbound packet.
12249  *
12250  * If this function returns B_TRUE, the requested SA's have been filled
12251  * into the ixa_ipsec_*_sa pointers.
12252  *
12253  * If the function returns B_FALSE, the packet has been "consumed", most
12254  * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12255  *
12256  * The SA references created by the protocol-specific "select"
12257  * function will be released in ip_output_post_ipsec.
12258  */
12259 static boolean_t
12260 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12261 {
12262         boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12263         ipsec_policy_t *pp;
12264         ipsec_action_t *ap;
12265 
12266         ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12267         ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12268             (ixa->ixa_ipsec_action != NULL));
12269 
12270         ap = ixa->ixa_ipsec_action;
12271         if (ap == NULL) {
12272                 pp = ixa->ixa_ipsec_policy;
12273                 ASSERT(pp != NULL);
12274                 ap = pp->ipsp_act;
12275                 ASSERT(ap != NULL);
12276         }
12277 
12278         /*
12279          * We have an action.  now, let's select SA's.
12280          * A side effect of setting ixa_ipsec_*_sa is that it will
12281          * be cached in the conn_t.
12282          */
12283         if (ap->ipa_want_esp) {
12284                 if (ixa->ixa_ipsec_esp_sa == NULL) {
12285                         need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12286                             IPPROTO_ESP);
12287                 }
12288                 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12289         }
12290 
12291         if (ap->ipa_want_ah) {
12292                 if (ixa->ixa_ipsec_ah_sa == NULL) {
12293                         need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12294                             IPPROTO_AH);
12295                 }
12296                 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12297                 /*
12298                  * The ESP and AH processing order needs to be preserved
12299                  * when both protocols are required (ESP should be applied
12300                  * before AH for an outbound packet). Force an ESP ACQUIRE
12301                  * when both ESP and AH are required, and an AH ACQUIRE
12302                  * is needed.
12303                  */
12304                 if (ap->ipa_want_esp && need_ah_acquire)
12305                         need_esp_acquire = B_TRUE;
12306         }
12307 
12308         /*
12309          * Send an ACQUIRE (extended, regular, or both) if we need one.
12310          * Release SAs that got referenced, but will not be used until we
12311          * acquire _all_ of the SAs we need.
12312          */
12313         if (need_ah_acquire || need_esp_acquire) {
12314                 if (ixa->ixa_ipsec_ah_sa != NULL) {
12315                         IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12316                         ixa->ixa_ipsec_ah_sa = NULL;
12317                 }
12318                 if (ixa->ixa_ipsec_esp_sa != NULL) {
12319                         IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12320                         ixa->ixa_ipsec_esp_sa = NULL;
12321                 }
12322 
12323                 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12324                 return (B_FALSE);
12325         }
12326 
12327         return (B_TRUE);
12328 }
12329 
12330 /*
12331  * Handle IPsec output processing.
12332  * This function is only entered once for a given packet.
12333  * We try to do things synchronously, but if we need to have user-level
12334  * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12335  * will be completed
12336  *  - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12337  *  - when asynchronous ESP is done it will do AH
12338  *
12339  * In all cases we come back in ip_output_post_ipsec() to fragment and
12340  * send out the packet.
12341  */
12342 int
12343 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12344 {
12345         ill_t           *ill = ixa->ixa_nce->nce_ill;
12346         ip_stack_t      *ipst = ixa->ixa_ipst;
12347         ipsec_stack_t   *ipss;
12348         ipsec_policy_t  *pp;
12349         ipsec_action_t  *ap;
12350 
12351         ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12352 
12353         ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12354             (ixa->ixa_ipsec_action != NULL));
12355 
12356         ipss = ipst->ips_netstack->netstack_ipsec;
12357         if (!ipsec_loaded(ipss)) {
12358                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12359                 ip_drop_packet(mp, B_TRUE, ill,
12360                     DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12361                     &ipss->ipsec_dropper);
12362                 return (ENOTSUP);
12363         }
12364 
12365         ap = ixa->ixa_ipsec_action;
12366         if (ap == NULL) {
12367                 pp = ixa->ixa_ipsec_policy;
12368                 ASSERT(pp != NULL);
12369                 ap = pp->ipsp_act;
12370                 ASSERT(ap != NULL);
12371         }
12372 
12373         /* Handle explicit drop action and bypass. */
12374         switch (ap->ipa_act.ipa_type) {
12375         case IPSEC_ACT_DISCARD:
12376         case IPSEC_ACT_REJECT:
12377                 ip_drop_packet(mp, B_FALSE, ill,
12378                     DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12379                 return (EHOSTUNREACH);  /* IPsec policy failure */
12380         case IPSEC_ACT_BYPASS:
12381                 return (ip_output_post_ipsec(mp, ixa));
12382         }
12383 
12384         /*
12385          * The order of processing is first insert a IP header if needed.
12386          * Then insert the ESP header and then the AH header.
12387          */
12388         if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12389                 /*
12390                  * First get the outer IP header before sending
12391                  * it to ESP.
12392                  */
12393                 ipha_t *oipha, *iipha;
12394                 mblk_t *outer_mp, *inner_mp;
12395 
12396                 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12397                         (void) mi_strlog(ill->ill_rq, 0,
12398                             SL_ERROR|SL_TRACE|SL_CONSOLE,
12399                             "ipsec_out_process: "
12400                             "Self-Encapsulation failed: Out of memory\n");
12401                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12402                         ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12403                         freemsg(mp);
12404                         return (ENOBUFS);
12405                 }
12406                 inner_mp = mp;
12407                 ASSERT(inner_mp->b_datap->db_type == M_DATA);
12408                 oipha = (ipha_t *)outer_mp->b_rptr;
12409                 iipha = (ipha_t *)inner_mp->b_rptr;
12410                 *oipha = *iipha;
12411                 outer_mp->b_wptr += sizeof (ipha_t);
12412                 oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12413                     sizeof (ipha_t));
12414                 oipha->ipha_protocol = IPPROTO_ENCAP;
12415                 oipha->ipha_version_and_hdr_length =
12416                     IP_SIMPLE_HDR_VERSION;
12417                 oipha->ipha_hdr_checksum = 0;
12418                 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12419                 outer_mp->b_cont = inner_mp;
12420                 mp = outer_mp;
12421 
12422                 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12423         }
12424 
12425         /* If we need to wait for a SA then we can't return any errno */
12426         if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12427             (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12428             !ipsec_out_select_sa(mp, ixa))
12429                 return (0);
12430 
12431         /*
12432          * By now, we know what SA's to use.  Toss over to ESP & AH
12433          * to do the heavy lifting.
12434          */
12435         if (ap->ipa_want_esp) {
12436                 ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
12437 
12438                 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12439                 if (mp == NULL) {
12440                         /*
12441                          * Either it failed or is pending. In the former case
12442                          * ipIfStatsInDiscards was increased.
12443                          */
12444                         return (0);
12445                 }
12446         }
12447 
12448         if (ap->ipa_want_ah) {
12449                 ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
12450 
12451                 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12452                 if (mp == NULL) {
12453                         /*
12454                          * Either it failed or is pending. In the former case
12455                          * ipIfStatsInDiscards was increased.
12456                          */
12457                         return (0);
12458                 }
12459         }
12460         /*
12461          * We are done with IPsec processing. Send it over
12462          * the wire.
12463          */
12464         return (ip_output_post_ipsec(mp, ixa));
12465 }
12466 
12467 /*
12468  * ioctls that go through a down/up sequence may need to wait for the down
12469  * to complete. This involves waiting for the ire and ipif refcnts to go down
12470  * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12471  */
12472 /* ARGSUSED */
12473 void
12474 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12475 {
12476         struct iocblk *iocp;
12477         mblk_t *mp1;
12478         ip_ioctl_cmd_t *ipip;
12479         int err;
12480         sin_t   *sin;
12481         struct lifreq *lifr;
12482         struct ifreq *ifr;
12483 
12484         iocp = (struct iocblk *)mp->b_rptr;
12485         ASSERT(ipsq != NULL);
12486         /* Existence of mp1 verified in ip_wput_nondata */
12487         mp1 = mp->b_cont->b_cont;
12488         ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12489         if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12490                 /*
12491                  * Special case where ipx_current_ipif is not set:
12492                  * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12493                  * We are here as were not able to complete the operation in
12494                  * ipif_set_values because we could not become exclusive on
12495                  * the new ipsq.
12496                  */
12497                 ill_t *ill = q->q_ptr;
12498                 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12499         }
12500         ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
12501 
12502         if (ipip->ipi_cmd_type == IF_CMD) {
12503                 /* This a old style SIOC[GS]IF* command */
12504                 ifr = (struct ifreq *)mp1->b_rptr;
12505                 sin = (sin_t *)&ifr->ifr_addr;
12506         } else if (ipip->ipi_cmd_type == LIF_CMD) {
12507                 /* This a new style SIOC[GS]LIF* command */
12508                 lifr = (struct lifreq *)mp1->b_rptr;
12509                 sin = (sin_t *)&lifr->lifr_addr;
12510         } else {
12511                 sin = NULL;
12512         }
12513 
12514         err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12515             q, mp, ipip, mp1->b_rptr);
12516 
12517         DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12518             int, ipip->ipi_cmd,
12519             ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12520             ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
12521 
12522         ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12523 }
12524 
12525 /*
12526  * ioctl processing
12527  *
12528  * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12529  * the ioctl command in the ioctl tables, determines the copyin data size
12530  * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12531  *
12532  * ioctl processing then continues when the M_IOCDATA makes its way down to
12533  * ip_wput_nondata().  The ioctl is looked up again in the ioctl table, its
12534  * associated 'conn' is refheld till the end of the ioctl and the general
12535  * ioctl processing function ip_process_ioctl() is called to extract the
12536  * arguments and process the ioctl.  To simplify extraction, ioctl commands
12537  * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12538  * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
12539  * is used to extract the ioctl's arguments.
12540  *
12541  * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12542  * so goes thru the serialization primitive ipsq_try_enter. Then the
12543  * appropriate function to handle the ioctl is called based on the entry in
12544  * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12545  * which also refreleases the 'conn' that was refheld at the start of the
12546  * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12547  *
12548  * Many exclusive ioctls go thru an internal down up sequence as part of
12549  * the operation. For example an attempt to change the IP address of an
12550  * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12551  * does all the cleanup such as deleting all ires that use this address.
12552  * Then we need to wait till all references to the interface go away.
12553  */
12554 void
12555 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12556 {
12557         struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12558         ip_ioctl_cmd_t *ipip = arg;
12559         ip_extract_func_t *extract_funcp;
12560         cmd_info_t ci;
12561         int err;
12562         boolean_t entered_ipsq = B_FALSE;
12563 
12564         ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
12565 
12566         if (ipip == NULL)
12567                 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12568 
12569         /*
12570          * SIOCLIFADDIF needs to go thru a special path since the
12571          * ill may not exist yet. This happens in the case of lo0
12572          * which is created using this ioctl.
12573          */
12574         if (ipip->ipi_cmd == SIOCLIFADDIF) {
12575                 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12576                 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12577                     int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12578                 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12579                 return;
12580         }
12581 
12582         ci.ci_ipif = NULL;
12583         switch (ipip->ipi_cmd_type) {
12584         case MISC_CMD:
12585         case MSFILT_CMD:
12586                 /*
12587                  * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12588                  */
12589                 if (ipip->ipi_cmd == IF_UNITSEL) {
12590                         /* ioctl comes down the ill */
12591                         ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12592                         ipif_refhold(ci.ci_ipif);
12593                 }
12594                 err = 0;
12595                 ci.ci_sin = NULL;
12596                 ci.ci_sin6 = NULL;
12597                 ci.ci_lifr = NULL;
12598                 extract_funcp = NULL;
12599                 break;
12600 
12601         case IF_CMD:
12602         case LIF_CMD:
12603                 extract_funcp = ip_extract_lifreq;
12604                 break;
12605 
12606         case ARP_CMD:
12607         case XARP_CMD:
12608                 extract_funcp = ip_extract_arpreq;
12609                 break;
12610 
12611         default:
12612                 ASSERT(0);
12613         }
12614 
12615         if (extract_funcp != NULL) {
12616                 err = (*extract_funcp)(q, mp, ipip, &ci);
12617                 if (err != 0) {
12618                         DTRACE_PROBE4(ipif__ioctl,
12619                             char *, "ip_process_ioctl finish err",
12620                             int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12621                         ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12622                         return;
12623                 }
12624 
12625                 /*
12626                  * All of the extraction functions return a refheld ipif.
12627                  */
12628                 ASSERT(ci.ci_ipif != NULL);
12629         }
12630 
12631         if (!(ipip->ipi_flags & IPI_WR)) {
12632                 /*
12633                  * A return value of EINPROGRESS means the ioctl is
12634                  * either queued and waiting for some reason or has
12635                  * already completed.
12636                  */
12637                 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12638                     ci.ci_lifr);
12639                 if (ci.ci_ipif != NULL) {
12640                         DTRACE_PROBE4(ipif__ioctl,
12641                             char *, "ip_process_ioctl finish RD",
12642                             int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12643                             ipif_t *, ci.ci_ipif);
12644                         ipif_refrele(ci.ci_ipif);
12645                 } else {
12646                         DTRACE_PROBE4(ipif__ioctl,
12647                             char *, "ip_process_ioctl finish RD",
12648                             int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12649                 }
12650                 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12651                 return;
12652         }
12653 
12654         ASSERT(ci.ci_ipif != NULL);
12655 
12656         /*
12657          * If ipsq is non-NULL, we are already being called exclusively
12658          */
12659         ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12660         if (ipsq == NULL) {
12661                 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12662                     NEW_OP, B_TRUE);
12663                 if (ipsq == NULL) {
12664                         ipif_refrele(ci.ci_ipif);
12665                         return;
12666                 }
12667                 entered_ipsq = B_TRUE;
12668         }
12669         /*
12670          * Release the ipif so that ipif_down and friends that wait for
12671          * references to go away are not misled about the current ipif_refcnt
12672          * values. We are writer so we can access the ipif even after releasing
12673          * the ipif.
12674          */
12675         ipif_refrele(ci.ci_ipif);
12676 
12677         ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
12678 
12679         /*
12680          * A return value of EINPROGRESS means the ioctl is
12681          * either queued and waiting for some reason or has
12682          * already completed.
12683          */
12684         err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
12685 
12686         DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12687             int, ipip->ipi_cmd,
12688             ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12689             ipif_t *, ci.ci_ipif);
12690         ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12691 
12692         if (entered_ipsq)
12693                 ipsq_exit(ipsq);
12694 }
12695 
12696 /*
12697  * Complete the ioctl. Typically ioctls use the mi package and need to
12698  * do mi_copyout/mi_copy_done.
12699  */
12700 void
12701 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12702 {
12703         conn_t  *connp = NULL;
12704 
12705         if (err == EINPROGRESS)
12706                 return;
12707 
12708         if (CONN_Q(q)) {
12709                 connp = Q_TO_CONN(q);
12710                 ASSERT(connp->conn_ref >= 2);
12711         }
12712 
12713         switch (mode) {
12714         case COPYOUT:
12715                 if (err == 0)
12716                         mi_copyout(q, mp);
12717                 else
12718                         mi_copy_done(q, mp, err);
12719                 break;
12720 
12721         case NO_COPYOUT:
12722                 mi_copy_done(q, mp, err);
12723                 break;
12724 
12725         default:
12726                 ASSERT(mode == CONN_CLOSE);     /* aborted through CONN_CLOSE */
12727                 break;
12728         }
12729 
12730         /*
12731          * The conn refhold and ioctlref placed on the conn at the start of the
12732          * ioctl are released here.
12733          */
12734         if (connp != NULL) {
12735                 CONN_DEC_IOCTLREF(connp);
12736                 CONN_OPER_PENDING_DONE(connp);
12737         }
12738 
12739         if (ipsq != NULL)
12740                 ipsq_current_finish(ipsq);
12741 }
12742 
12743 /* Handles all non data messages */
12744 void
12745 ip_wput_nondata(queue_t *q, mblk_t *mp)
12746 {
12747         mblk_t          *mp1;
12748         struct iocblk   *iocp;
12749         ip_ioctl_cmd_t  *ipip;
12750         conn_t          *connp;
12751         cred_t          *cr;
12752         char            *proto_str;
12753 
12754         if (CONN_Q(q))
12755                 connp = Q_TO_CONN(q);
12756         else
12757                 connp = NULL;
12758 
12759         switch (DB_TYPE(mp)) {
12760         case M_IOCTL:
12761                 /*
12762                  * IOCTL processing begins in ip_sioctl_copyin_setup which
12763                  * will arrange to copy in associated control structures.
12764                  */
12765                 ip_sioctl_copyin_setup(q, mp);
12766                 return;
12767         case M_IOCDATA:
12768                 /*
12769                  * Ensure that this is associated with one of our trans-
12770                  * parent ioctls.  If it's not ours, discard it if we're
12771                  * running as a driver, or pass it on if we're a module.
12772                  */
12773                 iocp = (struct iocblk *)mp->b_rptr;
12774                 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12775                 if (ipip == NULL) {
12776                         if (q->q_next == NULL) {
12777                                 goto nak;
12778                         } else {
12779                                 putnext(q, mp);
12780                         }
12781                         return;
12782                 }
12783                 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12784                         /*
12785                          * The ioctl is one we recognise, but is not consumed
12786                          * by IP as a module and we are a module, so we drop
12787                          */
12788                         goto nak;
12789                 }
12790 
12791                 /* IOCTL continuation following copyin or copyout. */
12792                 if (mi_copy_state(q, mp, NULL) == -1) {
12793                         /*
12794                          * The copy operation failed.  mi_copy_state already
12795                          * cleaned up, so we're out of here.
12796                          */
12797                         return;
12798                 }
12799                 /*
12800                  * If we just completed a copy in, we become writer and
12801                  * continue processing in ip_sioctl_copyin_done.  If it
12802                  * was a copy out, we call mi_copyout again.  If there is
12803                  * nothing more to copy out, it will complete the IOCTL.
12804                  */
12805                 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12806                         if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12807                                 mi_copy_done(q, mp, EPROTO);
12808                                 return;
12809                         }
12810                         /*
12811                          * Check for cases that need more copying.  A return
12812                          * value of 0 means a second copyin has been started,
12813                          * so we return; a return value of 1 means no more
12814                          * copying is needed, so we continue.
12815                          */
12816                         if (ipip->ipi_cmd_type == MSFILT_CMD &&
12817                             MI_COPY_COUNT(mp) == 1) {
12818                                 if (ip_copyin_msfilter(q, mp) == 0)
12819                                         return;
12820                         }
12821                         /*
12822                          * Refhold the conn, till the ioctl completes. This is
12823                          * needed in case the ioctl ends up in the pending mp
12824                          * list. Every mp in the ipx_pending_mp list must have
12825                          * a refhold on the conn to resume processing. The
12826                          * refhold is released when the ioctl completes
12827                          * (whether normally or abnormally). An ioctlref is also
12828                          * placed on the conn to prevent TCP from removing the
12829                          * queue needed to send the ioctl reply back.
12830                          * In all cases ip_ioctl_finish is called to finish
12831                          * the ioctl and release the refholds.
12832                          */
12833                         if (connp != NULL) {
12834                                 /* This is not a reentry */
12835                                 CONN_INC_REF(connp);
12836                                 CONN_INC_IOCTLREF(connp);
12837                         } else {
12838                                 if (!(ipip->ipi_flags & IPI_MODOK)) {
12839                                         mi_copy_done(q, mp, EINVAL);
12840                                         return;
12841                                 }
12842                         }
12843 
12844                         ip_process_ioctl(NULL, q, mp, ipip);
12845 
12846                 } else {
12847                         mi_copyout(q, mp);
12848                 }
12849                 return;
12850 
12851         case M_IOCNAK:
12852                 /*
12853                  * The only way we could get here is if a resolver didn't like
12854                  * an IOCTL we sent it.  This shouldn't happen.
12855                  */
12856                 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12857                     "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12858                     ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12859                 freemsg(mp);
12860                 return;
12861         case M_IOCACK:
12862                 /* /dev/ip shouldn't see this */
12863                 goto nak;
12864         case M_FLUSH:
12865                 if (*mp->b_rptr & FLUSHW)
12866                         flushq(q, FLUSHALL);
12867                 if (q->q_next) {
12868                         putnext(q, mp);
12869                         return;
12870                 }
12871                 if (*mp->b_rptr & FLUSHR) {
12872                         *mp->b_rptr &= ~FLUSHW;
12873                         qreply(q, mp);
12874                         return;
12875                 }
12876                 freemsg(mp);
12877                 return;
12878         case M_CTL:
12879                 break;
12880         case M_PROTO:
12881         case M_PCPROTO:
12882                 /*
12883                  * The only PROTO messages we expect are SNMP-related.
12884                  */
12885                 switch (((union T_primitives *)mp->b_rptr)->type) {
12886                 case T_SVR4_OPTMGMT_REQ:
12887                         ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12888                             "flags %x\n",
12889                             ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
12890 
12891                         if (connp == NULL) {
12892                                 proto_str = "T_SVR4_OPTMGMT_REQ";
12893                                 goto protonak;
12894                         }
12895 
12896                         /*
12897                          * All Solaris components should pass a db_credp
12898                          * for this TPI message, hence we ASSERT.
12899                          * But in case there is some other M_PROTO that looks
12900                          * like a TPI message sent by some other kernel
12901                          * component, we check and return an error.
12902                          */
12903                         cr = msg_getcred(mp, NULL);
12904                         ASSERT(cr != NULL);
12905                         if (cr == NULL) {
12906                                 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12907                                 if (mp != NULL)
12908                                         qreply(q, mp);
12909                                 return;
12910                         }
12911 
12912                         if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12913                                 proto_str = "Bad SNMPCOM request?";
12914                                 goto protonak;
12915                         }
12916                         return;
12917                 default:
12918                         ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12919                             (int)*(uint_t *)mp->b_rptr));
12920                         freemsg(mp);
12921                         return;
12922                 }
12923         default:
12924                 break;
12925         }
12926         if (q->q_next) {
12927                 putnext(q, mp);
12928         } else
12929                 freemsg(mp);
12930         return;
12931 
12932 nak:
12933         iocp->ioc_error = EINVAL;
12934         mp->b_datap->db_type = M_IOCNAK;
12935         iocp->ioc_count = 0;
12936         qreply(q, mp);
12937         return;
12938 
12939 protonak:
12940         cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
12941         if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12942                 qreply(q, mp);
12943 }
12944 
12945 /*
12946  * Process IP options in an outbound packet.  Verify that the nexthop in a
12947  * strict source route is onlink.
12948  * Returns non-zero if something fails in which case an ICMP error has been
12949  * sent and mp freed.
12950  *
12951  * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12952  */
12953 int
12954 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12955 {
12956         ipoptp_t        opts;
12957         uchar_t         *opt;
12958         uint8_t         optval;
12959         uint8_t         optlen;
12960         ipaddr_t        dst;
12961         intptr_t        code = 0;
12962         ire_t           *ire;
12963         ip_stack_t      *ipst = ixa->ixa_ipst;
12964         ip_recv_attr_t  iras;
12965 
12966         ip2dbg(("ip_output_options\n"));
12967 
12968         dst = ipha->ipha_dst;
12969         for (optval = ipoptp_first(&opts, ipha);
12970             optval != IPOPT_EOL;
12971             optval = ipoptp_next(&opts)) {
12972                 opt = opts.ipoptp_cur;
12973                 optlen = opts.ipoptp_len;
12974                 ip2dbg(("ip_output_options: opt %d, len %d\n",
12975                     optval, optlen));
12976                 switch (optval) {
12977                         uint32_t off;
12978                 case IPOPT_SSRR:
12979                 case IPOPT_LSRR:
12980                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12981                                 ip1dbg((
12982                                     "ip_output_options: bad option offset\n"));
12983                                 code = (char *)&opt[IPOPT_OLEN] -
12984                                     (char *)ipha;
12985                                 goto param_prob;
12986                         }
12987                         off = opt[IPOPT_OFFSET];
12988                         ip1dbg(("ip_output_options: next hop 0x%x\n",
12989                             ntohl(dst)));
12990                         /*
12991                          * For strict: verify that dst is directly
12992                          * reachable.
12993                          */
12994                         if (optval == IPOPT_SSRR) {
12995                                 ire = ire_ftable_lookup_v4(dst, 0, 0,
12996                                     IRE_INTERFACE, NULL, ALL_ZONES,
12997                                     ixa->ixa_tsl,
12998                                     MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
12999                                     NULL);
13000                                 if (ire == NULL) {
13001                                         ip1dbg(("ip_output_options: SSRR not"
13002                                             " directly reachable: 0x%x\n",
13003                                             ntohl(dst)));
13004                                         goto bad_src_route;
13005                                 }
13006                                 ire_refrele(ire);
13007                         }
13008                         break;
13009                 case IPOPT_RR:
13010                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13011                                 ip1dbg((
13012                                     "ip_output_options: bad option offset\n"));
13013                                 code = (char *)&opt[IPOPT_OLEN] -
13014                                     (char *)ipha;
13015                                 goto param_prob;
13016                         }
13017                         break;
13018                 case IPOPT_TS:
13019                         /*
13020                          * Verify that length >=5 and that there is either
13021                          * room for another timestamp or that the overflow
13022                          * counter is not maxed out.
13023                          */
13024                         code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
13025                         if (optlen < IPOPT_MINLEN_IT) {
13026                                 goto param_prob;
13027                         }
13028                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13029                                 ip1dbg((
13030                                     "ip_output_options: bad option offset\n"));
13031                                 code = (char *)&opt[IPOPT_OFFSET] -
13032                                     (char *)ipha;
13033                                 goto param_prob;
13034                         }
13035                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13036                         case IPOPT_TS_TSONLY:
13037                                 off = IPOPT_TS_TIMELEN;
13038                                 break;
13039                         case IPOPT_TS_TSANDADDR:
13040                         case IPOPT_TS_PRESPEC:
13041                         case IPOPT_TS_PRESPEC_RFC791:
13042                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13043                                 break;
13044                         default:
13045                                 code = (char *)&opt[IPOPT_POS_OV_FLG] -
13046                                     (char *)ipha;
13047                                 goto param_prob;
13048                         }
13049                         if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13050                             (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13051                                 /*
13052                                  * No room and the overflow counter is 15
13053                                  * already.
13054                                  */
13055                                 goto param_prob;
13056                         }
13057                         break;
13058                 }
13059         }
13060 
13061         if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13062                 return (0);
13063 
13064         ip1dbg(("ip_output_options: error processing IP options."));
13065         code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
13066 
13067 param_prob:
13068         bzero(&iras, sizeof (iras));
13069         iras.ira_ill = iras.ira_rill = ill;
13070         iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13071         iras.ira_rifindex = iras.ira_ruifindex;
13072         iras.ira_flags = IRAF_IS_IPV4;
13073 
13074         ip_drop_output("ip_output_options", mp, ill);
13075         icmp_param_problem(mp, (uint8_t)code, &iras);
13076         ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13077         return (-1);
13078 
13079 bad_src_route:
13080         bzero(&iras, sizeof (iras));
13081         iras.ira_ill = iras.ira_rill = ill;
13082         iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13083         iras.ira_rifindex = iras.ira_ruifindex;
13084         iras.ira_flags = IRAF_IS_IPV4;
13085 
13086         ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13087         icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13088         ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13089         return (-1);
13090 }
13091 
13092 /*
13093  * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13094  * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13095  * thru /etc/system.
13096  */
13097 #define CONN_MAXDRAINCNT        64
13098 
13099 static void
13100 conn_drain_init(ip_stack_t *ipst)
13101 {
13102         int i, j;
13103         idl_tx_list_t *itl_tx;
13104 
13105         ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
13106 
13107         if ((ipst->ips_conn_drain_list_cnt == 0) ||
13108             (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13109                 /*
13110                  * Default value of the number of drainers is the
13111                  * number of cpus, subject to maximum of 8 drainers.
13112                  */
13113                 if (boot_max_ncpus != -1)
13114                         ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13115                 else
13116                         ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13117         }
13118 
13119         ipst->ips_idl_tx_list =
13120             kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13121         for (i = 0; i < TX_FANOUT_SIZE; i++) {
13122                 itl_tx =  &ipst->ips_idl_tx_list[i];
13123                 itl_tx->txl_drain_list =
13124                     kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13125                     sizeof (idl_t), KM_SLEEP);
13126                 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13127                 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13128                         mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13129                             MUTEX_DEFAULT, NULL);
13130                         itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13131                 }
13132         }
13133 }
13134 
13135 static void
13136 conn_drain_fini(ip_stack_t *ipst)
13137 {
13138         int i;
13139         idl_tx_list_t *itl_tx;
13140 
13141         for (i = 0; i < TX_FANOUT_SIZE; i++) {
13142                 itl_tx =  &ipst->ips_idl_tx_list[i];
13143                 kmem_free(itl_tx->txl_drain_list,
13144                     ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13145         }
13146         kmem_free(ipst->ips_idl_tx_list,
13147             TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13148         ipst->ips_idl_tx_list = NULL;
13149 }
13150 
13151 /*
13152  * Flow control has blocked us from proceeding.  Insert the given conn in one
13153  * of the conn drain lists.  When flow control is unblocked, either ip_wsrv()
13154  * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn
13155  * will call conn_walk_drain().  See the flow control notes at the top of this
13156  * file for more details.
13157  */
13158 void
13159 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13160 {
13161         idl_t   *idl = tx_list->txl_drain_list;
13162         uint_t  index;
13163         ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
13164 
13165         mutex_enter(&connp->conn_lock);
13166         if (connp->conn_state_flags & CONN_CLOSING) {
13167                 /*
13168                  * The conn is closing as a result of which CONN_CLOSING
13169                  * is set. Return.
13170                  */
13171                 mutex_exit(&connp->conn_lock);
13172                 return;
13173         } else if (connp->conn_idl == NULL) {
13174                 /*
13175                  * Assign the next drain list round robin. We dont' use
13176                  * a lock, and thus it may not be strictly round robin.
13177                  * Atomicity of load/stores is enough to make sure that
13178                  * conn_drain_list_index is always within bounds.
13179                  */
13180                 index = tx_list->txl_drain_index;
13181                 ASSERT(index < ipst->ips_conn_drain_list_cnt);
13182                 connp->conn_idl = &tx_list->txl_drain_list[index];
13183                 index++;
13184                 if (index == ipst->ips_conn_drain_list_cnt)
13185                         index = 0;
13186                 tx_list->txl_drain_index = index;
13187         } else {
13188                 ASSERT(connp->conn_idl->idl_itl == tx_list);
13189         }
13190         mutex_exit(&connp->conn_lock);
13191 
13192         idl = connp->conn_idl;
13193         mutex_enter(&idl->idl_lock);
13194         if ((connp->conn_drain_prev != NULL) ||
13195             (connp->conn_state_flags & CONN_CLOSING)) {
13196                 /*
13197                  * The conn is either already in the drain list or closing.
13198                  * (We needed to check for CONN_CLOSING again since close can
13199                  * sneak in between dropping conn_lock and acquiring idl_lock.)
13200                  */
13201                 mutex_exit(&idl->idl_lock);
13202                 return;
13203         }
13204 
13205         /*
13206          * The conn is not in the drain list. Insert it at the
13207          * tail of the drain list. The drain list is circular
13208          * and doubly linked. idl_conn points to the 1st element
13209          * in the list.
13210          */
13211         if (idl->idl_conn == NULL) {
13212                 idl->idl_conn = connp;
13213                 connp->conn_drain_next = connp;
13214                 connp->conn_drain_prev = connp;
13215         } else {
13216                 conn_t *head = idl->idl_conn;
13217 
13218                 connp->conn_drain_next = head;
13219                 connp->conn_drain_prev = head->conn_drain_prev;
13220                 head->conn_drain_prev->conn_drain_next = connp;
13221                 head->conn_drain_prev = connp;
13222         }
13223         /*
13224          * For non streams based sockets assert flow control.
13225          */
13226         conn_setqfull(connp, NULL);
13227         mutex_exit(&idl->idl_lock);
13228 }
13229 
13230 static void
13231 conn_drain_remove(conn_t *connp)
13232 {
13233         idl_t *idl = connp->conn_idl;
13234 
13235         if (idl != NULL) {
13236                 /*
13237                  * Remove ourself from the drain list.
13238                  */
13239                 if (connp->conn_drain_next == connp) {
13240                         /* Singleton in the list */
13241                         ASSERT(connp->conn_drain_prev == connp);
13242                         idl->idl_conn = NULL;
13243                 } else {
13244                         connp->conn_drain_prev->conn_drain_next =
13245                             connp->conn_drain_next;
13246                         connp->conn_drain_next->conn_drain_prev =
13247                             connp->conn_drain_prev;
13248                         if (idl->idl_conn == connp)
13249                                 idl->idl_conn = connp->conn_drain_next;
13250                 }
13251 
13252                 /*
13253                  * NOTE: because conn_idl is associated with a specific drain
13254                  * list which in turn is tied to the index the TX ring
13255                  * (txl_cookie) hashes to, and because the TX ring can change
13256                  * over the lifetime of the conn_t, we must clear conn_idl so
13257                  * a subsequent conn_drain_insert() will set conn_idl again
13258                  * based on the latest txl_cookie.
13259                  */
13260                 connp->conn_idl = NULL;
13261         }
13262         connp->conn_drain_next = NULL;
13263         connp->conn_drain_prev = NULL;
13264 
13265         conn_clrqfull(connp, NULL);
13266         /*
13267          * For streams based sockets open up flow control.
13268          */
13269         if (!IPCL_IS_NONSTR(connp))
13270                 enableok(connp->conn_wq);
13271 }
13272 
13273 /*
13274  * This conn is closing, and we are called from ip_close. OR
13275  * this conn is draining because flow-control on the ill has been relieved.
13276  *
13277  * We must also need to remove conn's on this idl from the list, and also
13278  * inform the sockfs upcalls about the change in flow-control.
13279  */
13280 static void
13281 conn_drain(conn_t *connp, boolean_t closing)
13282 {
13283         idl_t *idl;
13284         conn_t *next_connp;
13285 
13286         /*
13287          * connp->conn_idl is stable at this point, and no lock is needed
13288          * to check it. If we are called from ip_close, close has already
13289          * set CONN_CLOSING, thus freezing the value of conn_idl, and
13290          * called us only because conn_idl is non-null. If we are called thru
13291          * service, conn_idl could be null, but it cannot change because
13292          * service is single-threaded per queue, and there cannot be another
13293          * instance of service trying to call conn_drain_insert on this conn
13294          * now.
13295          */
13296         ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
13297 
13298         /*
13299          * If the conn doesn't exist or is not on a drain list, bail.
13300          */
13301         if (connp == NULL || connp->conn_idl == NULL ||
13302             connp->conn_drain_prev == NULL) {
13303                 return;
13304         }
13305 
13306         idl = connp->conn_idl;
13307         ASSERT(MUTEX_HELD(&idl->idl_lock));
13308 
13309         if (!closing) {
13310                 next_connp = connp->conn_drain_next;
13311                 while (next_connp != connp) {
13312                         conn_t *delconnp = next_connp;
13313 
13314                         next_connp = next_connp->conn_drain_next;
13315                         conn_drain_remove(delconnp);
13316                 }
13317                 ASSERT(connp->conn_drain_next == idl->idl_conn);
13318         }
13319         conn_drain_remove(connp);
13320 }
13321 
13322 /*
13323  * Write service routine. Shared perimeter entry point.
13324  * The device queue's messages has fallen below the low water mark and STREAMS
13325  * has backenabled the ill_wq. Send sockfs notification about flow-control on
13326  * each waiting conn.
13327  */
13328 void
13329 ip_wsrv(queue_t *q)
13330 {
13331         ill_t   *ill;
13332 
13333         ill = (ill_t *)q->q_ptr;
13334         if (ill->ill_state_flags == 0) {
13335                 ip_stack_t *ipst = ill->ill_ipst;
13336 
13337                 /*
13338                  * The device flow control has opened up.
13339                  * Walk through conn drain lists and qenable the
13340                  * first conn in each list. This makes sense only
13341                  * if the stream is fully plumbed and setup.
13342                  * Hence the ill_state_flags check above.
13343                  */
13344                 ip1dbg(("ip_wsrv: walking\n"));
13345                 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13346                 enableok(ill->ill_wq);
13347         }
13348 }
13349 
13350 /*
13351  * Callback to disable flow control in IP.
13352  *
13353  * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13354  * is enabled.
13355  *
13356  * When MAC_TX() is not able to send any more packets, dld sets its queue
13357  * to QFULL and enable the STREAMS flow control. Later, when the underlying
13358  * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13359  * function and wakes up corresponding mac worker threads, which in turn
13360  * calls this callback function, and disables flow control.
13361  */
13362 void
13363 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13364 {
13365         ill_t *ill = (ill_t *)arg;
13366         ip_stack_t *ipst = ill->ill_ipst;
13367         idl_tx_list_t *idl_txl;
13368 
13369         idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13370         mutex_enter(&idl_txl->txl_lock);
13371         /* add code to to set a flag to indicate idl_txl is enabled */
13372         conn_walk_drain(ipst, idl_txl);
13373         mutex_exit(&idl_txl->txl_lock);
13374 }
13375 
13376 /*
13377  * Flow control has been relieved and STREAMS has backenabled us; drain
13378  * all the conn lists on `tx_list'.
13379  */
13380 static void
13381 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13382 {
13383         int i;
13384         idl_t *idl;
13385 
13386         IP_STAT(ipst, ip_conn_walk_drain);
13387 
13388         for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13389                 idl = &tx_list->txl_drain_list[i];
13390                 mutex_enter(&idl->idl_lock);
13391                 conn_drain(idl->idl_conn, B_FALSE);
13392                 mutex_exit(&idl->idl_lock);
13393         }
13394 }
13395 
13396 /*
13397  * Determine if the ill and multicast aspects of that packets
13398  * "matches" the conn.
13399  */
13400 boolean_t
13401 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13402 {
13403         ill_t           *ill = ira->ira_rill;
13404         zoneid_t        zoneid = ira->ira_zoneid;
13405         uint_t          in_ifindex;
13406         ipaddr_t        dst, src;
13407 
13408         dst = ipha->ipha_dst;
13409         src = ipha->ipha_src;
13410 
13411         /*
13412          * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13413          * unicast, broadcast and multicast reception to
13414          * conn_incoming_ifindex.
13415          * conn_wantpacket is called for unicast, broadcast and
13416          * multicast packets.
13417          */
13418         in_ifindex = connp->conn_incoming_ifindex;
13419 
13420         /* mpathd can bind to the under IPMP interface, which we allow */
13421         if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13422                 if (!IS_UNDER_IPMP(ill))
13423                         return (B_FALSE);
13424 
13425                 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13426                         return (B_FALSE);
13427         }
13428 
13429         if (!IPCL_ZONE_MATCH(connp, zoneid))
13430                 return (B_FALSE);
13431 
13432         if (!(ira->ira_flags & IRAF_MULTICAST))
13433                 return (B_TRUE);
13434 
13435         if (connp->conn_multi_router) {
13436                 /* multicast packet and multicast router socket: send up */
13437                 return (B_TRUE);
13438         }
13439 
13440         if (ipha->ipha_protocol == IPPROTO_PIM ||
13441             ipha->ipha_protocol == IPPROTO_RSVP)
13442                 return (B_TRUE);
13443 
13444         return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13445 }
13446 
13447 void
13448 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13449 {
13450         if (IPCL_IS_NONSTR(connp)) {
13451                 (*connp->conn_upcalls->su_txq_full)
13452                     (connp->conn_upper_handle, B_TRUE);
13453                 if (flow_stopped != NULL)
13454                         *flow_stopped = B_TRUE;
13455         } else {
13456                 queue_t *q = connp->conn_wq;
13457 
13458                 ASSERT(q != NULL);
13459                 if (!(q->q_flag & QFULL)) {
13460                         mutex_enter(QLOCK(q));
13461                         if (!(q->q_flag & QFULL)) {
13462                                 /* still need to set QFULL */
13463                                 q->q_flag |= QFULL;
13464                                 /* set flow_stopped to true under QLOCK */
13465                                 if (flow_stopped != NULL)
13466                                         *flow_stopped = B_TRUE;
13467                                 mutex_exit(QLOCK(q));
13468                         } else {
13469                                 /* flow_stopped is left unchanged */
13470                                 mutex_exit(QLOCK(q));
13471                         }
13472                 }
13473         }
13474 }
13475 
13476 void
13477 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13478 {
13479         if (IPCL_IS_NONSTR(connp)) {
13480                 (*connp->conn_upcalls->su_txq_full)
13481                     (connp->conn_upper_handle, B_FALSE);
13482                 if (flow_stopped != NULL)
13483                         *flow_stopped = B_FALSE;
13484         } else {
13485                 queue_t *q = connp->conn_wq;
13486 
13487                 ASSERT(q != NULL);
13488                 if (q->q_flag & QFULL) {
13489                         mutex_enter(QLOCK(q));
13490                         if (q->q_flag & QFULL) {
13491                                 q->q_flag &= ~QFULL;
13492                                 /* set flow_stopped to false under QLOCK */
13493                                 if (flow_stopped != NULL)
13494                                         *flow_stopped = B_FALSE;
13495                                 mutex_exit(QLOCK(q));
13496                                 if (q->q_flag & QWANTW)
13497                                         qbackenable(q, 0);
13498                         } else {
13499                                 /* flow_stopped is left unchanged */
13500                                 mutex_exit(QLOCK(q));
13501                         }
13502                 }
13503         }
13504 
13505         mutex_enter(&connp->conn_lock);
13506         connp->conn_blocked = B_FALSE;
13507         mutex_exit(&connp->conn_lock);
13508 }
13509 
13510 /*
13511  * Return the length in bytes of the IPv4 headers (base header, label, and
13512  * other IP options) that will be needed based on the
13513  * ip_pkt_t structure passed by the caller.
13514  *
13515  * The returned length does not include the length of the upper level
13516  * protocol (ULP) header.
13517  * The caller needs to check that the length doesn't exceed the max for IPv4.
13518  */
13519 int
13520 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13521 {
13522         int len;
13523 
13524         len = IP_SIMPLE_HDR_LENGTH;
13525         if (ipp->ipp_fields & IPPF_LABEL_V4) {
13526                 ASSERT(ipp->ipp_label_len_v4 != 0);
13527                 /* We need to round up here */
13528                 len += (ipp->ipp_label_len_v4 + 3) & ~3;
13529         }
13530 
13531         if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13532                 ASSERT(ipp->ipp_ipv4_options_len != 0);
13533                 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13534                 len += ipp->ipp_ipv4_options_len;
13535         }
13536         return (len);
13537 }
13538 
13539 /*
13540  * All-purpose routine to build an IPv4 header with options based
13541  * on the abstract ip_pkt_t.
13542  *
13543  * The caller has to set the source and destination address as well as
13544  * ipha_length. The caller has to massage any source route and compensate
13545  * for the ULP pseudo-header checksum due to the source route.
13546  */
13547 void
13548 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13549     uint8_t protocol)
13550 {
13551         ipha_t  *ipha = (ipha_t *)buf;
13552         uint8_t *cp;
13553 
13554         /* Initialize IPv4 header */
13555         ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13556         ipha->ipha_length = 0;       /* Caller will set later */
13557         ipha->ipha_ident = 0;
13558         ipha->ipha_fragment_offset_and_flags = 0;
13559         ipha->ipha_ttl = ipp->ipp_unicast_hops;
13560         ipha->ipha_protocol = protocol;
13561         ipha->ipha_hdr_checksum = 0;
13562 
13563         if ((ipp->ipp_fields & IPPF_ADDR) &&
13564             IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13565                 ipha->ipha_src = ipp->ipp_addr_v4;
13566 
13567         cp = (uint8_t *)&ipha[1];
13568         if (ipp->ipp_fields & IPPF_LABEL_V4) {
13569                 ASSERT(ipp->ipp_label_len_v4 != 0);
13570                 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13571                 cp += ipp->ipp_label_len_v4;
13572                 /* We need to round up here */
13573                 while ((uintptr_t)cp & 0x3) {
13574                         *cp++ = IPOPT_NOP;
13575                 }
13576         }
13577 
13578         if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13579                 ASSERT(ipp->ipp_ipv4_options_len != 0);
13580                 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13581                 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13582                 cp += ipp->ipp_ipv4_options_len;
13583         }
13584         ipha->ipha_version_and_hdr_length =
13585             (uint8_t)((IP_VERSION << 4) + buf_len / 4);
13586 
13587         ASSERT((int)(cp - buf) == buf_len);
13588 }
13589 
13590 /* Allocate the private structure */
13591 static int
13592 ip_priv_alloc(void **bufp)
13593 {
13594         void    *buf;
13595 
13596         if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13597                 return (ENOMEM);
13598 
13599         *bufp = buf;
13600         return (0);
13601 }
13602 
13603 /* Function to delete the private structure */
13604 void
13605 ip_priv_free(void *buf)
13606 {
13607         ASSERT(buf != NULL);
13608         kmem_free(buf, sizeof (ip_priv_t));
13609 }
13610 
13611 /*
13612  * The entry point for IPPF processing.
13613  * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13614  * routine just returns.
13615  *
13616  * When called, ip_process generates an ipp_packet_t structure
13617  * which holds the state information for this packet and invokes the
13618  * the classifier (via ipp_packet_process). The classification, depending on
13619  * configured filters, results in a list of actions for this packet. Invoking
13620  * an action may cause the packet to be dropped, in which case we return NULL.
13621  * proc indicates the callout position for
13622  * this packet and ill is the interface this packet arrived on or will leave
13623  * on (inbound and outbound resp.).
13624  *
13625  * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13626  * on the ill corrsponding to the destination IP address.
13627  */
13628 mblk_t *
13629 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13630 {
13631         ip_priv_t       *priv;
13632         ipp_action_id_t aid;
13633         int             rc = 0;
13634         ipp_packet_t    *pp;
13635 
13636         /* If the classifier is not loaded, return  */
13637         if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13638                 return (mp);
13639         }
13640 
13641         ASSERT(mp != NULL);
13642 
13643         /* Allocate the packet structure */
13644         rc = ipp_packet_alloc(&pp, "ip", aid);
13645         if (rc != 0)
13646                 goto drop;
13647 
13648         /* Allocate the private structure */
13649         rc = ip_priv_alloc((void **)&priv);
13650         if (rc != 0) {
13651                 ipp_packet_free(pp);
13652                 goto drop;
13653         }
13654         priv->proc = proc;
13655         priv->ill_index = ill_get_upper_ifindex(rill);
13656 
13657         ipp_packet_set_private(pp, priv, ip_priv_free);
13658         ipp_packet_set_data(pp, mp);
13659 
13660         /* Invoke the classifier */
13661         rc = ipp_packet_process(&pp);
13662         if (pp != NULL) {
13663                 mp = ipp_packet_get_data(pp);
13664                 ipp_packet_free(pp);
13665                 if (rc != 0)
13666                         goto drop;
13667                 return (mp);
13668         } else {
13669                 /* No mp to trace in ip_drop_input/ip_drop_output  */
13670                 mp = NULL;
13671         }
13672 drop:
13673         if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13674                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13675                 ip_drop_input("ip_process", mp, ill);
13676         } else {
13677                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13678                 ip_drop_output("ip_process", mp, ill);
13679         }
13680         freemsg(mp);
13681         return (NULL);
13682 }
13683 
13684 /*
13685  * Propagate a multicast group membership operation (add/drop) on
13686  * all the interfaces crossed by the related multirt routes.
13687  * The call is considered successful if the operation succeeds
13688  * on at least one interface.
13689  *
13690  * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13691  * multicast addresses with the ire argument being the first one.
13692  * We walk the bucket to find all the of those.
13693  *
13694  * Common to IPv4 and IPv6.
13695  */
13696 static int
13697 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13698     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13699     ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13700     mcast_record_t fmode, const in6_addr_t *v6src)
13701 {
13702         ire_t           *ire_gw;
13703         irb_t           *irb;
13704         int             ifindex;
13705         int             error = 0;
13706         int             result;
13707         ip_stack_t      *ipst = ire->ire_ipst;
13708         ipaddr_t        group;
13709         boolean_t       isv6;
13710         int             match_flags;
13711 
13712         if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13713                 IN6_V4MAPPED_TO_IPADDR(v6group, group);
13714                 isv6 = B_FALSE;
13715         } else {
13716                 isv6 = B_TRUE;
13717         }
13718 
13719         irb = ire->ire_bucket;
13720         ASSERT(irb != NULL);
13721 
13722         result = 0;
13723         irb_refhold(irb);
13724         for (; ire != NULL; ire = ire->ire_next) {
13725                 if ((ire->ire_flags & RTF_MULTIRT) == 0)
13726                         continue;
13727 
13728                 /* We handle -ifp routes by matching on the ill if set */
13729                 match_flags = MATCH_IRE_TYPE;
13730                 if (ire->ire_ill != NULL)
13731                         match_flags |= MATCH_IRE_ILL;
13732 
13733                 if (isv6) {
13734                         if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13735                                 continue;
13736 
13737                         ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13738                             0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13739                             match_flags, 0, ipst, NULL);
13740                 } else {
13741                         if (ire->ire_addr != group)
13742                                 continue;
13743 
13744                         ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13745                             0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13746                             match_flags, 0, ipst, NULL);
13747                 }
13748                 /* No interface route exists for the gateway; skip this ire. */
13749                 if (ire_gw == NULL)
13750                         continue;
13751                 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13752                         ire_refrele(ire_gw);
13753                         continue;
13754                 }
13755                 ASSERT(ire_gw->ire_ill != NULL);     /* IRE_INTERFACE */
13756                 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
13757 
13758                 /*
13759                  * The operation is considered a success if
13760                  * it succeeds at least once on any one interface.
13761                  */
13762                 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13763                     fmode, v6src);
13764                 if (error == 0)
13765                         result = CGTP_MCAST_SUCCESS;
13766 
13767                 ire_refrele(ire_gw);
13768         }
13769         irb_refrele(irb);
13770         /*
13771          * Consider the call as successful if we succeeded on at least
13772          * one interface. Otherwise, return the last encountered error.
13773          */
13774         return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13775 }
13776 
13777 /*
13778  * Return the expected CGTP hooks version number.
13779  */
13780 int
13781 ip_cgtp_filter_supported(void)
13782 {
13783         return (ip_cgtp_filter_rev);
13784 }
13785 
13786 /*
13787  * CGTP hooks can be registered by invoking this function.
13788  * Checks that the version number matches.
13789  */
13790 int
13791 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13792 {
13793         netstack_t *ns;
13794         ip_stack_t *ipst;
13795 
13796         if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13797                 return (ENOTSUP);
13798 
13799         ns = netstack_find_by_stackid(stackid);
13800         if (ns == NULL)
13801                 return (EINVAL);
13802         ipst = ns->netstack_ip;
13803         ASSERT(ipst != NULL);
13804 
13805         if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13806                 netstack_rele(ns);
13807                 return (EALREADY);
13808         }
13809 
13810         ipst->ips_ip_cgtp_filter_ops = ops;
13811 
13812         ill_set_inputfn_all(ipst);
13813 
13814         netstack_rele(ns);
13815         return (0);
13816 }
13817 
13818 /*
13819  * CGTP hooks can be unregistered by invoking this function.
13820  * Returns ENXIO if there was no registration.
13821  * Returns EBUSY if the ndd variable has not been turned off.
13822  */
13823 int
13824 ip_cgtp_filter_unregister(netstackid_t stackid)
13825 {
13826         netstack_t *ns;
13827         ip_stack_t *ipst;
13828 
13829         ns = netstack_find_by_stackid(stackid);
13830         if (ns == NULL)
13831                 return (EINVAL);
13832         ipst = ns->netstack_ip;
13833         ASSERT(ipst != NULL);
13834 
13835         if (ipst->ips_ip_cgtp_filter) {
13836                 netstack_rele(ns);
13837                 return (EBUSY);
13838         }
13839 
13840         if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13841                 netstack_rele(ns);
13842                 return (ENXIO);
13843         }
13844         ipst->ips_ip_cgtp_filter_ops = NULL;
13845 
13846         ill_set_inputfn_all(ipst);
13847 
13848         netstack_rele(ns);
13849         return (0);
13850 }
13851 
13852 /*
13853  * Check whether there is a CGTP filter registration.
13854  * Returns non-zero if there is a registration, otherwise returns zero.
13855  * Note: returns zero if bad stackid.
13856  */
13857 int
13858 ip_cgtp_filter_is_registered(netstackid_t stackid)
13859 {
13860         netstack_t *ns;
13861         ip_stack_t *ipst;
13862         int ret;
13863 
13864         ns = netstack_find_by_stackid(stackid);
13865         if (ns == NULL)
13866                 return (0);
13867         ipst = ns->netstack_ip;
13868         ASSERT(ipst != NULL);
13869 
13870         if (ipst->ips_ip_cgtp_filter_ops != NULL)
13871                 ret = 1;
13872         else
13873                 ret = 0;
13874 
13875         netstack_rele(ns);
13876         return (ret);
13877 }
13878 
13879 static int
13880 ip_squeue_switch(int val)
13881 {
13882         int rval;
13883 
13884         switch (val) {
13885         case IP_SQUEUE_ENTER_NODRAIN:
13886                 rval = SQ_NODRAIN;
13887                 break;
13888         case IP_SQUEUE_ENTER:
13889                 rval = SQ_PROCESS;
13890                 break;
13891         case IP_SQUEUE_FILL:
13892         default:
13893                 rval = SQ_FILL;
13894                 break;
13895         }
13896         return (rval);
13897 }
13898 
13899 static void *
13900 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13901 {
13902         kstat_t *ksp;
13903 
13904         ip_stat_t template = {
13905                 { "ip_udp_fannorm",             KSTAT_DATA_UINT64 },
13906                 { "ip_udp_fanmb",               KSTAT_DATA_UINT64 },
13907                 { "ip_recv_pullup",             KSTAT_DATA_UINT64 },
13908                 { "ip_db_ref",                  KSTAT_DATA_UINT64 },
13909                 { "ip_notaligned",              KSTAT_DATA_UINT64 },
13910                 { "ip_multimblk",               KSTAT_DATA_UINT64 },
13911                 { "ip_opt",                     KSTAT_DATA_UINT64 },
13912                 { "ipsec_proto_ahesp",          KSTAT_DATA_UINT64 },
13913                 { "ip_conn_flputbq",            KSTAT_DATA_UINT64 },
13914                 { "ip_conn_walk_drain",         KSTAT_DATA_UINT64 },
13915                 { "ip_out_sw_cksum",            KSTAT_DATA_UINT64 },
13916                 { "ip_out_sw_cksum_bytes",      KSTAT_DATA_UINT64 },
13917                 { "ip_in_sw_cksum",             KSTAT_DATA_UINT64 },
13918                 { "ip_ire_reclaim_calls",       KSTAT_DATA_UINT64 },
13919                 { "ip_ire_reclaim_deleted",     KSTAT_DATA_UINT64 },
13920                 { "ip_nce_reclaim_calls",       KSTAT_DATA_UINT64 },
13921                 { "ip_nce_reclaim_deleted",     KSTAT_DATA_UINT64 },
13922                 { "ip_dce_reclaim_calls",       KSTAT_DATA_UINT64 },
13923                 { "ip_dce_reclaim_deleted",     KSTAT_DATA_UINT64 },
13924                 { "ip_tcp_in_full_hw_cksum_err",        KSTAT_DATA_UINT64 },
13925                 { "ip_tcp_in_part_hw_cksum_err",        KSTAT_DATA_UINT64 },
13926                 { "ip_tcp_in_sw_cksum_err",             KSTAT_DATA_UINT64 },
13927                 { "ip_udp_in_full_hw_cksum_err",        KSTAT_DATA_UINT64 },
13928                 { "ip_udp_in_part_hw_cksum_err",        KSTAT_DATA_UINT64 },
13929                 { "ip_udp_in_sw_cksum_err",     KSTAT_DATA_UINT64 },
13930                 { "conn_in_recvdstaddr",        KSTAT_DATA_UINT64 },
13931                 { "conn_in_recvopts",           KSTAT_DATA_UINT64 },
13932                 { "conn_in_recvif",             KSTAT_DATA_UINT64 },
13933                 { "conn_in_recvslla",           KSTAT_DATA_UINT64 },
13934                 { "conn_in_recvucred",          KSTAT_DATA_UINT64 },
13935                 { "conn_in_recvttl",            KSTAT_DATA_UINT64 },
13936                 { "conn_in_recvhopopts",        KSTAT_DATA_UINT64 },
13937                 { "conn_in_recvhoplimit",       KSTAT_DATA_UINT64 },
13938                 { "conn_in_recvdstopts",        KSTAT_DATA_UINT64 },
13939                 { "conn_in_recvrthdrdstopts",   KSTAT_DATA_UINT64 },
13940                 { "conn_in_recvrthdr",          KSTAT_DATA_UINT64 },
13941                 { "conn_in_recvpktinfo",        KSTAT_DATA_UINT64 },
13942                 { "conn_in_recvtclass",         KSTAT_DATA_UINT64 },
13943                 { "conn_in_timestamp",          KSTAT_DATA_UINT64 },
13944         };
13945 
13946         ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
13947             KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13948             KSTAT_FLAG_VIRTUAL, stackid);
13949 
13950         if (ksp == NULL)
13951                 return (NULL);
13952 
13953         bcopy(&template, ip_statisticsp, sizeof (template));
13954         ksp->ks_data = (void *)ip_statisticsp;
13955         ksp->ks_private = (void *)(uintptr_t)stackid;
13956 
13957         kstat_install(ksp);
13958         return (ksp);
13959 }
13960 
13961 static void
13962 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
13963 {
13964         if (ksp != NULL) {
13965                 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
13966                 kstat_delete_netstack(ksp, stackid);
13967         }
13968 }
13969 
13970 static void *
13971 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
13972 {
13973         kstat_t *ksp;
13974 
13975         ip_named_kstat_t template = {
13976                 { "forwarding",         KSTAT_DATA_UINT32, 0 },
13977                 { "defaultTTL",         KSTAT_DATA_UINT32, 0 },
13978                 { "inReceives",         KSTAT_DATA_UINT64, 0 },
13979                 { "inHdrErrors",        KSTAT_DATA_UINT32, 0 },
13980                 { "inAddrErrors",       KSTAT_DATA_UINT32, 0 },
13981                 { "forwDatagrams",      KSTAT_DATA_UINT64, 0 },
13982                 { "inUnknownProtos",    KSTAT_DATA_UINT32, 0 },
13983                 { "inDiscards",         KSTAT_DATA_UINT32, 0 },
13984                 { "inDelivers",         KSTAT_DATA_UINT64, 0 },
13985                 { "outRequests",        KSTAT_DATA_UINT64, 0 },
13986                 { "outDiscards",        KSTAT_DATA_UINT32, 0 },
13987                 { "outNoRoutes",        KSTAT_DATA_UINT32, 0 },
13988                 { "reasmTimeout",       KSTAT_DATA_UINT32, 0 },
13989                 { "reasmReqds",         KSTAT_DATA_UINT32, 0 },
13990                 { "reasmOKs",           KSTAT_DATA_UINT32, 0 },
13991                 { "reasmFails",         KSTAT_DATA_UINT32, 0 },
13992                 { "fragOKs",            KSTAT_DATA_UINT32, 0 },
13993                 { "fragFails",          KSTAT_DATA_UINT32, 0 },
13994                 { "fragCreates",        KSTAT_DATA_UINT32, 0 },
13995                 { "addrEntrySize",      KSTAT_DATA_INT32, 0 },
13996                 { "routeEntrySize",     KSTAT_DATA_INT32, 0 },
13997                 { "netToMediaEntrySize",        KSTAT_DATA_INT32, 0 },
13998                 { "routingDiscards",    KSTAT_DATA_UINT32, 0 },
13999                 { "inErrs",             KSTAT_DATA_UINT32, 0 },
14000                 { "noPorts",            KSTAT_DATA_UINT32, 0 },
14001                 { "inCksumErrs",        KSTAT_DATA_UINT32, 0 },
14002                 { "reasmDuplicates",    KSTAT_DATA_UINT32, 0 },
14003                 { "reasmPartDups",      KSTAT_DATA_UINT32, 0 },
14004                 { "forwProhibits",      KSTAT_DATA_UINT32, 0 },
14005                 { "udpInCksumErrs",     KSTAT_DATA_UINT32, 0 },
14006                 { "udpInOverflows",     KSTAT_DATA_UINT32, 0 },
14007                 { "rawipInOverflows",   KSTAT_DATA_UINT32, 0 },
14008                 { "ipsecInSucceeded",   KSTAT_DATA_UINT32, 0 },
14009                 { "ipsecInFailed",      KSTAT_DATA_INT32, 0 },
14010                 { "memberEntrySize",    KSTAT_DATA_INT32, 0 },
14011                 { "inIPv6",             KSTAT_DATA_UINT32, 0 },
14012                 { "outIPv6",            KSTAT_DATA_UINT32, 0 },
14013                 { "outSwitchIPv6",      KSTAT_DATA_UINT32, 0 },
14014         };
14015 
14016         ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
14017             NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
14018         if (ksp == NULL || ksp->ks_data == NULL)
14019                 return (NULL);
14020 
14021         template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
14022         template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
14023         template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14024         template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14025         template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
14026 
14027         template.netToMediaEntrySize.value.i32 =
14028             sizeof (mib2_ipNetToMediaEntry_t);
14029 
14030         template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
14031 
14032         bcopy(&template, ksp->ks_data, sizeof (template));
14033         ksp->ks_update = ip_kstat_update;
14034         ksp->ks_private = (void *)(uintptr_t)stackid;
14035 
14036         kstat_install(ksp);
14037         return (ksp);
14038 }
14039 
14040 static void
14041 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14042 {
14043         if (ksp != NULL) {
14044                 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14045                 kstat_delete_netstack(ksp, stackid);
14046         }
14047 }
14048 
14049 static int
14050 ip_kstat_update(kstat_t *kp, int rw)
14051 {
14052         ip_named_kstat_t *ipkp;
14053         mib2_ipIfStatsEntry_t ipmib;
14054         ill_walk_context_t ctx;
14055         ill_t *ill;
14056         netstackid_t    stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14057         netstack_t      *ns;
14058         ip_stack_t      *ipst;
14059 
14060         if (kp == NULL || kp->ks_data == NULL)
14061                 return (EIO);
14062 
14063         if (rw == KSTAT_WRITE)
14064                 return (EACCES);
14065 
14066         ns = netstack_find_by_stackid(stackid);
14067         if (ns == NULL)
14068                 return (-1);
14069         ipst = ns->netstack_ip;
14070         if (ipst == NULL) {
14071                 netstack_rele(ns);
14072                 return (-1);
14073         }
14074         ipkp = (ip_named_kstat_t *)kp->ks_data;
14075 
14076         bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14077         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14078         ill = ILL_START_WALK_V4(&ctx, ipst);
14079         for (; ill != NULL; ill = ill_next(&ctx, ill))
14080                 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14081         rw_exit(&ipst->ips_ill_g_lock);
14082 
14083         ipkp->forwarding.value.ui32 =                ipmib.ipIfStatsForwarding;
14084         ipkp->defaultTTL.value.ui32 =                ipmib.ipIfStatsDefaultTTL;
14085         ipkp->inReceives.value.ui64 =                ipmib.ipIfStatsHCInReceives;
14086         ipkp->inHdrErrors.value.ui32 =               ipmib.ipIfStatsInHdrErrors;
14087         ipkp->inAddrErrors.value.ui32 =              ipmib.ipIfStatsInAddrErrors;
14088         ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14089         ipkp->inUnknownProtos.value.ui32 =   ipmib.ipIfStatsInUnknownProtos;
14090         ipkp->inDiscards.value.ui32 =                ipmib.ipIfStatsInDiscards;
14091         ipkp->inDelivers.value.ui64 =                ipmib.ipIfStatsHCInDelivers;
14092         ipkp->outRequests.value.ui64 =               ipmib.ipIfStatsHCOutRequests;
14093         ipkp->outDiscards.value.ui32 =               ipmib.ipIfStatsOutDiscards;
14094         ipkp->outNoRoutes.value.ui32 =               ipmib.ipIfStatsOutNoRoutes;
14095         ipkp->reasmTimeout.value.ui32 =              ipst->ips_ip_reassembly_timeout;
14096         ipkp->reasmReqds.value.ui32 =                ipmib.ipIfStatsReasmReqds;
14097         ipkp->reasmOKs.value.ui32 =          ipmib.ipIfStatsReasmOKs;
14098         ipkp->reasmFails.value.ui32 =                ipmib.ipIfStatsReasmFails;
14099         ipkp->fragOKs.value.ui32 =           ipmib.ipIfStatsOutFragOKs;
14100         ipkp->fragFails.value.ui32 =         ipmib.ipIfStatsOutFragFails;
14101         ipkp->fragCreates.value.ui32 =               ipmib.ipIfStatsOutFragCreates;
14102 
14103         ipkp->routingDiscards.value.ui32 =   0;
14104         ipkp->inErrs.value.ui32 =            ipmib.tcpIfStatsInErrs;
14105         ipkp->noPorts.value.ui32 =           ipmib.udpIfStatsNoPorts;
14106         ipkp->inCksumErrs.value.ui32 =               ipmib.ipIfStatsInCksumErrs;
14107         ipkp->reasmDuplicates.value.ui32 =   ipmib.ipIfStatsReasmDuplicates;
14108         ipkp->reasmPartDups.value.ui32 =     ipmib.ipIfStatsReasmPartDups;
14109         ipkp->forwProhibits.value.ui32 =     ipmib.ipIfStatsForwProhibits;
14110         ipkp->udpInCksumErrs.value.ui32 =    ipmib.udpIfStatsInCksumErrs;
14111         ipkp->udpInOverflows.value.ui32 =    ipmib.udpIfStatsInOverflows;
14112         ipkp->rawipInOverflows.value.ui32 =  ipmib.rawipIfStatsInOverflows;
14113         ipkp->ipsecInSucceeded.value.ui32 =  ipmib.ipsecIfStatsInSucceeded;
14114         ipkp->ipsecInFailed.value.i32 =              ipmib.ipsecIfStatsInFailed;
14115 
14116         ipkp->inIPv6.value.ui32 =    ipmib.ipIfStatsInWrongIPVersion;
14117         ipkp->outIPv6.value.ui32 =   ipmib.ipIfStatsOutWrongIPVersion;
14118         ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
14119 
14120         netstack_rele(ns);
14121 
14122         return (0);
14123 }
14124 
14125 static void *
14126 icmp_kstat_init(netstackid_t stackid)
14127 {
14128         kstat_t *ksp;
14129 
14130         icmp_named_kstat_t template = {
14131                 { "inMsgs",             KSTAT_DATA_UINT32 },
14132                 { "inErrors",           KSTAT_DATA_UINT32 },
14133                 { "inDestUnreachs",     KSTAT_DATA_UINT32 },
14134                 { "inTimeExcds",        KSTAT_DATA_UINT32 },
14135                 { "inParmProbs",        KSTAT_DATA_UINT32 },
14136                 { "inSrcQuenchs",       KSTAT_DATA_UINT32 },
14137                 { "inRedirects",        KSTAT_DATA_UINT32 },
14138                 { "inEchos",            KSTAT_DATA_UINT32 },
14139                 { "inEchoReps",         KSTAT_DATA_UINT32 },
14140                 { "inTimestamps",       KSTAT_DATA_UINT32 },
14141                 { "inTimestampReps",    KSTAT_DATA_UINT32 },
14142                 { "inAddrMasks",        KSTAT_DATA_UINT32 },
14143                 { "inAddrMaskReps",     KSTAT_DATA_UINT32 },
14144                 { "outMsgs",            KSTAT_DATA_UINT32 },
14145                 { "outErrors",          KSTAT_DATA_UINT32 },
14146                 { "outDestUnreachs",    KSTAT_DATA_UINT32 },
14147                 { "outTimeExcds",       KSTAT_DATA_UINT32 },
14148                 { "outParmProbs",       KSTAT_DATA_UINT32 },
14149                 { "outSrcQuenchs",      KSTAT_DATA_UINT32 },
14150                 { "outRedirects",       KSTAT_DATA_UINT32 },
14151                 { "outEchos",           KSTAT_DATA_UINT32 },
14152                 { "outEchoReps",        KSTAT_DATA_UINT32 },
14153                 { "outTimestamps",      KSTAT_DATA_UINT32 },
14154                 { "outTimestampReps",   KSTAT_DATA_UINT32 },
14155                 { "outAddrMasks",       KSTAT_DATA_UINT32 },
14156                 { "outAddrMaskReps",    KSTAT_DATA_UINT32 },
14157                 { "inChksumErrs",       KSTAT_DATA_UINT32 },
14158                 { "inUnknowns",         KSTAT_DATA_UINT32 },
14159                 { "inFragNeeded",       KSTAT_DATA_UINT32 },
14160                 { "outFragNeeded",      KSTAT_DATA_UINT32 },
14161                 { "outDrops",           KSTAT_DATA_UINT32 },
14162                 { "inOverFlows",        KSTAT_DATA_UINT32 },
14163                 { "inBadRedirects",     KSTAT_DATA_UINT32 },
14164         };
14165 
14166         ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14167             NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14168         if (ksp == NULL || ksp->ks_data == NULL)
14169                 return (NULL);
14170 
14171         bcopy(&template, ksp->ks_data, sizeof (template));
14172 
14173         ksp->ks_update = icmp_kstat_update;
14174         ksp->ks_private = (void *)(uintptr_t)stackid;
14175 
14176         kstat_install(ksp);
14177         return (ksp);
14178 }
14179 
14180 static void
14181 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14182 {
14183         if (ksp != NULL) {
14184                 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14185                 kstat_delete_netstack(ksp, stackid);
14186         }
14187 }
14188 
14189 static int
14190 icmp_kstat_update(kstat_t *kp, int rw)
14191 {
14192         icmp_named_kstat_t *icmpkp;
14193         netstackid_t    stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14194         netstack_t      *ns;
14195         ip_stack_t      *ipst;
14196 
14197         if ((kp == NULL) || (kp->ks_data == NULL))
14198                 return (EIO);
14199 
14200         if (rw == KSTAT_WRITE)
14201                 return (EACCES);
14202 
14203         ns = netstack_find_by_stackid(stackid);
14204         if (ns == NULL)
14205                 return (-1);
14206         ipst = ns->netstack_ip;
14207         if (ipst == NULL) {
14208                 netstack_rele(ns);
14209                 return (-1);
14210         }
14211         icmpkp = (icmp_named_kstat_t *)kp->ks_data;
14212 
14213         icmpkp->inMsgs.value.ui32 =      ipst->ips_icmp_mib.icmpInMsgs;
14214         icmpkp->inErrors.value.ui32 =            ipst->ips_icmp_mib.icmpInErrors;
14215         icmpkp->inDestUnreachs.value.ui32 =
14216             ipst->ips_icmp_mib.icmpInDestUnreachs;
14217         icmpkp->inTimeExcds.value.ui32 =    ipst->ips_icmp_mib.icmpInTimeExcds;
14218         icmpkp->inParmProbs.value.ui32 =    ipst->ips_icmp_mib.icmpInParmProbs;
14219         icmpkp->inSrcQuenchs.value.ui32 =   ipst->ips_icmp_mib.icmpInSrcQuenchs;
14220         icmpkp->inRedirects.value.ui32 =    ipst->ips_icmp_mib.icmpInRedirects;
14221         icmpkp->inEchos.value.ui32 =     ipst->ips_icmp_mib.icmpInEchos;
14222         icmpkp->inEchoReps.value.ui32 =          ipst->ips_icmp_mib.icmpInEchoReps;
14223         icmpkp->inTimestamps.value.ui32 =   ipst->ips_icmp_mib.icmpInTimestamps;
14224         icmpkp->inTimestampReps.value.ui32 =
14225             ipst->ips_icmp_mib.icmpInTimestampReps;
14226         icmpkp->inAddrMasks.value.ui32 =    ipst->ips_icmp_mib.icmpInAddrMasks;
14227         icmpkp->inAddrMaskReps.value.ui32 =
14228             ipst->ips_icmp_mib.icmpInAddrMaskReps;
14229         icmpkp->outMsgs.value.ui32 =     ipst->ips_icmp_mib.icmpOutMsgs;
14230         icmpkp->outErrors.value.ui32 =           ipst->ips_icmp_mib.icmpOutErrors;
14231         icmpkp->outDestUnreachs.value.ui32 =
14232             ipst->ips_icmp_mib.icmpOutDestUnreachs;
14233         icmpkp->outTimeExcds.value.ui32 =   ipst->ips_icmp_mib.icmpOutTimeExcds;
14234         icmpkp->outParmProbs.value.ui32 =   ipst->ips_icmp_mib.icmpOutParmProbs;
14235         icmpkp->outSrcQuenchs.value.ui32 =
14236             ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14237         icmpkp->outRedirects.value.ui32 =   ipst->ips_icmp_mib.icmpOutRedirects;
14238         icmpkp->outEchos.value.ui32 =            ipst->ips_icmp_mib.icmpOutEchos;
14239         icmpkp->outEchoReps.value.ui32 =    ipst->ips_icmp_mib.icmpOutEchoReps;
14240         icmpkp->outTimestamps.value.ui32 =
14241             ipst->ips_icmp_mib.icmpOutTimestamps;
14242         icmpkp->outTimestampReps.value.ui32 =
14243             ipst->ips_icmp_mib.icmpOutTimestampReps;
14244         icmpkp->outAddrMasks.value.ui32 =
14245             ipst->ips_icmp_mib.icmpOutAddrMasks;
14246         icmpkp->outAddrMaskReps.value.ui32 =
14247             ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14248         icmpkp->inCksumErrs.value.ui32 =    ipst->ips_icmp_mib.icmpInCksumErrs;
14249         icmpkp->inUnknowns.value.ui32 =          ipst->ips_icmp_mib.icmpInUnknowns;
14250         icmpkp->inFragNeeded.value.ui32 =   ipst->ips_icmp_mib.icmpInFragNeeded;
14251         icmpkp->outFragNeeded.value.ui32 =
14252             ipst->ips_icmp_mib.icmpOutFragNeeded;
14253         icmpkp->outDrops.value.ui32 =            ipst->ips_icmp_mib.icmpOutDrops;
14254         icmpkp->inOverflows.value.ui32 =    ipst->ips_icmp_mib.icmpInOverflows;
14255         icmpkp->inBadRedirects.value.ui32 =
14256             ipst->ips_icmp_mib.icmpInBadRedirects;
14257 
14258         netstack_rele(ns);
14259         return (0);
14260 }
14261 
14262 /*
14263  * This is the fanout function for raw socket opened for SCTP.  Note
14264  * that it is called after SCTP checks that there is no socket which
14265  * wants a packet.  Then before SCTP handles this out of the blue packet,
14266  * this function is called to see if there is any raw socket for SCTP.
14267  * If there is and it is bound to the correct address, the packet will
14268  * be sent to that socket.  Note that only one raw socket can be bound to
14269  * a port.  This is assured in ipcl_sctp_hash_insert();
14270  */
14271 void
14272 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14273     ip_recv_attr_t *ira)
14274 {
14275         conn_t          *connp;
14276         queue_t         *rq;
14277         boolean_t       secure;
14278         ill_t           *ill = ira->ira_ill;
14279         ip_stack_t      *ipst = ill->ill_ipst;
14280         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
14281         sctp_stack_t    *sctps = ipst->ips_netstack->netstack_sctp;
14282         iaflags_t       iraflags = ira->ira_flags;
14283         ill_t           *rill = ira->ira_rill;
14284 
14285         secure = iraflags & IRAF_IPSEC_SECURE;
14286 
14287         connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14288             ira, ipst);
14289         if (connp == NULL) {
14290                 /*
14291                  * Although raw sctp is not summed, OOB chunks must be.
14292                  * Drop the packet here if the sctp checksum failed.
14293                  */
14294                 if (iraflags & IRAF_SCTP_CSUM_ERR) {
14295                         SCTPS_BUMP_MIB(sctps, sctpChecksumError);
14296                         freemsg(mp);
14297                         return;
14298                 }
14299                 ira->ira_ill = ira->ira_rill = NULL;
14300                 sctp_ootb_input(mp, ira, ipst);
14301                 ira->ira_ill = ill;
14302                 ira->ira_rill = rill;
14303                 return;
14304         }
14305         rq = connp->conn_rq;
14306         if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14307                 CONN_DEC_REF(connp);
14308                 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14309                 freemsg(mp);
14310                 return;
14311         }
14312         if (((iraflags & IRAF_IS_IPV4) ?
14313             CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14314             CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14315             secure) {
14316                 mp = ipsec_check_inbound_policy(mp, connp, ipha,
14317                     ip6h, ira);
14318                 if (mp == NULL) {
14319                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14320                         /* Note that mp is NULL */
14321                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
14322                         CONN_DEC_REF(connp);
14323                         return;
14324                 }
14325         }
14326 
14327         if (iraflags & IRAF_ICMP_ERROR) {
14328                 (connp->conn_recvicmp)(connp, mp, NULL, ira);
14329         } else {
14330                 ill_t *rill = ira->ira_rill;
14331 
14332                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14333                 /* This is the SOCK_RAW, IPPROTO_SCTP case. */
14334                 ira->ira_ill = ira->ira_rill = NULL;
14335                 (connp->conn_recv)(connp, mp, NULL, ira);
14336                 ira->ira_ill = ill;
14337                 ira->ira_rill = rill;
14338         }
14339         CONN_DEC_REF(connp);
14340 }
14341 
14342 /*
14343  * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14344  * header before the ip payload.
14345  */
14346 static void
14347 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14348 {
14349         int len = (mp->b_wptr - mp->b_rptr);
14350         mblk_t *ip_mp;
14351 
14352         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14353         if (is_fp_mp || len != fp_mp_len) {
14354                 if (len > fp_mp_len) {
14355                         /*
14356                          * fastpath header and ip header in the first mblk
14357                          */
14358                         mp->b_rptr += fp_mp_len;
14359                 } else {
14360                         /*
14361                          * ip_xmit_attach_llhdr had to prepend an mblk to
14362                          * attach the fastpath header before ip header.
14363                          */
14364                         ip_mp = mp->b_cont;
14365                         freeb(mp);
14366                         mp = ip_mp;
14367                         mp->b_rptr += (fp_mp_len - len);
14368                 }
14369         } else {
14370                 ip_mp = mp->b_cont;
14371                 freeb(mp);
14372                 mp = ip_mp;
14373         }
14374         ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14375         freemsg(mp);
14376 }
14377 
14378 /*
14379  * Normal post fragmentation function.
14380  *
14381  * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14382  * using the same state machine.
14383  *
14384  * We return an error on failure. In particular we return EWOULDBLOCK
14385  * when the driver flow controls. In that case this ensures that ip_wsrv runs
14386  * (currently by canputnext failure resulting in backenabling from GLD.)
14387  * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14388  * indication that they can flow control until ip_wsrv() tells then to restart.
14389  *
14390  * If the nce passed by caller is incomplete, this function
14391  * queues the packet and if necessary, sends ARP request and bails.
14392  * If the Neighbor Cache passed is fully resolved, we simply prepend
14393  * the link-layer header to the packet, do ipsec hw acceleration
14394  * work if necessary, and send the packet out on the wire.
14395  */
14396 /* ARGSUSED6 */
14397 int
14398 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14399     uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14400 {
14401         queue_t         *wq;
14402         ill_t           *ill = nce->nce_ill;
14403         ip_stack_t      *ipst = ill->ill_ipst;
14404         uint64_t        delta;
14405         boolean_t       isv6 = ill->ill_isv6;
14406         boolean_t       fp_mp;
14407         ncec_t          *ncec = nce->nce_common;
14408         int64_t         now = LBOLT_FASTPATH64;
14409         boolean_t       is_probe;
14410 
14411         DTRACE_PROBE1(ip__xmit, nce_t *, nce);
14412 
14413         ASSERT(mp != NULL);
14414         ASSERT(mp->b_datap->db_type == M_DATA);
14415         ASSERT(pkt_len == msgdsize(mp));
14416 
14417         /*
14418          * If we have already been here and are coming back after ARP/ND.
14419          * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14420          * in that case since they have seen the packet when it came here
14421          * the first time.
14422          */
14423         if (ixaflags & IXAF_NO_TRACE)
14424                 goto sendit;
14425 
14426         if (ixaflags & IXAF_IS_IPV4) {
14427                 ipha_t *ipha = (ipha_t *)mp->b_rptr;
14428 
14429                 ASSERT(!isv6);
14430                 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14431                 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14432                     !(ixaflags & IXAF_NO_PFHOOK)) {
14433                         int     error;
14434 
14435                         FW_HOOKS(ipst->ips_ip4_physical_out_event,
14436                             ipst->ips_ipv4firewall_physical_out,
14437                             NULL, ill, ipha, mp, mp, 0, ipst, error);
14438                         DTRACE_PROBE1(ip4__physical__out__end,
14439                             mblk_t *, mp);
14440                         if (mp == NULL)
14441                                 return (error);
14442 
14443                         /* The length could have changed */
14444                         pkt_len = msgdsize(mp);
14445                 }
14446                 if (ipst->ips_ip4_observe.he_interested) {
14447                         /*
14448                          * Note that for TX the zoneid is the sending
14449                          * zone, whether or not MLP is in play.
14450                          * Since the szone argument is the IP zoneid (i.e.,
14451                          * zero for exclusive-IP zones) and ipobs wants
14452                          * the system zoneid, we map it here.
14453                          */
14454                         szone = IP_REAL_ZONEID(szone, ipst);
14455 
14456                         /*
14457                          * On the outbound path the destination zone will be
14458                          * unknown as we're sending this packet out on the
14459                          * wire.
14460                          */
14461                         ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14462                             ill, ipst);
14463                 }
14464                 DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14465                     void_ip_t *, ipha,  __dtrace_ipsr_ill_t *, ill,
14466                     ipha_t *, ipha, ip6_t *, NULL, int, 0);
14467         } else {
14468                 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
14469 
14470                 ASSERT(isv6);
14471                 ASSERT(pkt_len ==
14472                     ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14473                 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14474                     !(ixaflags & IXAF_NO_PFHOOK)) {
14475                         int     error;
14476 
14477                         FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14478                             ipst->ips_ipv6firewall_physical_out,
14479                             NULL, ill, ip6h, mp, mp, 0, ipst, error);
14480                         DTRACE_PROBE1(ip6__physical__out__end,
14481                             mblk_t *, mp);
14482                         if (mp == NULL)
14483                                 return (error);
14484 
14485                         /* The length could have changed */
14486                         pkt_len = msgdsize(mp);
14487                 }
14488                 if (ipst->ips_ip6_observe.he_interested) {
14489                         /* See above */
14490                         szone = IP_REAL_ZONEID(szone, ipst);
14491 
14492                         ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14493                             ill, ipst);
14494                 }
14495                 DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14496                     void_ip_t *, ip6h,  __dtrace_ipsr_ill_t *, ill,
14497                     ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14498         }
14499 
14500 sendit:
14501         /*
14502          * We check the state without a lock because the state can never
14503          * move "backwards" to initial or incomplete.
14504          */
14505         switch (ncec->ncec_state) {
14506         case ND_REACHABLE:
14507         case ND_STALE:
14508         case ND_DELAY:
14509         case ND_PROBE:
14510                 mp = ip_xmit_attach_llhdr(mp, nce);
14511                 if (mp == NULL) {
14512                         /*
14513                          * ip_xmit_attach_llhdr has increased
14514                          * ipIfStatsOutDiscards and called ip_drop_output()
14515                          */
14516                         return (ENOBUFS);
14517                 }
14518                 /*
14519                  * check if nce_fastpath completed and we tagged on a
14520                  * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14521                  */
14522                 fp_mp = (mp->b_datap->db_type == M_DATA);
14523 
14524                 if (fp_mp &&
14525                     (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14526                         ill_dld_direct_t *idd;
14527 
14528                         idd = &ill->ill_dld_capab->idc_direct;
14529                         /*
14530                          * Send the packet directly to DLD, where it
14531                          * may be queued depending on the availability
14532                          * of transmit resources at the media layer.
14533                          * Return value should be taken into
14534                          * account and flow control the TCP.
14535                          */
14536                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14537                         UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14538                             pkt_len);
14539 
14540                         if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14541                                 (void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14542                                     (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14543                         } else {
14544                                 uintptr_t cookie;
14545 
14546                                 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14547                                     mp, (uintptr_t)xmit_hint, 0)) != 0) {
14548                                         if (ixacookie != NULL)
14549                                                 *ixacookie = cookie;
14550                                         return (EWOULDBLOCK);
14551                                 }
14552                         }
14553                 } else {
14554                         wq = ill->ill_wq;
14555 
14556                         if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14557                             !canputnext(wq)) {
14558                                 if (ixacookie != NULL)
14559                                         *ixacookie = 0;
14560                                 ip_xmit_flowctl_drop(ill, mp, fp_mp,
14561                                     nce->nce_fp_mp != NULL ?
14562                                     MBLKL(nce->nce_fp_mp) : 0);
14563                                 return (EWOULDBLOCK);
14564                         }
14565                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14566                         UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14567                             pkt_len);
14568                         putnext(wq, mp);
14569                 }
14570 
14571                 /*
14572                  * The rest of this function implements Neighbor Unreachability
14573                  * detection. Determine if the ncec is eligible for NUD.
14574                  */
14575                 if (ncec->ncec_flags & NCE_F_NONUD)
14576                         return (0);
14577 
14578                 ASSERT(ncec->ncec_state != ND_INCOMPLETE);
14579 
14580                 /*
14581                  * Check for upper layer advice
14582                  */
14583                 if (ixaflags & IXAF_REACH_CONF) {
14584                         timeout_id_t tid;
14585 
14586                         /*
14587                          * It should be o.k. to check the state without
14588                          * a lock here, at most we lose an advice.
14589                          */
14590                         ncec->ncec_last = TICK_TO_MSEC(now);
14591                         if (ncec->ncec_state != ND_REACHABLE) {
14592                                 mutex_enter(&ncec->ncec_lock);
14593                                 ncec->ncec_state = ND_REACHABLE;
14594                                 tid = ncec->ncec_timeout_id;
14595                                 ncec->ncec_timeout_id = 0;
14596                                 mutex_exit(&ncec->ncec_lock);
14597                                 (void) untimeout(tid);
14598                                 if (ip_debug > 2) {
14599                                         /* ip1dbg */
14600                                         pr_addr_dbg("ip_xmit: state"
14601                                             " for %s changed to"
14602                                             " REACHABLE\n", AF_INET6,
14603                                             &ncec->ncec_addr);
14604                                 }
14605                         }
14606                         return (0);
14607                 }
14608 
14609                 delta =  TICK_TO_MSEC(now) - ncec->ncec_last;
14610                 ip1dbg(("ip_xmit: delta = %" PRId64
14611                     " ill_reachable_time = %d \n", delta,
14612                     ill->ill_reachable_time));
14613                 if (delta > (uint64_t)ill->ill_reachable_time) {
14614                         mutex_enter(&ncec->ncec_lock);
14615                         switch (ncec->ncec_state) {
14616                         case ND_REACHABLE:
14617                                 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14618                                 /* FALLTHROUGH */
14619                         case ND_STALE:
14620                                 /*
14621                                  * ND_REACHABLE is identical to
14622                                  * ND_STALE in this specific case. If
14623                                  * reachable time has expired for this
14624                                  * neighbor (delta is greater than
14625                                  * reachable time), conceptually, the
14626                                  * neighbor cache is no longer in
14627                                  * REACHABLE state, but already in
14628                                  * STALE state.  So the correct
14629                                  * transition here is to ND_DELAY.
14630                                  */
14631                                 ncec->ncec_state = ND_DELAY;
14632                                 mutex_exit(&ncec->ncec_lock);
14633                                 nce_restart_timer(ncec,
14634                                     ipst->ips_delay_first_probe_time);
14635                                 if (ip_debug > 3) {
14636                                         /* ip2dbg */
14637                                         pr_addr_dbg("ip_xmit: state"
14638                                             " for %s changed to"
14639                                             " DELAY\n", AF_INET6,
14640                                             &ncec->ncec_addr);
14641                                 }
14642                                 break;
14643                         case ND_DELAY:
14644                         case ND_PROBE:
14645                                 mutex_exit(&ncec->ncec_lock);
14646                                 /* Timers have already started */
14647                                 break;
14648                         case ND_UNREACHABLE:
14649                                 /*
14650                                  * nce_timer has detected that this ncec
14651                                  * is unreachable and initiated deleting
14652                                  * this ncec.
14653                                  * This is a harmless race where we found the
14654                                  * ncec before it was deleted and have
14655                                  * just sent out a packet using this
14656                                  * unreachable ncec.
14657                                  */
14658                                 mutex_exit(&ncec->ncec_lock);
14659                                 break;
14660                         default:
14661                                 ASSERT(0);
14662                                 mutex_exit(&ncec->ncec_lock);
14663                         }
14664                 }
14665                 return (0);
14666 
14667         case ND_INCOMPLETE:
14668                 /*
14669                  * the state could have changed since we didn't hold the lock.
14670                  * Re-verify state under lock.
14671                  */
14672                 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14673                 mutex_enter(&ncec->ncec_lock);
14674                 if (NCE_ISREACHABLE(ncec)) {
14675                         mutex_exit(&ncec->ncec_lock);
14676                         goto sendit;
14677                 }
14678                 /* queue the packet */
14679                 nce_queue_mp(ncec, mp, is_probe);
14680                 mutex_exit(&ncec->ncec_lock);
14681                 DTRACE_PROBE2(ip__xmit__incomplete,
14682                     (ncec_t *), ncec, (mblk_t *), mp);
14683                 return (0);
14684 
14685         case ND_INITIAL:
14686                 /*
14687                  * State could have changed since we didn't hold the lock, so
14688                  * re-verify state.
14689                  */
14690                 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14691                 mutex_enter(&ncec->ncec_lock);
14692                 if (NCE_ISREACHABLE(ncec))  {
14693                         mutex_exit(&ncec->ncec_lock);
14694                         goto sendit;
14695                 }
14696                 nce_queue_mp(ncec, mp, is_probe);
14697                 if (ncec->ncec_state == ND_INITIAL) {
14698                         ncec->ncec_state = ND_INCOMPLETE;
14699                         mutex_exit(&ncec->ncec_lock);
14700                         /*
14701                          * figure out the source we want to use
14702                          * and resolve it.
14703                          */
14704                         ip_ndp_resolve(ncec);
14705                 } else  {
14706                         mutex_exit(&ncec->ncec_lock);
14707                 }
14708                 return (0);
14709 
14710         case ND_UNREACHABLE:
14711                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14712                 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14713                     mp, ill);
14714                 freemsg(mp);
14715                 return (0);
14716 
14717         default:
14718                 ASSERT(0);
14719                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14720                 ip_drop_output("ipIfStatsOutDiscards - ND_other",
14721                     mp, ill);
14722                 freemsg(mp);
14723                 return (ENETUNREACH);
14724         }
14725 }
14726 
14727 /*
14728  * Return B_TRUE if the buffers differ in length or content.
14729  * This is used for comparing extension header buffers.
14730  * Note that an extension header would be declared different
14731  * even if all that changed was the next header value in that header i.e.
14732  * what really changed is the next extension header.
14733  */
14734 boolean_t
14735 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14736     uint_t blen)
14737 {
14738         if (!b_valid)
14739                 blen = 0;
14740 
14741         if (alen != blen)
14742                 return (B_TRUE);
14743         if (alen == 0)
14744                 return (B_FALSE);       /* Both zero length */
14745         return (bcmp(abuf, bbuf, alen));
14746 }
14747 
14748 /*
14749  * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14750  * Return B_FALSE if memory allocation fails - don't change any state!
14751  */
14752 boolean_t
14753 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14754     const void *src, uint_t srclen)
14755 {
14756         void *dst;
14757 
14758         if (!src_valid)
14759                 srclen = 0;
14760 
14761         ASSERT(*dstlenp == 0);
14762         if (src != NULL && srclen != 0) {
14763                 dst = mi_alloc(srclen, BPRI_MED);
14764                 if (dst == NULL)
14765                         return (B_FALSE);
14766         } else {
14767                 dst = NULL;
14768         }
14769         if (*dstp != NULL)
14770                 mi_free(*dstp);
14771         *dstp = dst;
14772         *dstlenp = dst == NULL ? 0 : srclen;
14773         return (B_TRUE);
14774 }
14775 
14776 /*
14777  * Replace what is in *dst, *dstlen with the source.
14778  * Assumes ip_allocbuf has already been called.
14779  */
14780 void
14781 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14782     const void *src, uint_t srclen)
14783 {
14784         if (!src_valid)
14785                 srclen = 0;
14786 
14787         ASSERT(*dstlenp == srclen);
14788         if (src != NULL && srclen != 0)
14789                 bcopy(src, *dstp, srclen);
14790 }
14791 
14792 /*
14793  * Free the storage pointed to by the members of an ip_pkt_t.
14794  */
14795 void
14796 ip_pkt_free(ip_pkt_t *ipp)
14797 {
14798         uint_t  fields = ipp->ipp_fields;
14799 
14800         if (fields & IPPF_HOPOPTS) {
14801                 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14802                 ipp->ipp_hopopts = NULL;
14803                 ipp->ipp_hopoptslen = 0;
14804         }
14805         if (fields & IPPF_RTHDRDSTOPTS) {
14806                 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14807                 ipp->ipp_rthdrdstopts = NULL;
14808                 ipp->ipp_rthdrdstoptslen = 0;
14809         }
14810         if (fields & IPPF_DSTOPTS) {
14811                 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14812                 ipp->ipp_dstopts = NULL;
14813                 ipp->ipp_dstoptslen = 0;
14814         }
14815         if (fields & IPPF_RTHDR) {
14816                 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14817                 ipp->ipp_rthdr = NULL;
14818                 ipp->ipp_rthdrlen = 0;
14819         }
14820         if (fields & IPPF_IPV4_OPTIONS) {
14821                 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14822                 ipp->ipp_ipv4_options = NULL;
14823                 ipp->ipp_ipv4_options_len = 0;
14824         }
14825         if (fields & IPPF_LABEL_V4) {
14826                 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14827                 ipp->ipp_label_v4 = NULL;
14828                 ipp->ipp_label_len_v4 = 0;
14829         }
14830         if (fields & IPPF_LABEL_V6) {
14831                 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14832                 ipp->ipp_label_v6 = NULL;
14833                 ipp->ipp_label_len_v6 = 0;
14834         }
14835         ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14836             IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14837 }
14838 
14839 /*
14840  * Copy from src to dst and allocate as needed.
14841  * Returns zero or ENOMEM.
14842  *
14843  * The caller must initialize dst to zero.
14844  */
14845 int
14846 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14847 {
14848         uint_t  fields = src->ipp_fields;
14849 
14850         /* Start with fields that don't require memory allocation */
14851         dst->ipp_fields = fields &
14852             ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14853             IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14854 
14855         dst->ipp_addr = src->ipp_addr;
14856         dst->ipp_unicast_hops = src->ipp_unicast_hops;
14857         dst->ipp_hoplimit = src->ipp_hoplimit;
14858         dst->ipp_tclass = src->ipp_tclass;
14859         dst->ipp_type_of_service = src->ipp_type_of_service;
14860 
14861         if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14862             IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14863                 return (0);
14864 
14865         if (fields & IPPF_HOPOPTS) {
14866                 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14867                 if (dst->ipp_hopopts == NULL) {
14868                         ip_pkt_free(dst);
14869                         return (ENOMEM);
14870                 }
14871                 dst->ipp_fields |= IPPF_HOPOPTS;
14872                 bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14873                     src->ipp_hopoptslen);
14874                 dst->ipp_hopoptslen = src->ipp_hopoptslen;
14875         }
14876         if (fields & IPPF_RTHDRDSTOPTS) {
14877                 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14878                     kmflag);
14879                 if (dst->ipp_rthdrdstopts == NULL) {
14880                         ip_pkt_free(dst);
14881                         return (ENOMEM);
14882                 }
14883                 dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14884                 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14885                     src->ipp_rthdrdstoptslen);
14886                 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14887         }
14888         if (fields & IPPF_DSTOPTS) {
14889                 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14890                 if (dst->ipp_dstopts == NULL) {
14891                         ip_pkt_free(dst);
14892                         return (ENOMEM);
14893                 }
14894                 dst->ipp_fields |= IPPF_DSTOPTS;
14895                 bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14896                     src->ipp_dstoptslen);
14897                 dst->ipp_dstoptslen = src->ipp_dstoptslen;
14898         }
14899         if (fields & IPPF_RTHDR) {
14900                 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14901                 if (dst->ipp_rthdr == NULL) {
14902                         ip_pkt_free(dst);
14903                         return (ENOMEM);
14904                 }
14905                 dst->ipp_fields |= IPPF_RTHDR;
14906                 bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14907                     src->ipp_rthdrlen);
14908                 dst->ipp_rthdrlen = src->ipp_rthdrlen;
14909         }
14910         if (fields & IPPF_IPV4_OPTIONS) {
14911                 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14912                     kmflag);
14913                 if (dst->ipp_ipv4_options == NULL) {
14914                         ip_pkt_free(dst);
14915                         return (ENOMEM);
14916                 }
14917                 dst->ipp_fields |= IPPF_IPV4_OPTIONS;
14918                 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14919                     src->ipp_ipv4_options_len);
14920                 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14921         }
14922         if (fields & IPPF_LABEL_V4) {
14923                 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14924                 if (dst->ipp_label_v4 == NULL) {
14925                         ip_pkt_free(dst);
14926                         return (ENOMEM);
14927                 }
14928                 dst->ipp_fields |= IPPF_LABEL_V4;
14929                 bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14930                     src->ipp_label_len_v4);
14931                 dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14932         }
14933         if (fields & IPPF_LABEL_V6) {
14934                 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14935                 if (dst->ipp_label_v6 == NULL) {
14936                         ip_pkt_free(dst);
14937                         return (ENOMEM);
14938                 }
14939                 dst->ipp_fields |= IPPF_LABEL_V6;
14940                 bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14941                     src->ipp_label_len_v6);
14942                 dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14943         }
14944         if (fields & IPPF_FRAGHDR) {
14945                 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14946                 if (dst->ipp_fraghdr == NULL) {
14947                         ip_pkt_free(dst);
14948                         return (ENOMEM);
14949                 }
14950                 dst->ipp_fields |= IPPF_FRAGHDR;
14951                 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14952                     src->ipp_fraghdrlen);
14953                 dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14954         }
14955         return (0);
14956 }
14957 
14958 /*
14959  * Returns INADDR_ANY if no source route
14960  */
14961 ipaddr_t
14962 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
14963 {
14964         ipaddr_t        nexthop = INADDR_ANY;
14965         ipoptp_t        opts;
14966         uchar_t         *opt;
14967         uint8_t         optval;
14968         uint8_t         optlen;
14969         uint32_t        totallen;
14970 
14971         if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
14972                 return (INADDR_ANY);
14973 
14974         totallen = ipp->ipp_ipv4_options_len;
14975         if (totallen & 0x3)
14976                 return (INADDR_ANY);
14977 
14978         for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
14979             optval != IPOPT_EOL;
14980             optval = ipoptp_next(&opts)) {
14981                 opt = opts.ipoptp_cur;
14982                 switch (optval) {
14983                         uint8_t off;
14984                 case IPOPT_SSRR:
14985                 case IPOPT_LSRR:
14986                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
14987                                 break;
14988                         }
14989                         optlen = opts.ipoptp_len;
14990                         off = opt[IPOPT_OFFSET];
14991                         off--;
14992                         if (optlen < IP_ADDR_LEN ||
14993                             off > optlen - IP_ADDR_LEN) {
14994                                 /* End of source route */
14995                                 break;
14996                         }
14997                         bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
14998                         if (nexthop == htonl(INADDR_LOOPBACK)) {
14999                                 /* Ignore */
15000                                 nexthop = INADDR_ANY;
15001                                 break;
15002                         }
15003                         break;
15004                 }
15005         }
15006         return (nexthop);
15007 }
15008 
15009 /*
15010  * Reverse a source route.
15011  */
15012 void
15013 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
15014 {
15015         ipaddr_t        tmp;
15016         ipoptp_t        opts;
15017         uchar_t         *opt;
15018         uint8_t         optval;
15019         uint32_t        totallen;
15020 
15021         if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15022                 return;
15023 
15024         totallen = ipp->ipp_ipv4_options_len;
15025         if (totallen & 0x3)
15026                 return;
15027 
15028         for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15029             optval != IPOPT_EOL;
15030             optval = ipoptp_next(&opts)) {
15031                 uint8_t off1, off2;
15032 
15033                 opt = opts.ipoptp_cur;
15034                 switch (optval) {
15035                 case IPOPT_SSRR:
15036                 case IPOPT_LSRR:
15037                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15038                                 break;
15039                         }
15040                         off1 = IPOPT_MINOFF_SR - 1;
15041                         off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15042                         while (off2 > off1) {
15043                                 bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15044                                 bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15045                                 bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15046                                 off2 -= IP_ADDR_LEN;
15047                                 off1 += IP_ADDR_LEN;
15048                         }
15049                         opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
15050                         break;
15051                 }
15052         }
15053 }
15054 
15055 /*
15056  * Returns NULL if no routing header
15057  */
15058 in6_addr_t *
15059 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15060 {
15061         in6_addr_t      *nexthop = NULL;
15062         ip6_rthdr0_t    *rthdr;
15063 
15064         if (!(ipp->ipp_fields & IPPF_RTHDR))
15065                 return (NULL);
15066 
15067         rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15068         if (rthdr->ip6r0_segleft == 0)
15069                 return (NULL);
15070 
15071         nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15072         return (nexthop);
15073 }
15074 
15075 zoneid_t
15076 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15077     zoneid_t lookup_zoneid)
15078 {
15079         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
15080         ire_t           *ire;
15081         int             ire_flags = MATCH_IRE_TYPE;
15082         zoneid_t        zoneid = ALL_ZONES;
15083 
15084         if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15085                 return (ALL_ZONES);
15086 
15087         if (lookup_zoneid != ALL_ZONES)
15088                 ire_flags |= MATCH_IRE_ZONEONLY;
15089         ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15090             NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15091         if (ire != NULL) {
15092                 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15093                 ire_refrele(ire);
15094         }
15095         return (zoneid);
15096 }
15097 
15098 zoneid_t
15099 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15100     ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15101 {
15102         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
15103         ire_t           *ire;
15104         int             ire_flags = MATCH_IRE_TYPE;
15105         zoneid_t        zoneid = ALL_ZONES;
15106 
15107         if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15108                 return (ALL_ZONES);
15109 
15110         if (IN6_IS_ADDR_LINKLOCAL(addr))
15111                 ire_flags |= MATCH_IRE_ILL;
15112 
15113         if (lookup_zoneid != ALL_ZONES)
15114                 ire_flags |= MATCH_IRE_ZONEONLY;
15115         ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15116             ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15117         if (ire != NULL) {
15118                 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15119                 ire_refrele(ire);
15120         }
15121         return (zoneid);
15122 }
15123 
15124 /*
15125  * IP obserability hook support functions.
15126  */
15127 static void
15128 ipobs_init(ip_stack_t *ipst)
15129 {
15130         netid_t id;
15131 
15132         id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
15133 
15134         ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15135         VERIFY(ipst->ips_ip4_observe_pr != NULL);
15136 
15137         ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15138         VERIFY(ipst->ips_ip6_observe_pr != NULL);
15139 }
15140 
15141 static void
15142 ipobs_fini(ip_stack_t *ipst)
15143 {
15144 
15145         VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15146         VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15147 }
15148 
15149 /*
15150  * hook_pkt_observe_t is composed in network byte order so that the
15151  * entire mblk_t chain handed into hook_run can be used as-is.
15152  * The caveat is that use of the fields, such as the zone fields,
15153  * requires conversion into host byte order first.
15154  */
15155 void
15156 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15157     const ill_t *ill, ip_stack_t *ipst)
15158 {
15159         hook_pkt_observe_t *hdr;
15160         uint64_t grifindex;
15161         mblk_t *imp;
15162 
15163         imp = allocb(sizeof (*hdr), BPRI_HI);
15164         if (imp == NULL)
15165                 return;
15166 
15167         hdr = (hook_pkt_observe_t *)imp->b_rptr;
15168         /*
15169          * b_wptr is set to make the apparent size of the data in the mblk_t
15170          * to exclude the pointers at the end of hook_pkt_observer_t.
15171          */
15172         imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15173         imp->b_cont = mp;
15174 
15175         ASSERT(DB_TYPE(mp) == M_DATA);
15176 
15177         if (IS_UNDER_IPMP(ill))
15178                 grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15179         else
15180                 grifindex = 0;
15181 
15182         hdr->hpo_version = 1;
15183         hdr->hpo_htype = htons(htype);
15184         hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15185         hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15186         hdr->hpo_grifindex = htonl(grifindex);
15187         hdr->hpo_zsrc = htonl(zsrc);
15188         hdr->hpo_zdst = htonl(zdst);
15189         hdr->hpo_pkt = imp;
15190         hdr->hpo_ctx = ipst->ips_netstack;
15191 
15192         if (ill->ill_isv6) {
15193                 hdr->hpo_family = AF_INET6;
15194                 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15195                     ipst->ips_ipv6observing, (hook_data_t)hdr);
15196         } else {
15197                 hdr->hpo_family = AF_INET;
15198                 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15199                     ipst->ips_ipv4observing, (hook_data_t)hdr);
15200         }
15201 
15202         imp->b_cont = NULL;
15203         freemsg(imp);
15204 }
15205 
15206 /*
15207  * Utility routine that checks if `v4srcp' is a valid address on underlying
15208  * interface `ill'.  If `ipifp' is non-NULL, it's set to a held ipif
15209  * associated with `v4srcp' on success.  NOTE: if this is not called from
15210  * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
15211  * group during or after this lookup.
15212  */
15213 boolean_t
15214 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15215 {
15216         ipif_t *ipif;
15217 
15218         ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15219         if (ipif != NULL) {
15220                 if (ipifp != NULL)
15221                         *ipifp = ipif;
15222                 else
15223                         ipif_refrele(ipif);
15224                 return (B_TRUE);
15225         }
15226 
15227         ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15228             *v4srcp));
15229         return (B_FALSE);
15230 }
15231 
15232 /*
15233  * Transport protocol call back function for CPU state change.
15234  */
15235 /* ARGSUSED */
15236 static int
15237 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
15238 {
15239         processorid_t cpu_seqid;
15240         netstack_handle_t nh;
15241         netstack_t *ns;
15242 
15243         ASSERT(MUTEX_HELD(&cpu_lock));
15244 
15245         switch (what) {
15246         case CPU_CONFIG:
15247         case CPU_ON:
15248         case CPU_INIT:
15249         case CPU_CPUPART_IN:
15250                 cpu_seqid = cpu[id]->cpu_seqid;
15251                 netstack_next_init(&nh);
15252                 while ((ns = netstack_next(&nh)) != NULL) {
15253                         tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
15254                         sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
15255                         udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
15256                         netstack_rele(ns);
15257                 }
15258                 netstack_next_fini(&nh);
15259                 break;
15260         case CPU_UNCONFIG:
15261         case CPU_OFF:
15262         case CPU_CPUPART_OUT:
15263                 /*
15264                  * Nothing to do.  We don't remove the per CPU stats from
15265                  * the IP stack even when the CPU goes offline.
15266                  */
15267                 break;
15268         default:
15269                 break;
15270         }
15271         return (0);
15272 }