1 /*
   2  *
   3  *  skd.c: Solaris 11/10 Driver for sTec, Inc. S112x PCIe SSD card
   4  *
   5  *  Solaris driver is based on the Linux driver authored by:
   6  *
   7  *  Authors/Alphabetical:       Dragan Stancevic <dstancevic@stec-inc.com>
   8  *                              Gordon Waidhofer <gwaidhofer@stec-inc.com>
   9  *                              John Hamilton    <jhamilton@stec-inc.com>
  10  */
  11 
  12 /*
  13  * This file and its contents are supplied under the terms of the
  14  * Common Development and Distribution License ("CDDL"), version 1.0.
  15  * You may only use this file in accordance with the terms of version
  16  * 1.0 of the CDDL.
  17  *
  18  * A full copy of the text of the CDDL should have accompanied this
  19  * source.  A copy of the CDDL is also available via the Internet at
  20  * http://www.illumos.org/license/CDDL.
  21  */
  22 
  23 /*
  24  * Copyright 2013 STEC, Inc.  All rights reserved.
  25  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
  26  */
  27 
  28 #include        <sys/types.h>
  29 #include        <sys/stream.h>
  30 #include        <sys/cmn_err.h>
  31 #include        <sys/kmem.h>
  32 #include        <sys/file.h>
  33 #include        <sys/buf.h>
  34 #include        <sys/uio.h>
  35 #include        <sys/cred.h>
  36 #include        <sys/modctl.h>
  37 #include        <sys/debug.h>
  38 #include        <sys/modctl.h>
  39 #include        <sys/list.h>
  40 #include        <sys/sysmacros.h>
  41 #include        <sys/errno.h>
  42 #include        <sys/pcie.h>
  43 #include        <sys/pci.h>
  44 #include        <sys/ddi.h>
  45 #include        <sys/dditypes.h>
  46 #include        <sys/sunddi.h>
  47 #include        <sys/atomic.h>
  48 #include        <sys/mutex.h>
  49 #include        <sys/param.h>
  50 #include        <sys/devops.h>
  51 #include        <sys/blkdev.h>
  52 #include        <sys/queue.h>
  53 
  54 #include        "skd_s1120.h"
  55 #include        "skd.h"
  56 
  57 int             skd_dbg_level     = 0;
  58 
  59 void            *skd_state        = NULL;
  60 int             skd_disable_msi   = 0;
  61 int             skd_disable_msix  = 0;
  62 
  63 /* Initialized in _init() and tunable, see _init(). */
  64 clock_t         skd_timer_ticks;
  65 
  66 /* I/O DMA attributes structures. */
  67 static ddi_dma_attr_t skd_64bit_io_dma_attr = {
  68         DMA_ATTR_V0,                    /* dma_attr_version */
  69         SKD_DMA_LOW_ADDRESS,            /* low DMA address range */
  70         SKD_DMA_HIGH_64BIT_ADDRESS,     /* high DMA address range */
  71         SKD_DMA_XFER_COUNTER,           /* DMA counter register */
  72         SKD_DMA_ADDRESS_ALIGNMENT,      /* DMA address alignment */
  73         SKD_DMA_BURSTSIZES,             /* DMA burstsizes */
  74         SKD_DMA_MIN_XFER_SIZE,          /* min effective DMA size */
  75         SKD_DMA_MAX_XFER_SIZE,          /* max DMA xfer size */
  76         SKD_DMA_SEGMENT_BOUNDARY,       /* segment boundary */
  77         SKD_DMA_SG_LIST_LENGTH,         /* s/g list length */
  78         SKD_DMA_GRANULARITY,            /* granularity of device */
  79         SKD_DMA_XFER_FLAGS              /* DMA transfer flags */
  80 };
  81 
  82 int skd_isr_type = -1;
  83 
  84 #define SKD_MAX_QUEUE_DEPTH         255
  85 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
  86 int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
  87 
  88 #define SKD_MAX_REQ_PER_MSG         14
  89 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
  90 int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
  91 
  92 #define SKD_MAX_N_SG_PER_REQ        4096
  93 int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
  94 
  95 static int skd_sys_quiesce_dev(dev_info_t *);
  96 static int skd_quiesce_dev(skd_device_t *);
  97 static int skd_list_skmsg(skd_device_t *, int);
  98 static int skd_list_skreq(skd_device_t *, int);
  99 static int skd_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
 100 static int skd_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
 101 static int skd_format_internal_skspcl(struct skd_device *skdev);
 102 static void skd_start(skd_device_t *);
 103 static void skd_destroy_mutex(skd_device_t *skdev);
 104 static void skd_enable_interrupts(struct skd_device *);
 105 static void skd_request_fn_not_online(skd_device_t *skdev);
 106 static void skd_send_internal_skspcl(struct skd_device *,
 107     struct skd_special_context *, uint8_t);
 108 static void skd_queue(skd_device_t *, skd_buf_private_t *);
 109 static void *skd_alloc_dma_mem(skd_device_t *, dma_mem_t *, uint8_t);
 110 static void skd_release_intr(skd_device_t *skdev);
 111 static void skd_isr_fwstate(struct skd_device *skdev);
 112 static void skd_isr_msg_from_dev(struct skd_device *skdev);
 113 static void skd_soft_reset(struct skd_device *skdev);
 114 static void skd_refresh_device_data(struct skd_device *skdev);
 115 static void skd_update_props(skd_device_t *, dev_info_t *);
 116 static void skd_end_request_abnormal(struct skd_device *, skd_buf_private_t *,
 117     int, int);
 118 static char *skd_pci_info(struct skd_device *skdev, char *str, size_t len);
 119 
 120 static skd_buf_private_t *skd_get_queued_pbuf(skd_device_t *);
 121 
 122 static void skd_bd_driveinfo(void *arg, bd_drive_t *drive);
 123 static int  skd_bd_mediainfo(void *arg, bd_media_t *media);
 124 static int  skd_bd_read(void *arg,  bd_xfer_t *xfer);
 125 static int  skd_bd_write(void *arg, bd_xfer_t *xfer);
 126 static int  skd_devid_init(void *arg, dev_info_t *, ddi_devid_t *);
 127 
 128 
 129 static bd_ops_t skd_bd_ops = {
 130         BD_OPS_VERSION_0,
 131         skd_bd_driveinfo,
 132         skd_bd_mediainfo,
 133         skd_devid_init,
 134         NULL,                   /* sync_cache */
 135         skd_bd_read,
 136         skd_bd_write,
 137 };
 138 
 139 static ddi_device_acc_attr_t    dev_acc_attr = {
 140         DDI_DEVICE_ATTR_V0,
 141         DDI_STRUCTURE_LE_ACC,
 142         DDI_STRICTORDER_ACC
 143 };
 144 
 145 /*
 146  * Solaris module loading/unloading structures
 147  */
 148 struct dev_ops skd_dev_ops = {
 149         DEVO_REV,                       /* devo_rev */
 150         0,                              /* refcnt */
 151         ddi_no_info,                    /* getinfo */
 152         nulldev,                        /* identify */
 153         nulldev,                        /* probe */
 154         skd_attach,                     /* attach */
 155         skd_detach,                     /* detach */
 156         nodev,                          /* reset */
 157         NULL,                           /* char/block ops */
 158         NULL,                           /* bus operations */
 159         NULL,                           /* power management */
 160         skd_sys_quiesce_dev             /* quiesce */
 161 };
 162 
 163 static struct modldrv modldrv = {
 164         &mod_driverops,                     /* type of module: driver */
 165         "sTec skd v" DRV_VER_COMPL,     /* name of module */
 166         &skd_dev_ops                        /* driver dev_ops */
 167 };
 168 
 169 static struct modlinkage modlinkage = {
 170         MODREV_1,
 171         &modldrv,
 172         NULL
 173 };
 174 
 175 /*
 176  * sTec-required wrapper for debug printing.
 177  */
 178 /*PRINTFLIKE2*/
 179 static inline void
 180 Dcmn_err(int lvl, const char *fmt, ...)
 181 {
 182         va_list ap;
 183 
 184         if (skd_dbg_level == 0)
 185                 return;
 186 
 187         va_start(ap, fmt);
 188         vcmn_err(lvl, fmt, ap);
 189         va_end(ap);
 190 }
 191 
 192 /*
 193  * Solaris module loading/unloading routines
 194  */
 195 
 196 /*
 197  *
 198  * Name:        _init, performs initial installation
 199  *
 200  * Inputs:      None.
 201  *
 202  * Returns:     Returns the value returned by the ddi_softstate_init function
 203  *              on a failure to create the device state structure or the result
 204  *              of the module install routines.
 205  *
 206  */
 207 int
 208 _init(void)
 209 {
 210         int             rval = 0;
 211         int             tgts = 0;
 212 
 213         tgts |= 0x02;
 214         tgts |= 0x08;   /* In #ifdef NEXENTA block from original sTec drop. */
 215 
 216         /*
 217          * drv_usectohz() is a function, so can't initialize it at
 218          * instantiation.
 219          */
 220         skd_timer_ticks = drv_sectohz(1);
 221 
 222         Dcmn_err(CE_NOTE,
 223             "<# Installing skd Driver dbg-lvl=%d %s %x>",
 224             skd_dbg_level, DRV_BUILD_ID, tgts);
 225 
 226         rval = ddi_soft_state_init(&skd_state, sizeof (skd_device_t), 0);
 227         if (rval != DDI_SUCCESS)
 228                 return (rval);
 229 
 230         bd_mod_init(&skd_dev_ops);
 231 
 232         rval = mod_install(&modlinkage);
 233         if (rval != DDI_SUCCESS) {
 234                 ddi_soft_state_fini(&skd_state);
 235                 bd_mod_fini(&skd_dev_ops);
 236         }
 237 
 238         return (rval);
 239 }
 240 
 241 /*
 242  *
 243  * Name:        _info, returns information about loadable module.
 244  *
 245  * Inputs:      modinfo, pointer to module information structure.
 246  *
 247  * Returns:     Value returned by mod_info().
 248  *
 249  */
 250 int
 251 _info(struct modinfo *modinfop)
 252 {
 253         return (mod_info(&modlinkage, modinfop));
 254 }
 255 
 256 /*
 257  * _fini        Prepares a module for unloading. It is called when the system
 258  *              wants to unload a module. If the module determines that it can
 259  *              be unloaded, then _fini() returns the value returned by
 260  *              mod_remove(). Upon successful return from _fini() no other
 261  *              routine in the module will be called before _init() is called.
 262  *
 263  * Inputs:      None.
 264  *
 265  * Returns:     DDI_SUCCESS or DDI_FAILURE.
 266  *
 267  */
 268 int
 269 _fini(void)
 270 {
 271         int rval;
 272 
 273         rval = mod_remove(&modlinkage);
 274         if (rval == DDI_SUCCESS) {
 275                 ddi_soft_state_fini(&skd_state);
 276                 bd_mod_fini(&skd_dev_ops);
 277         }
 278 
 279         return (rval);
 280 }
 281 
 282 /*
 283  * Solaris Register read/write routines
 284  */
 285 
 286 /*
 287  *
 288  * Name:        skd_reg_write64, writes a 64-bit value to specified address
 289  *
 290  * Inputs:      skdev           - device state structure.
 291  *              val             - 64-bit value to be written.
 292  *              offset          - offset from PCI base address.
 293  *
 294  * Returns:     Nothing.
 295  *
 296  */
 297 /*
 298  * Local vars are to keep lint silent.  Any compiler worth its weight will
 299  * optimize it all right out...
 300  */
 301 static inline void
 302 skd_reg_write64(struct skd_device *skdev, uint64_t val, uint32_t offset)
 303 {
 304         uint64_t *addr;
 305 
 306         ASSERT((offset & 0x7) == 0);
 307         /* LINTED */
 308         addr = (uint64_t *)(skdev->dev_iobase + offset);
 309         ddi_put64(skdev->dev_handle, addr, val);
 310 }
 311 
 312 /*
 313  *
 314  * Name:        skd_reg_read32, reads a 32-bit value to specified address
 315  *
 316  * Inputs:      skdev           - device state structure.
 317  *              offset          - offset from PCI base address.
 318  *
 319  * Returns:     val, 32-bit value read from specified PCI address.
 320  *
 321  */
 322 static inline uint32_t
 323 skd_reg_read32(struct skd_device *skdev, uint32_t offset)
 324 {
 325         uint32_t *addr;
 326 
 327         ASSERT((offset & 0x3) == 0);
 328         /* LINTED */
 329         addr = (uint32_t *)(skdev->dev_iobase + offset);
 330         return (ddi_get32(skdev->dev_handle, addr));
 331 }
 332 
 333 /*
 334  *
 335  * Name:        skd_reg_write32, writes a 32-bit value to specified address
 336  *
 337  * Inputs:      skdev           - device state structure.
 338  *              val             - value to be written.
 339  *              offset          - offset from PCI base address.
 340  *
 341  * Returns:     Nothing.
 342  *
 343  */
 344 static inline void
 345 skd_reg_write32(struct skd_device *skdev, uint32_t val, uint32_t offset)
 346 {
 347         uint32_t *addr;
 348 
 349         ASSERT((offset & 0x3) == 0);
 350         /* LINTED */
 351         addr = (uint32_t *)(skdev->dev_iobase + offset);
 352         ddi_put32(skdev->dev_handle, addr, val);
 353 }
 354 
 355 
 356 /*
 357  * Solaris skd routines
 358  */
 359 
 360 /*
 361  *
 362  * Name:        skd_name, generates the name of the driver.
 363  *
 364  * Inputs:      skdev   - device state structure
 365  *
 366  * Returns:     char pointer to generated driver name.
 367  *
 368  */
 369 static const char *
 370 skd_name(struct skd_device *skdev)
 371 {
 372         (void) snprintf(skdev->id_str, sizeof (skdev->id_str), "%s:", DRV_NAME);
 373 
 374         return (skdev->id_str);
 375 }
 376 
 377 /*
 378  *
 379  * Name:        skd_pci_find_capability, searches the PCI capability
 380  *              list for the specified capability.
 381  *
 382  * Inputs:      skdev           - device state structure.
 383  *              cap             - capability sought.
 384  *
 385  * Returns:     Returns position where capability was found.
 386  *              If not found, returns zero.
 387  *
 388  */
 389 static int
 390 skd_pci_find_capability(struct skd_device *skdev, int cap)
 391 {
 392         uint16_t status;
 393         uint8_t  pos, id, hdr;
 394         int      ttl = 48;
 395 
 396         status = pci_config_get16(skdev->pci_handle, PCI_CONF_STAT);
 397 
 398         if (!(status & PCI_STAT_CAP))
 399                 return (0);
 400 
 401         hdr = pci_config_get8(skdev->pci_handle, PCI_CONF_HEADER);
 402 
 403         if ((hdr & PCI_HEADER_TYPE_M) != 0)
 404                 return (0);
 405 
 406         pos = pci_config_get8(skdev->pci_handle, PCI_CONF_CAP_PTR);
 407 
 408         while (ttl-- && pos >= 0x40) {
 409                 pos &= ~3;
 410                 id = pci_config_get8(skdev->pci_handle, pos+PCI_CAP_ID);
 411                 if (id == 0xff)
 412                         break;
 413                 if (id == cap)
 414                         return (pos);
 415                 pos = pci_config_get8(skdev->pci_handle, pos+PCI_CAP_NEXT_PTR);
 416         }
 417 
 418         return (0);
 419 }
 420 
 421 /*
 422  *
 423  * Name:        skd_io_done, called to conclude an I/O operation.
 424  *
 425  * Inputs:      skdev           - device state structure.
 426  *              pbuf            - I/O request
 427  *              error           - contain error value.
 428  *              mode            - debug only.
 429  *
 430  * Returns:     Nothing.
 431  *
 432  */
 433 static void
 434 skd_io_done(skd_device_t *skdev, skd_buf_private_t *pbuf,
 435     int error, int mode)
 436 {
 437         bd_xfer_t *xfer;
 438 
 439         ASSERT(pbuf != NULL);
 440 
 441         xfer = pbuf->x_xfer;
 442 
 443         switch (mode) {
 444         case SKD_IODONE_WIOC:
 445                 skdev->iodone_wioc++;
 446                 break;
 447         case SKD_IODONE_WNIOC:
 448                 skdev->iodone_wnioc++;
 449                 break;
 450         case SKD_IODONE_WDEBUG:
 451                 skdev->iodone_wdebug++;
 452                 break;
 453         default:
 454                 skdev->iodone_unknown++;
 455         }
 456 
 457         if (error) {
 458                 skdev->ios_errors++;
 459                 cmn_err(CE_WARN,
 460                     "!%s:skd_io_done:ERR=%d %lld-%ld %s", skdev->name,
 461                     error, xfer->x_blkno, xfer->x_nblks,
 462                     (pbuf->dir & B_READ) ? "Read" : "Write");
 463         }
 464 
 465         kmem_free(pbuf, sizeof (skd_buf_private_t));
 466 
 467         bd_xfer_done(xfer,  error);
 468 }
 469 
 470 /*
 471  * QUIESCE DEVICE
 472  */
 473 
 474 /*
 475  *
 476  * Name:        skd_sys_quiesce_dev, quiets the device
 477  *
 478  * Inputs:      dip             - dev info strucuture
 479  *
 480  * Returns:     Zero.
 481  *
 482  */
 483 static int
 484 skd_sys_quiesce_dev(dev_info_t *dip)
 485 {
 486         skd_device_t    *skdev;
 487 
 488         skdev = ddi_get_soft_state(skd_state, ddi_get_instance(dip));
 489 
 490         /* make sure Dcmn_err() doesn't actually print anything */
 491         skd_dbg_level = 0;
 492 
 493         skd_disable_interrupts(skdev);
 494         skd_soft_reset(skdev);
 495 
 496         return (0);
 497 }
 498 
 499 /*
 500  *
 501  * Name:        skd_quiesce_dev, quiets the device, but doesn't really do much.
 502  *
 503  * Inputs:      skdev           - Device state.
 504  *
 505  * Returns:     -EINVAL if device is not in proper state otherwise
 506  *              returns zero.
 507  *
 508  */
 509 static int
 510 skd_quiesce_dev(skd_device_t *skdev)
 511 {
 512         int rc = 0;
 513 
 514         if (skd_dbg_level)
 515                 Dcmn_err(CE_NOTE, "skd_quiece_dev:");
 516 
 517         switch (skdev->state) {
 518         case SKD_DRVR_STATE_BUSY:
 519         case SKD_DRVR_STATE_BUSY_IMMINENT:
 520                 Dcmn_err(CE_NOTE, "%s: stopping queue", skdev->name);
 521                 break;
 522         case SKD_DRVR_STATE_ONLINE:
 523         case SKD_DRVR_STATE_STOPPING:
 524         case SKD_DRVR_STATE_SYNCING:
 525         case SKD_DRVR_STATE_PAUSING:
 526         case SKD_DRVR_STATE_PAUSED:
 527         case SKD_DRVR_STATE_STARTING:
 528         case SKD_DRVR_STATE_RESTARTING:
 529         case SKD_DRVR_STATE_RESUMING:
 530         default:
 531                 rc = -EINVAL;
 532                 cmn_err(CE_NOTE, "state [%d] not implemented", skdev->state);
 533         }
 534 
 535         return (rc);
 536 }
 537 
 538 /*
 539  * UNQUIESCE DEVICE:
 540  * Note: Assumes lock is held to protect device state.
 541  */
 542 /*
 543  *
 544  * Name:        skd_unquiesce_dev, awkens the device
 545  *
 546  * Inputs:      skdev           - Device state.
 547  *
 548  * Returns:     -EINVAL if device is not in proper state otherwise
 549  *              returns zero.
 550  *
 551  */
 552 static int
 553 skd_unquiesce_dev(struct skd_device *skdev)
 554 {
 555         Dcmn_err(CE_NOTE, "skd_unquiece_dev:");
 556 
 557         skd_log_skdev(skdev, "unquiesce");
 558         if (skdev->state == SKD_DRVR_STATE_ONLINE) {
 559                 Dcmn_err(CE_NOTE, "**** device already ONLINE");
 560 
 561                 return (0);
 562         }
 563         if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
 564                 /*
 565                  * If there has been an state change to other than
 566                  * ONLINE, we will rely on controller state change
 567                  * to come back online and restart the queue.
 568                  * The BUSY state means that driver is ready to
 569                  * continue normal processing but waiting for controller
 570                  * to become available.
 571                  */
 572                 skdev->state = SKD_DRVR_STATE_BUSY;
 573                 Dcmn_err(CE_NOTE, "drive BUSY state\n");
 574 
 575                 return (0);
 576         }
 577         /*
 578          * Drive just come online, driver is either in startup,
 579          * paused performing a task, or bust waiting for hardware.
 580          */
 581         switch (skdev->state) {
 582         case SKD_DRVR_STATE_PAUSED:
 583         case SKD_DRVR_STATE_BUSY:
 584         case SKD_DRVR_STATE_BUSY_IMMINENT:
 585         case SKD_DRVR_STATE_BUSY_ERASE:
 586         case SKD_DRVR_STATE_STARTING:
 587         case SKD_DRVR_STATE_RESTARTING:
 588         case SKD_DRVR_STATE_FAULT:
 589         case SKD_DRVR_STATE_IDLE:
 590         case SKD_DRVR_STATE_LOAD:
 591                 skdev->state = SKD_DRVR_STATE_ONLINE;
 592                 Dcmn_err(CE_NOTE, "%s: sTec s1120 ONLINE", skdev->name);
 593                 Dcmn_err(CE_NOTE, "%s: Starting request queue", skdev->name);
 594                 Dcmn_err(CE_NOTE,
 595                     "%s: queue depth limit=%d hard=%d soft=%d lowat=%d",
 596                     skdev->name,
 597                     skdev->queue_depth_limit,
 598                     skdev->hard_queue_depth_limit,
 599                     skdev->soft_queue_depth_limit,
 600                     skdev->queue_depth_lowat);
 601 
 602                 skdev->gendisk_on = 1;
 603                 cv_signal(&skdev->cv_waitq);
 604                 break;
 605         case SKD_DRVR_STATE_DISAPPEARED:
 606         default:
 607                 cmn_err(CE_NOTE, "**** driver state %d, not implemented \n",
 608                     skdev->state);
 609                 return (-EBUSY);
 610         }
 611 
 612         return (0);
 613 }
 614 
 615 /*
 616  * READ/WRITE REQUESTS
 617  */
 618 
 619 /*
 620  *
 621  * Name:        skd_blkdev_preop_sg_list, builds the S/G list from info
 622  *              passed in by the blkdev driver.
 623  *
 624  * Inputs:      skdev           - device state structure.
 625  *              skreq           - request structure.
 626  *              sg_byte_count   - data transfer byte count.
 627  *
 628  * Returns:     Nothing.
 629  *
 630  */
 631 /*ARGSUSED*/
 632 static void
 633 skd_blkdev_preop_sg_list(struct skd_device *skdev,
 634     struct skd_request_context *skreq, uint32_t *sg_byte_count)
 635 {
 636         bd_xfer_t               *xfer;
 637         skd_buf_private_t       *pbuf;
 638         int                     i, bcount = 0;
 639         uint_t                  n_sg;
 640 
 641         *sg_byte_count = 0;
 642 
 643         ASSERT(skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD ||
 644             skreq->sg_data_dir == SKD_DATA_DIR_CARD_TO_HOST);
 645 
 646         pbuf = skreq->pbuf;
 647         ASSERT(pbuf != NULL);
 648 
 649         xfer = pbuf->x_xfer;
 650         n_sg = xfer->x_ndmac;
 651 
 652         ASSERT(n_sg <= skdev->sgs_per_request);
 653 
 654         skreq->n_sg = n_sg;
 655 
 656         skreq->io_dma_handle = xfer->x_dmah;
 657 
 658         skreq->total_sg_bcount = 0;
 659 
 660         for (i = 0; i < n_sg; i++) {
 661                 ddi_dma_cookie_t *cookiep = &xfer->x_dmac;
 662                 struct fit_sg_descriptor *sgd;
 663                 uint32_t cnt = (uint32_t)cookiep->dmac_size;
 664 
 665                 bcount += cnt;
 666 
 667                 sgd                     = &skreq->sksg_list[i];
 668                 sgd->control         = FIT_SGD_CONTROL_NOT_LAST;
 669                 sgd->byte_count              = cnt;
 670                 sgd->host_side_addr  = cookiep->dmac_laddress;
 671                 sgd->dev_side_addr   = 0; /* not used */
 672                 *sg_byte_count          += cnt;
 673 
 674                 skreq->total_sg_bcount += cnt;
 675 
 676                 if ((i + 1) != n_sg)
 677                         ddi_dma_nextcookie(skreq->io_dma_handle, &xfer->x_dmac);
 678         }
 679 
 680         skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
 681         skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
 682 
 683         (void) ddi_dma_sync(skreq->sksg_dma_address.dma_handle, 0, 0,
 684             DDI_DMA_SYNC_FORDEV);
 685 }
 686 
 687 /*
 688  *
 689  * Name:        skd_blkdev_postop_sg_list, deallocates DMA
 690  *
 691  * Inputs:      skdev           - device state structure.
 692  *              skreq           - skreq data structure.
 693  *
 694  * Returns:     Nothing.
 695  *
 696  */
 697 /* ARGSUSED */  /* Upstream common source with other platforms. */
 698 static void
 699 skd_blkdev_postop_sg_list(struct skd_device *skdev,
 700     struct skd_request_context *skreq)
 701 {
 702         /*
 703          * restore the next ptr for next IO request so we
 704          * don't have to set it every time.
 705          */
 706         skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
 707             skreq->sksg_dma_address.cookies->dmac_laddress +
 708             ((skreq->n_sg) * sizeof (struct fit_sg_descriptor));
 709 }
 710 
 711 /*
 712  *
 713  * Name:        skd_start, initiates an I/O.
 714  *
 715  * Inputs:      skdev           - device state structure.
 716  *
 717  * Returns:     EAGAIN if devicfe is not ONLINE.
 718  *              On error, if the caller is the blkdev driver, return
 719  *              the error value. Otherwise, return zero.
 720  *
 721  */
 722 /* Upstream common source with other platforms. */
 723 static void
 724 skd_start(skd_device_t *skdev)
 725 {
 726         struct skd_fitmsg_context       *skmsg = NULL;
 727         struct fit_msg_hdr              *fmh = NULL;
 728         struct skd_request_context      *skreq = NULL;
 729         struct waitqueue                *waitq = &skdev->waitqueue;
 730         struct skd_scsi_request         *scsi_req;
 731         skd_buf_private_t               *pbuf = NULL;
 732         int                             bcount;
 733 
 734         uint32_t                        lba;
 735         uint32_t                        count;
 736         uint32_t                        timo_slot;
 737         void                            *cmd_ptr;
 738         uint32_t                        sg_byte_count = 0;
 739 
 740         /*
 741          * Stop conditions:
 742          *  - There are no more native requests
 743          *  - There are already the maximum number of requests is progress
 744          *  - There are no more skd_request_context entries
 745          *  - There are no more FIT msg buffers
 746          */
 747         for (;;) {
 748                 /* Are too many requests already in progress? */
 749                 if (skdev->queue_depth_busy >= skdev->queue_depth_limit) {
 750                         Dcmn_err(CE_NOTE, "qdepth %d, limit %d\n",
 751                             skdev->queue_depth_busy,
 752                             skdev->queue_depth_limit);
 753                         break;
 754                 }
 755 
 756                 WAITQ_LOCK(skdev);
 757                 if (SIMPLEQ_EMPTY(waitq)) {
 758                         WAITQ_UNLOCK(skdev);
 759                         break;
 760                 }
 761 
 762                 /* Is a skd_request_context available? */
 763                 skreq = skdev->skreq_free_list;
 764                 if (skreq == NULL) {
 765                         WAITQ_UNLOCK(skdev);
 766                         break;
 767                 }
 768 
 769                 ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
 770                 ASSERT((skreq->id & SKD_ID_INCR) == 0);
 771 
 772                 skdev->skreq_free_list = skreq->next;
 773 
 774                 skreq->state = SKD_REQ_STATE_BUSY;
 775                 skreq->id += SKD_ID_INCR;
 776 
 777                 /* Start a new FIT msg if there is none in progress. */
 778                 if (skmsg == NULL) {
 779                         /* Are there any FIT msg buffers available? */
 780                         skmsg = skdev->skmsg_free_list;
 781                         if (skmsg == NULL) {
 782                                 WAITQ_UNLOCK(skdev);
 783                                 break;
 784                         }
 785 
 786                         ASSERT(skmsg->state == SKD_MSG_STATE_IDLE);
 787                         ASSERT((skmsg->id & SKD_ID_INCR) == 0);
 788 
 789                         skdev->skmsg_free_list = skmsg->next;
 790 
 791                         skmsg->state = SKD_MSG_STATE_BUSY;
 792                         skmsg->id += SKD_ID_INCR;
 793 
 794                         /* Initialize the FIT msg header */
 795                         fmh = (struct fit_msg_hdr *)skmsg->msg_buf64;
 796                         bzero(fmh, sizeof (*fmh)); /* Too expensive */
 797                         fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
 798                         skmsg->length = sizeof (struct fit_msg_hdr);
 799                 }
 800 
 801                 /*
 802                  * At this point we are committed to either start or reject
 803                  * the native request. Note that a FIT msg may have just been
 804                  * started but contains no SoFIT requests yet.
 805                  * Now - dequeue pbuf.
 806                  */
 807                 pbuf = skd_get_queued_pbuf(skdev);
 808                 WAITQ_UNLOCK(skdev);
 809 
 810                 skreq->pbuf = pbuf;
 811                 lba = pbuf->x_xfer->x_blkno;
 812                 count = pbuf->x_xfer->x_nblks;
 813                 skreq->did_complete = 0;
 814 
 815                 skreq->fitmsg_id = skmsg->id;
 816 
 817                 Dcmn_err(CE_NOTE,
 818                     "pbuf=%p lba=%u(0x%x) count=%u(0x%x) dir=%x\n",
 819                     (void *)pbuf, lba, lba, count, count, pbuf->dir);
 820 
 821                 /*
 822                  * Transcode the request.
 823                  */
 824                 cmd_ptr = &skmsg->msg_buf[skmsg->length];
 825                 bzero(cmd_ptr, 32); /* This is too expensive */
 826 
 827                 scsi_req = cmd_ptr;
 828                 scsi_req->hdr.tag = skreq->id;
 829                 scsi_req->hdr.sg_list_dma_address =
 830                     cpu_to_be64(skreq->sksg_dma_address.cookies->dmac_laddress);
 831                 scsi_req->cdb[1] = 0;
 832                 scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
 833                 scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
 834                 scsi_req->cdb[4] = (lba & 0xff00) >> 8;
 835                 scsi_req->cdb[5] = (lba & 0xff);
 836                 scsi_req->cdb[6] = 0;
 837                 scsi_req->cdb[7] = (count & 0xff00) >> 8;
 838                 scsi_req->cdb[8] = count & 0xff;
 839                 scsi_req->cdb[9] = 0;
 840 
 841                 if (pbuf->dir & B_READ) {
 842                         scsi_req->cdb[0] = 0x28;
 843                         skreq->sg_data_dir = SKD_DATA_DIR_CARD_TO_HOST;
 844                 } else {
 845                         scsi_req->cdb[0] = 0x2a;
 846                         skreq->sg_data_dir = SKD_DATA_DIR_HOST_TO_CARD;
 847                 }
 848 
 849                 skd_blkdev_preop_sg_list(skdev, skreq, &sg_byte_count);
 850 
 851                 scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(sg_byte_count);
 852 
 853                 bcount = (sg_byte_count + 511) / 512;
 854                 scsi_req->cdb[7] = (bcount & 0xff00) >> 8;
 855                 scsi_req->cdb[8] =  bcount & 0xff;
 856 
 857                 Dcmn_err(CE_NOTE,
 858                     "skd_start: pbuf=%p skreq->id=%x opc=%x ====>>>>>",
 859                     (void *)pbuf, skreq->id, *scsi_req->cdb);
 860 
 861                 skmsg->length += sizeof (struct skd_scsi_request);
 862                 fmh->num_protocol_cmds_coalesced++;
 863 
 864                 /*
 865                  * Update the active request counts.
 866                  * Capture the timeout timestamp.
 867                  */
 868                 skreq->timeout_stamp = skdev->timeout_stamp;
 869                 timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
 870 
 871                 atomic_inc_32(&skdev->timeout_slot[timo_slot]);
 872                 atomic_inc_32(&skdev->queue_depth_busy);
 873 
 874                 Dcmn_err(CE_NOTE, "req=0x%x busy=%d timo_slot=%d",
 875                     skreq->id, skdev->queue_depth_busy, timo_slot);
 876                 /*
 877                  * If the FIT msg buffer is full send it.
 878                  */
 879                 if (skmsg->length >= SKD_N_FITMSG_BYTES ||
 880                     fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
 881 
 882                         atomic_inc_64(&skdev->active_cmds);
 883                         pbuf->skreq = skreq;
 884 
 885                         skdev->fitmsg_sent1++;
 886                         skd_send_fitmsg(skdev, skmsg);
 887 
 888                         skmsg = NULL;
 889                         fmh = NULL;
 890                 }
 891         }
 892 
 893         /*
 894          * Is a FIT msg in progress? If it is empty put the buffer back
 895          * on the free list. If it is non-empty send what we got.
 896          * This minimizes latency when there are fewer requests than
 897          * what fits in a FIT msg.
 898          */
 899         if (skmsg != NULL) {
 900                 ASSERT(skmsg->length > sizeof (struct fit_msg_hdr));
 901                 Dcmn_err(CE_NOTE, "sending msg=%p, len %d",
 902                     (void *)skmsg, skmsg->length);
 903 
 904                 skdev->active_cmds++;
 905 
 906                 skdev->fitmsg_sent2++;
 907                 skd_send_fitmsg(skdev, skmsg);
 908         }
 909 }
 910 
 911 /*
 912  *
 913  * Name:        skd_end_request
 914  *
 915  * Inputs:      skdev           - device state structure.
 916  *              skreq           - request structure.
 917  *              error           - I/O error value.
 918  *
 919  * Returns:     Nothing.
 920  *
 921  */
 922 static void
 923 skd_end_request(struct skd_device *skdev,
 924     struct skd_request_context *skreq, int error)
 925 {
 926         skdev->ios_completed++;
 927         skd_io_done(skdev, skreq->pbuf, error, SKD_IODONE_WIOC);
 928         skreq->pbuf = NULL;
 929         skreq->did_complete = 1;
 930 }
 931 
 932 /*
 933  *
 934  * Name:        skd_end_request_abnormal
 935  *
 936  * Inputs:      skdev           - device state structure.
 937  *              pbuf            - I/O request.
 938  *              error           - I/O error value.
 939  *              mode            - debug
 940  *
 941  * Returns:     Nothing.
 942  *
 943  */
 944 static void
 945 skd_end_request_abnormal(skd_device_t *skdev, skd_buf_private_t *pbuf,
 946     int error, int mode)
 947 {
 948         skd_io_done(skdev, pbuf, error, mode);
 949 }
 950 
 951 /*
 952  *
 953  * Name:        skd_request_fn_not_online, handles the condition
 954  *              of the device not being online.
 955  *
 956  * Inputs:      skdev           - device state structure.
 957  *
 958  * Returns:     nothing (void).
 959  *
 960  */
 961 static void
 962 skd_request_fn_not_online(skd_device_t *skdev)
 963 {
 964         int error;
 965         skd_buf_private_t *pbuf;
 966 
 967         ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
 968 
 969         skd_log_skdev(skdev, "req_not_online");
 970 
 971         switch (skdev->state) {
 972         case SKD_DRVR_STATE_PAUSING:
 973         case SKD_DRVR_STATE_PAUSED:
 974         case SKD_DRVR_STATE_STARTING:
 975         case SKD_DRVR_STATE_RESTARTING:
 976         case SKD_DRVR_STATE_WAIT_BOOT:
 977                 /*
 978                  * In case of starting, we haven't started the queue,
 979                  * so we can't get here... but requests are
 980                  * possibly hanging out waiting for us because we
 981                  * reported the dev/skd/0 already.  They'll wait
 982                  * forever if connect doesn't complete.
 983                  * What to do??? delay dev/skd/0 ??
 984                  */
 985         case SKD_DRVR_STATE_BUSY:
 986         case SKD_DRVR_STATE_BUSY_IMMINENT:
 987         case SKD_DRVR_STATE_BUSY_ERASE:
 988         case SKD_DRVR_STATE_DRAINING_TIMEOUT:
 989                 return;
 990 
 991         case SKD_DRVR_STATE_BUSY_SANITIZE:
 992         case SKD_DRVR_STATE_STOPPING:
 993         case SKD_DRVR_STATE_SYNCING:
 994         case SKD_DRVR_STATE_FAULT:
 995         case SKD_DRVR_STATE_DISAPPEARED:
 996         default:
 997                 error = -EIO;
 998                 break;
 999         }
1000 
1001         /*
1002          * If we get here, terminate all pending block requeusts
1003          * with EIO and any scsi pass thru with appropriate sense
1004          */
1005         ASSERT(WAITQ_LOCK_HELD(skdev));
1006         if (SIMPLEQ_EMPTY(&skdev->waitqueue))
1007                 return;
1008 
1009         while ((pbuf = skd_get_queued_pbuf(skdev)))
1010                 skd_end_request_abnormal(skdev, pbuf, error, SKD_IODONE_WNIOC);
1011 
1012         cv_signal(&skdev->cv_waitq);
1013 }
1014 
1015 /*
1016  * TIMER
1017  */
1018 
1019 static void skd_timer_tick_not_online(struct skd_device *skdev);
1020 
1021 /*
1022  *
1023  * Name:        skd_timer_tick, monitors requests for timeouts.
1024  *
1025  * Inputs:      skdev           - device state structure.
1026  *
1027  * Returns:     Nothing.
1028  *
1029  */
1030 static void
1031 skd_timer_tick(skd_device_t *skdev)
1032 {
1033         uint32_t timo_slot;
1034 
1035         skdev->timer_active = 1;
1036 
1037         if (skdev->state != SKD_DRVR_STATE_ONLINE) {
1038                 skd_timer_tick_not_online(skdev);
1039                 goto timer_func_out;
1040         }
1041 
1042         skdev->timeout_stamp++;
1043         timo_slot = skdev->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
1044 
1045         /*
1046          * All requests that happened during the previous use of
1047          * this slot should be done by now. The previous use was
1048          * over 7 seconds ago.
1049          */
1050         if (skdev->timeout_slot[timo_slot] == 0) {
1051                 goto timer_func_out;
1052         }
1053 
1054         /* Something is overdue */
1055         Dcmn_err(CE_NOTE, "found %d timeouts, draining busy=%d",
1056             skdev->timeout_slot[timo_slot],
1057             skdev->queue_depth_busy);
1058         skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1059         skdev->state = SKD_DRVR_STATE_DRAINING_TIMEOUT;
1060         skdev->timo_slot = timo_slot;
1061 
1062 timer_func_out:
1063         skdev->timer_active = 0;
1064 }
1065 
1066 /*
1067  *
1068  * Name:        skd_timer_tick_not_online, handles various device
1069  *              state transitions.
1070  *
1071  * Inputs:      skdev           - device state structure.
1072  *
1073  * Returns:     Nothing.
1074  *
1075  */
1076 static void
1077 skd_timer_tick_not_online(struct skd_device *skdev)
1078 {
1079         Dcmn_err(CE_NOTE, "skd_skd_timer_tick_not_online: state=%d tmo=%d",
1080             skdev->state, skdev->timer_countdown);
1081 
1082         ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
1083 
1084         switch (skdev->state) {
1085         case SKD_DRVR_STATE_IDLE:
1086         case SKD_DRVR_STATE_LOAD:
1087                 break;
1088         case SKD_DRVR_STATE_BUSY_SANITIZE:
1089                 cmn_err(CE_WARN, "!drive busy sanitize[%x], driver[%x]\n",
1090                     skdev->drive_state, skdev->state);
1091                 break;
1092 
1093         case SKD_DRVR_STATE_BUSY:
1094         case SKD_DRVR_STATE_BUSY_IMMINENT:
1095         case SKD_DRVR_STATE_BUSY_ERASE:
1096                 Dcmn_err(CE_NOTE, "busy[%x], countdown=%d\n",
1097                     skdev->state, skdev->timer_countdown);
1098                 if (skdev->timer_countdown > 0) {
1099                         skdev->timer_countdown--;
1100                         return;
1101                 }
1102                 cmn_err(CE_WARN, "!busy[%x], timedout=%d, restarting device.",
1103                     skdev->state, skdev->timer_countdown);
1104                 skd_restart_device(skdev);
1105                 break;
1106 
1107         case SKD_DRVR_STATE_WAIT_BOOT:
1108         case SKD_DRVR_STATE_STARTING:
1109                 if (skdev->timer_countdown > 0) {
1110                         skdev->timer_countdown--;
1111                         return;
1112                 }
1113                 /*
1114                  * For now, we fault the drive.  Could attempt resets to
1115                  * revcover at some point.
1116                  */
1117                 skdev->state = SKD_DRVR_STATE_FAULT;
1118 
1119                 cmn_err(CE_WARN, "!(%s): DriveFault Connect Timeout (%x)",
1120                     skd_name(skdev), skdev->drive_state);
1121 
1122                 /* start the queue so we can respond with error to requests */
1123                 skd_start(skdev);
1124 
1125                 /* wakeup anyone waiting for startup complete */
1126                 skdev->gendisk_on = -1;
1127 
1128                 cv_signal(&skdev->cv_waitq);
1129                 break;
1130 
1131 
1132         case SKD_DRVR_STATE_PAUSING:
1133         case SKD_DRVR_STATE_PAUSED:
1134                 break;
1135 
1136         case SKD_DRVR_STATE_DRAINING_TIMEOUT:
1137                 cmn_err(CE_WARN,
1138                     "!%s: draining busy [%d] tick[%d] qdb[%d] tmls[%d]\n",
1139                     skdev->name,
1140                     skdev->timo_slot,
1141                     skdev->timer_countdown,
1142                     skdev->queue_depth_busy,
1143                     skdev->timeout_slot[skdev->timo_slot]);
1144                 /* if the slot has cleared we can let the I/O continue */
1145                 if (skdev->timeout_slot[skdev->timo_slot] == 0) {
1146                         Dcmn_err(CE_NOTE, "Slot drained, starting queue.");
1147                         skdev->state = SKD_DRVR_STATE_ONLINE;
1148                         skd_start(skdev);
1149                         return;
1150                 }
1151                 if (skdev->timer_countdown > 0) {
1152                         skdev->timer_countdown--;
1153                         return;
1154                 }
1155                 skd_restart_device(skdev);
1156                 break;
1157 
1158         case SKD_DRVR_STATE_RESTARTING:
1159                 if (skdev->timer_countdown > 0) {
1160                         skdev->timer_countdown--;
1161 
1162                         return;
1163                 }
1164                 /*
1165                  * For now, we fault the drive. Could attempt resets to
1166                  * revcover at some point.
1167                  */
1168                 skdev->state = SKD_DRVR_STATE_FAULT;
1169                 cmn_err(CE_WARN, "!(%s): DriveFault Reconnect Timeout (%x)\n",
1170                     skd_name(skdev), skdev->drive_state);
1171 
1172                 /*
1173                  * Recovering does two things:
1174                  * 1. completes IO with error
1175                  * 2. reclaims dma resources
1176                  * When is it safe to recover requests?
1177                  * - if the drive state is faulted
1178                  * - if the state is still soft reset after out timeout
1179                  * - if the drive registers are dead (state = FF)
1180                  */
1181 
1182                 if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
1183                     (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
1184                     (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK)) {
1185                         /*
1186                          * It never came out of soft reset. Try to
1187                          * recover the requests and then let them
1188                          * fail. This is to mitigate hung processes.
1189                          *
1190                          * Acquire the interrupt lock since these lists are
1191                          * manipulated by interrupt handlers.
1192                          */
1193                         ASSERT(!WAITQ_LOCK_HELD(skdev));
1194                         INTR_LOCK(skdev);
1195                         skd_recover_requests(skdev);
1196                         INTR_UNLOCK(skdev);
1197                 }
1198                 /* start the queue so we can respond with error to requests */
1199                 skd_start(skdev);
1200                 /* wakeup anyone waiting for startup complete */
1201                 skdev->gendisk_on = -1;
1202                 cv_signal(&skdev->cv_waitq);
1203                 break;
1204 
1205         case SKD_DRVR_STATE_RESUMING:
1206         case SKD_DRVR_STATE_STOPPING:
1207         case SKD_DRVR_STATE_SYNCING:
1208         case SKD_DRVR_STATE_FAULT:
1209         case SKD_DRVR_STATE_DISAPPEARED:
1210         default:
1211                 break;
1212         }
1213 }
1214 
1215 /*
1216  *
1217  * Name:        skd_timer, kicks off the timer processing.
1218  *
1219  * Inputs:      skdev           - device state structure.
1220  *
1221  * Returns:     Nothing.
1222  *
1223  */
1224 static void
1225 skd_timer(void *arg)
1226 {
1227         skd_device_t *skdev = (skd_device_t *)arg;
1228 
1229         /* Someone set us to 0, don't bother rescheduling. */
1230         ADAPTER_STATE_LOCK(skdev);
1231         if (skdev->skd_timer_timeout_id != 0) {
1232                 ADAPTER_STATE_UNLOCK(skdev);
1233                 /* Pardon the drop-and-then-acquire logic here. */
1234                 skd_timer_tick(skdev);
1235                 ADAPTER_STATE_LOCK(skdev);
1236                 /* Restart timer, if not being stopped. */
1237                 if (skdev->skd_timer_timeout_id != 0) {
1238                         skdev->skd_timer_timeout_id =
1239                             timeout(skd_timer, arg, skd_timer_ticks);
1240                 }
1241         }
1242         ADAPTER_STATE_UNLOCK(skdev);
1243 }
1244 
1245 /*
1246  *
1247  * Name:        skd_start_timer, kicks off the 1-second timer.
1248  *
1249  * Inputs:      skdev           - device state structure.
1250  *
1251  * Returns:     Zero.
1252  *
1253  */
1254 static void
1255 skd_start_timer(struct skd_device *skdev)
1256 {
1257         /* Start one second driver timer. */
1258         ADAPTER_STATE_LOCK(skdev);
1259         ASSERT(skdev->skd_timer_timeout_id == 0);
1260 
1261         /*
1262          * Do first "timeout tick" right away, but not in this
1263          * thread.
1264          */
1265         skdev->skd_timer_timeout_id = timeout(skd_timer, skdev, 1);
1266         ADAPTER_STATE_UNLOCK(skdev);
1267 }
1268 
1269 /*
1270  * INTERNAL REQUESTS -- generated by driver itself
1271  */
1272 
1273 /*
1274  *
1275  * Name:        skd_format_internal_skspcl, setups the internal
1276  *              FIT request message.
1277  *
1278  * Inputs:      skdev           - device state structure.
1279  *
1280  * Returns:     One.
1281  *
1282  */
1283 static int
1284 skd_format_internal_skspcl(struct skd_device *skdev)
1285 {
1286         struct skd_special_context *skspcl = &skdev->internal_skspcl;
1287         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
1288         struct fit_msg_hdr *fmh;
1289         uint64_t dma_address;
1290         struct skd_scsi_request *scsi;
1291 
1292         fmh = (struct fit_msg_hdr *)&skspcl->msg_buf64[0];
1293         fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
1294         fmh->num_protocol_cmds_coalesced = 1;
1295 
1296         /* Instead of 64-bytes in, use 8-(64-bit-words) for linted alignment. */
1297         scsi = (struct skd_scsi_request *)&skspcl->msg_buf64[8];
1298         bzero(scsi, sizeof (*scsi));
1299         dma_address = skspcl->req.sksg_dma_address.cookies->_dmu._dmac_ll;
1300         scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
1301         sgd->control = FIT_SGD_CONTROL_LAST;
1302         sgd->byte_count = 0;
1303         sgd->host_side_addr = skspcl->db_dma_address.cookies->_dmu._dmac_ll;
1304         sgd->dev_side_addr = 0; /* not used */
1305         sgd->next_desc_ptr = 0LL;
1306 
1307         return (1);
1308 }
1309 
1310 /*
1311  *
1312  * Name:        skd_send_internal_skspcl, send internal requests to
1313  *              the hardware.
1314  *
1315  * Inputs:      skdev           - device state structure.
1316  *              skspcl          - request structure
1317  *              opcode          - just what it says
1318  *
1319  * Returns:     Nothing.
1320  *
1321  */
1322 void
1323 skd_send_internal_skspcl(struct skd_device *skdev,
1324     struct skd_special_context *skspcl, uint8_t opcode)
1325 {
1326         struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
1327         struct skd_scsi_request *scsi;
1328 
1329         if (SKD_REQ_STATE_IDLE != skspcl->req.state) {
1330                 /*
1331                  * A refresh is already in progress.
1332                  * Just wait for it to finish.
1333                  */
1334                 return;
1335         }
1336 
1337         ASSERT(0 == (skspcl->req.id & SKD_ID_INCR));
1338         skspcl->req.state = SKD_REQ_STATE_BUSY;
1339         skspcl->req.id += SKD_ID_INCR;
1340 
1341         /* Instead of 64-bytes in, use 8-(64-bit-words) for linted alignment. */
1342         scsi = (struct skd_scsi_request *)&skspcl->msg_buf64[8];
1343         scsi->hdr.tag = skspcl->req.id;
1344 
1345         Dcmn_err(CE_NOTE, "internal skspcl: opcode=%x req.id=%x ==========>",
1346             opcode, skspcl->req.id);
1347 
1348         switch (opcode) {
1349         case TEST_UNIT_READY:
1350                 scsi->cdb[0] = TEST_UNIT_READY;
1351                 scsi->cdb[1] = 0x00;
1352                 scsi->cdb[2] = 0x00;
1353                 scsi->cdb[3] = 0x00;
1354                 scsi->cdb[4] = 0x00;
1355                 scsi->cdb[5] = 0x00;
1356                 sgd->byte_count = 0;
1357                 scsi->hdr.sg_list_len_bytes = 0;
1358                 break;
1359         case READ_CAPACITY_EXT:
1360                 scsi->cdb[0]  = READ_CAPACITY_EXT;
1361                 scsi->cdb[1]  = 0x10;
1362                 scsi->cdb[2]  = 0x00;
1363                 scsi->cdb[3]  = 0x00;
1364                 scsi->cdb[4]  = 0x00;
1365                 scsi->cdb[5]  = 0x00;
1366                 scsi->cdb[6]  = 0x00;
1367                 scsi->cdb[7]  = 0x00;
1368                 scsi->cdb[8]  = 0x00;
1369                 scsi->cdb[9]  = 0x00;
1370                 scsi->cdb[10] = 0x00;
1371                 scsi->cdb[11] = 0x00;
1372                 scsi->cdb[12] = 0x00;
1373                 scsi->cdb[13] = 0x20;
1374                 scsi->cdb[14] = 0x00;
1375                 scsi->cdb[15] = 0x00;
1376                 sgd->byte_count = SKD_N_READ_CAP_EXT_BYTES;
1377                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1378                 break;
1379         case 0x28:
1380                 (void) memset(skspcl->data_buf, 0x65, SKD_N_INTERNAL_BYTES);
1381 
1382                 scsi->cdb[0] = 0x28;
1383                 scsi->cdb[1] = 0x00;
1384                 scsi->cdb[2] = 0x00;
1385                 scsi->cdb[3] = 0x00;
1386                 scsi->cdb[4] = 0x00;
1387                 scsi->cdb[5] = 0x00;
1388                 scsi->cdb[6] = 0x00;
1389                 scsi->cdb[7] = 0x00;
1390                 scsi->cdb[8] = 0x01;
1391                 scsi->cdb[9] = 0x00;
1392                 sgd->byte_count = SKD_N_INTERNAL_BYTES;
1393                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(SKD_N_INTERNAL_BYTES);
1394                 break;
1395         case INQUIRY:
1396                 scsi->cdb[0] = INQUIRY;
1397                 scsi->cdb[1] = 0x01; /* evpd */
1398                 scsi->cdb[2] = 0x80; /* serial number page */
1399                 scsi->cdb[3] = 0x00;
1400                 scsi->cdb[4] = 0x10;
1401                 scsi->cdb[5] = 0x00;
1402                 sgd->byte_count = 16; /* SKD_N_INQ_BYTES */;
1403                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1404                 break;
1405         case INQUIRY2:
1406                 scsi->cdb[0] = INQUIRY;
1407                 scsi->cdb[1] = 0x00;
1408                 scsi->cdb[2] = 0x00; /* serial number page */
1409                 scsi->cdb[3] = 0x00;
1410                 scsi->cdb[4] = 0x24;
1411                 scsi->cdb[5] = 0x00;
1412                 sgd->byte_count = 36; /* SKD_N_INQ_BYTES */;
1413                 scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
1414                 break;
1415         case SYNCHRONIZE_CACHE:
1416                 scsi->cdb[0] = SYNCHRONIZE_CACHE;
1417                 scsi->cdb[1] = 0x00;
1418                 scsi->cdb[2] = 0x00;
1419                 scsi->cdb[3] = 0x00;
1420                 scsi->cdb[4] = 0x00;
1421                 scsi->cdb[5] = 0x00;
1422                 scsi->cdb[6] = 0x00;
1423                 scsi->cdb[7] = 0x00;
1424                 scsi->cdb[8] = 0x00;
1425                 scsi->cdb[9] = 0x00;
1426                 sgd->byte_count = 0;
1427                 scsi->hdr.sg_list_len_bytes = 0;
1428                 break;
1429         default:
1430                 ASSERT("Don't know what to send");
1431                 return;
1432 
1433         }
1434 
1435         skd_send_special_fitmsg(skdev, skspcl);
1436 }
1437 
1438 /*
1439  *
1440  * Name:        skd_refresh_device_data, sends a TUR command.
1441  *
1442  * Inputs:      skdev           - device state structure.
1443  *
1444  * Returns:     Nothing.
1445  *
1446  */
1447 static void
1448 skd_refresh_device_data(struct skd_device *skdev)
1449 {
1450         struct skd_special_context *skspcl = &skdev->internal_skspcl;
1451 
1452         Dcmn_err(CE_NOTE, "refresh_device_data: state=%d", skdev->state);
1453 
1454         skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
1455 }
1456 
1457 /*
1458  *
1459  * Name:        skd_complete_internal, handles the completion of
1460  *              driver-initiated I/O requests.
1461  *
1462  * Inputs:      skdev           - device state structure.
1463  *              skcomp          - completion structure.
1464  *              skerr           - error structure.
1465  *              skspcl          - request structure.
1466  *
1467  * Returns:     Nothing.
1468  *
1469  */
1470 /* ARGSUSED */  /* Upstream common source with other platforms. */
1471 static void
1472 skd_complete_internal(struct skd_device *skdev,
1473     volatile struct fit_completion_entry_v1 *skcomp,
1474     volatile struct fit_comp_error_info *skerr,
1475     struct skd_special_context *skspcl)
1476 {
1477         uint8_t *buf = skspcl->data_buf;
1478         uint8_t status = 2;
1479         int i;
1480         /* Instead of 64-bytes in, use 8-(64-bit-words) for linted alignment. */
1481         struct skd_scsi_request *scsi =
1482             (struct skd_scsi_request *)&skspcl->msg_buf64[8];
1483 
1484         ASSERT(skspcl == &skdev->internal_skspcl);
1485 
1486         (void) ddi_dma_sync(skspcl->db_dma_address.dma_handle, 0, 0,
1487             DDI_DMA_SYNC_FORKERNEL);
1488         (void) ddi_dma_sync(skspcl->mb_dma_address.dma_handle, 0, 0,
1489             DDI_DMA_SYNC_FORKERNEL);
1490 
1491         Dcmn_err(CE_NOTE, "complete internal %x", scsi->cdb[0]);
1492 
1493         skspcl->req.completion = *skcomp;
1494         skspcl->req.state = SKD_REQ_STATE_IDLE;
1495         skspcl->req.id += SKD_ID_INCR;
1496 
1497         status = skspcl->req.completion.status;
1498 
1499         Dcmn_err(CE_NOTE, "<<<<====== complete_internal: opc=%x", *scsi->cdb);
1500 
1501         switch (scsi->cdb[0]) {
1502         case TEST_UNIT_READY:
1503                 if (SAM_STAT_GOOD == status) {
1504                         skd_send_internal_skspcl(skdev, skspcl,
1505                             READ_CAPACITY_EXT);
1506                 } else {
1507                         if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1508                                 cmn_err(CE_WARN,
1509                                     "!%s: TUR failed, don't send anymore"
1510                                     "state 0x%x", skdev->name, skdev->state);
1511 
1512                                 return;
1513                         }
1514 
1515                         Dcmn_err(CE_NOTE, "%s: TUR failed, retry skerr",
1516                             skdev->name);
1517                         skd_send_internal_skspcl(skdev, skspcl, 0x00);
1518                 }
1519                 break;
1520         case READ_CAPACITY_EXT: {
1521                 uint64_t cap, Nblocks;
1522                 uint64_t xbuf[1];
1523 
1524                 skdev->read_cap_is_valid = 0;
1525                 if (SAM_STAT_GOOD == status) {
1526                         bcopy(buf, xbuf, 8);
1527                         cap = be64_to_cpu(*xbuf);
1528                         skdev->read_cap_last_lba = cap;
1529                         skdev->read_cap_blocksize =
1530                             (buf[8] << 24) | (buf[9] << 16) |
1531                             (buf[10] << 8) | buf[11];
1532 
1533                         cap *= skdev->read_cap_blocksize;
1534                         Dcmn_err(CE_NOTE, "  Last LBA: %" PRIu64 " (0x%" PRIx64
1535                             "), blk sz: %d, Capacity: %" PRIu64 "GB\n",
1536                             skdev->read_cap_last_lba,
1537                             skdev->read_cap_last_lba,
1538                             skdev->read_cap_blocksize,
1539                             cap >> 30ULL);
1540 
1541                         Nblocks = skdev->read_cap_last_lba + 1;
1542 
1543                         skdev->Nblocks = Nblocks;
1544                         skdev->read_cap_is_valid = 1;
1545 
1546                         skd_send_internal_skspcl(skdev, skspcl, INQUIRY2);
1547 
1548                 } else {
1549                         Dcmn_err(CE_NOTE, "**** READCAP failed, retry TUR");
1550                         skd_send_internal_skspcl(skdev, skspcl,
1551                             TEST_UNIT_READY);
1552                 }
1553                 break;
1554         }
1555         case INQUIRY:
1556                 skdev->inquiry_is_valid = 0;
1557                 if (SAM_STAT_GOOD == status) {
1558                         skdev->inquiry_is_valid = 1;
1559 
1560                         if (scsi->cdb[1] == 0x1) {
1561                                 bcopy(&buf[4], skdev->inq_serial_num, 12);
1562                                 skdev->inq_serial_num[12] = '\0';
1563                         } else {
1564                                 char *tmp = skdev->inq_vendor_id;
1565 
1566                                 bcopy(&buf[8], tmp, 8);
1567                                 tmp[8] = '\0';
1568                                 for (i = 7; i >= 0 && tmp[i] != '\0'; i--)
1569                                         if (tmp[i] == ' ')
1570                                                 tmp[i] = '\0';
1571 
1572                                 tmp = skdev->inq_product_id;
1573                                 bcopy(&buf[16], tmp, 16);
1574                                 tmp[16] = '\0';
1575 
1576                                 for (i = 15; i >= 0 && tmp[i] != '\0'; i--)
1577                                         if (tmp[i] == ' ')
1578                                                 tmp[i] = '\0';
1579 
1580                                 tmp = skdev->inq_product_rev;
1581                                 bcopy(&buf[32], tmp, 4);
1582                                 tmp[4] = '\0';
1583                         }
1584                 }
1585 
1586                 if (skdev->state != SKD_DRVR_STATE_ONLINE)
1587                         if (skd_unquiesce_dev(skdev) < 0)
1588                                 cmn_err(CE_NOTE, "** failed, to ONLINE device");
1589                 break;
1590         case SYNCHRONIZE_CACHE:
1591                 skdev->sync_done = (SAM_STAT_GOOD == status) ? 1 : -1;
1592 
1593                 cv_signal(&skdev->cv_waitq);
1594                 break;
1595 
1596         default:
1597                 ASSERT("we didn't send this");
1598         }
1599 }
1600 
1601 /*
1602  * FIT MESSAGES
1603  */
1604 
1605 /*
1606  *
1607  * Name:        skd_send_fitmsg, send a FIT message to the hardware.
1608  *
1609  * Inputs:      skdev           - device state structure.
1610  *              skmsg           - FIT message structure.
1611  *
1612  * Returns:     Nothing.
1613  *
1614  */
1615 /* ARGSUSED */  /* Upstream common source with other platforms. */
1616 static void
1617 skd_send_fitmsg(struct skd_device *skdev,
1618     struct skd_fitmsg_context *skmsg)
1619 {
1620         uint64_t qcmd;
1621         struct fit_msg_hdr *fmh;
1622 
1623         Dcmn_err(CE_NOTE, "msgbuf's DMA addr: 0x%" PRIx64 ", qdepth_busy=%d",
1624             skmsg->mb_dma_address.cookies->dmac_laddress,
1625             skdev->queue_depth_busy);
1626 
1627         Dcmn_err(CE_NOTE, "msg_buf 0x%p, offset %x", (void *)skmsg->msg_buf,
1628             skmsg->offset);
1629 
1630         qcmd = skmsg->mb_dma_address.cookies->dmac_laddress;
1631         qcmd |= FIT_QCMD_QID_NORMAL;
1632 
1633         fmh = (struct fit_msg_hdr *)skmsg->msg_buf64;
1634         skmsg->outstanding = fmh->num_protocol_cmds_coalesced;
1635 
1636         if (skdev->dbg_level > 1) {
1637                 uint8_t *bp = skmsg->msg_buf;
1638                 int i;
1639 
1640                 for (i = 0; i < skmsg->length; i += 8) {
1641                         Dcmn_err(CE_NOTE, "  msg[%2d] %02x %02x %02x %02x "
1642                             "%02x %02x %02x %02x",
1643                             i, bp[i + 0], bp[i + 1], bp[i + 2],
1644                             bp[i + 3], bp[i + 4], bp[i + 5],
1645                             bp[i + 6], bp[i + 7]);
1646                         if (i == 0) i = 64 - 8;
1647                 }
1648         }
1649 
1650         (void) ddi_dma_sync(skmsg->mb_dma_address.dma_handle, 0, 0,
1651             DDI_DMA_SYNC_FORDEV);
1652 
1653         ASSERT(skmsg->length > sizeof (struct fit_msg_hdr));
1654         if (skmsg->length > 256) {
1655                 qcmd |= FIT_QCMD_MSGSIZE_512;
1656         } else if (skmsg->length > 128) {
1657                 qcmd |= FIT_QCMD_MSGSIZE_256;
1658         } else if (skmsg->length > 64) {
1659                 qcmd |= FIT_QCMD_MSGSIZE_128;
1660         }
1661 
1662         skdev->ios_started++;
1663 
1664         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1665 }
1666 
1667 /*
1668  *
1669  * Name:        skd_send_special_fitmsg, send a special FIT message
1670  *              to the hardware used driver-originated I/O requests.
1671  *
1672  * Inputs:      skdev           - device state structure.
1673  *              skspcl          - skspcl structure.
1674  *
1675  * Returns:     Nothing.
1676  *
1677  */
1678 static void
1679 skd_send_special_fitmsg(struct skd_device *skdev,
1680     struct skd_special_context *skspcl)
1681 {
1682         uint64_t qcmd;
1683 
1684         Dcmn_err(CE_NOTE, "send_special_fitmsg: pt 1");
1685 
1686         if (skdev->dbg_level > 1) {
1687                 uint8_t *bp = skspcl->msg_buf;
1688                 int i;
1689 
1690                 for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1691                         cmn_err(CE_NOTE,
1692                             "  spcl[%2d] %02x %02x %02x %02x  "
1693                             "%02x %02x %02x %02x\n", i,
1694                             bp[i + 0], bp[i + 1], bp[i + 2], bp[i + 3],
1695                             bp[i + 4], bp[i + 5], bp[i + 6], bp[i + 7]);
1696                         if (i == 0) i = 64 - 8;
1697                 }
1698 
1699                 for (i = 0; i < skspcl->req.n_sg; i++) {
1700                         struct fit_sg_descriptor *sgd =
1701                             &skspcl->req.sksg_list[i];
1702 
1703                         cmn_err(CE_NOTE, "  sg[%d] count=%u ctrl=0x%x "
1704                             "addr=0x%" PRIx64 " next=0x%" PRIx64,
1705                             i, sgd->byte_count, sgd->control,
1706                             sgd->host_side_addr, sgd->next_desc_ptr);
1707                 }
1708         }
1709 
1710         (void) ddi_dma_sync(skspcl->mb_dma_address.dma_handle, 0, 0,
1711             DDI_DMA_SYNC_FORDEV);
1712         (void) ddi_dma_sync(skspcl->db_dma_address.dma_handle, 0, 0,
1713             DDI_DMA_SYNC_FORDEV);
1714 
1715         /*
1716          * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1717          * and one 64-byte SSDI command.
1718          */
1719         qcmd = skspcl->mb_dma_address.cookies->dmac_laddress;
1720 
1721         qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1722 
1723         SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1724 }
1725 
1726 /*
1727  * COMPLETION QUEUE
1728  */
1729 
1730 static void skd_complete_other(struct skd_device *skdev,
1731     volatile struct fit_completion_entry_v1 *skcomp,
1732     volatile struct fit_comp_error_info *skerr);
1733 
1734 struct sns_info {
1735         uint8_t type;
1736         uint8_t stat;
1737         uint8_t key;
1738         uint8_t asc;
1739         uint8_t ascq;
1740         uint8_t mask;
1741         enum skd_check_status_action action;
1742 };
1743 
1744 static struct sns_info skd_chkstat_table[] = {
1745         /* Good */
1746         {0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c, SKD_CHECK_STATUS_REPORT_GOOD},
1747 
1748         /* Smart alerts */
1749         {0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */
1750             SKD_CHECK_STATUS_REPORT_SMART_ALERT},
1751         {0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */
1752             SKD_CHECK_STATUS_REPORT_SMART_ALERT},
1753         {0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temp over trigger */
1754             SKD_CHECK_STATUS_REPORT_SMART_ALERT},
1755 
1756         /* Retry (with limits) */
1757         {0x70, 0x02, ABORTED_COMMAND, 0, 0, 0x1C, /* DMA errors */
1758             SKD_CHECK_STATUS_REQUEUE_REQUEST},
1759         {0x70, 0x02, UNIT_ATTENTION, 0x0B, 0x00, 0x1E, /* warnings */
1760             SKD_CHECK_STATUS_REQUEUE_REQUEST},
1761         {0x70, 0x02, UNIT_ATTENTION, 0x5D, 0x00, 0x1E, /* thresholds */
1762             SKD_CHECK_STATUS_REQUEUE_REQUEST},
1763         {0x70, 0x02, UNIT_ATTENTION, 0x80, 0x30, 0x1F, /* backup power */
1764             SKD_CHECK_STATUS_REQUEUE_REQUEST},
1765 
1766         /* Busy (or about to be) */
1767         {0x70, 0x02, UNIT_ATTENTION, 0x3f, 0x01, 0x1F, /* fw changed */
1768             SKD_CHECK_STATUS_BUSY_IMMINENT},
1769 };
1770 
1771 /*
1772  *
1773  * Name:        skd_check_status, checks the return status from a
1774  *              completed I/O request.
1775  *
1776  * Inputs:      skdev           - device state structure.
1777  *              cmp_status      - SCSI status byte.
1778  *              skerr           - the error data structure.
1779  *
1780  * Returns:     Depending on the error condition, return the action
1781  *              to be taken as specified in the skd_chkstat_table.
1782  *              If no corresponding value is found in the table
1783  *              return SKD_CHECK_STATUS_REPORT_GOOD is no error otherwise
1784  *              return SKD_CHECK_STATUS_REPORT_ERROR.
1785  *
1786  */
1787 static enum skd_check_status_action
1788 skd_check_status(struct skd_device *skdev, uint8_t cmp_status,
1789     volatile struct fit_comp_error_info *skerr)
1790 {
1791         /*
1792          * Look up status and sense data to decide how to handle the error
1793          * from the device.
1794          * mask says which fields must match e.g., mask=0x18 means check
1795          * type and stat, ignore key, asc, ascq.
1796          */
1797         int i, n;
1798 
1799         Dcmn_err(CE_NOTE, "(%s): key/asc/ascq %02x/%02x/%02x",
1800             skd_name(skdev), skerr->key, skerr->code, skerr->qual);
1801 
1802         Dcmn_err(CE_NOTE, "stat: t=%02x stat=%02x k=%02x c=%02x q=%02x",
1803             skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual);
1804 
1805         /* Does the info match an entry in the good category? */
1806         n = sizeof (skd_chkstat_table) / sizeof (skd_chkstat_table[0]);
1807         for (i = 0; i < n; i++) {
1808                 struct sns_info *sns = &skd_chkstat_table[i];
1809 
1810                 if (sns->mask & 0x10)
1811                         if (skerr->type != sns->type) continue;
1812 
1813                 if (sns->mask & 0x08)
1814                         if (cmp_status != sns->stat) continue;
1815 
1816                 if (sns->mask & 0x04)
1817                         if (skerr->key != sns->key) continue;
1818 
1819                 if (sns->mask & 0x02)
1820                         if (skerr->code != sns->asc) continue;
1821 
1822                 if (sns->mask & 0x01)
1823                         if (skerr->qual != sns->ascq) continue;
1824 
1825                 if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1826                         cmn_err(CE_WARN, "!(%s):SMART Alert: sense key/asc/ascq"
1827                             " %02x/%02x/%02x",
1828                             skd_name(skdev), skerr->key,
1829                             skerr->code, skerr->qual);
1830                 }
1831 
1832                 Dcmn_err(CE_NOTE, "skd_check_status: returning %x",
1833                     sns->action);
1834 
1835                 return (sns->action);
1836         }
1837 
1838         /*
1839          * No other match, so nonzero status means error,
1840          * zero status means good
1841          */
1842         if (cmp_status) {
1843                 cmn_err(CE_WARN,
1844                     "!%s: status check: qdepth=%d skmfl=%p (%d) skrfl=%p (%d)",
1845                     skdev->name,
1846                     skdev->queue_depth_busy,
1847                     (void *)skdev->skmsg_free_list, skd_list_skmsg(skdev, 0),
1848                     (void *)skdev->skreq_free_list, skd_list_skreq(skdev, 0));
1849 
1850                 cmn_err(CE_WARN, "!%s: t=%02x stat=%02x k=%02x c=%02x q=%02x",
1851                     skdev->name, skerr->type, cmp_status, skerr->key,
1852                     skerr->code, skerr->qual);
1853 
1854                 return (SKD_CHECK_STATUS_REPORT_ERROR);
1855         }
1856 
1857         Dcmn_err(CE_NOTE, "status check good default");
1858 
1859         return (SKD_CHECK_STATUS_REPORT_GOOD);
1860 }
1861 
1862 /*
1863  *
1864  * Name:        skd_isr_completion_posted, handles I/O completions.
1865  *
1866  * Inputs:      skdev           - device state structure.
1867  *
1868  * Returns:     Nothing.
1869  *
1870  */
1871 static void
1872 skd_isr_completion_posted(struct skd_device *skdev)
1873 {
1874         volatile struct fit_completion_entry_v1 *skcmp = NULL;
1875         volatile struct fit_comp_error_info  *skerr;
1876         struct skd_fitmsg_context       *skmsg;
1877         struct skd_request_context      *skreq;
1878         skd_buf_private_t               *pbuf;
1879         uint16_t req_id;
1880         uint32_t req_slot;
1881         uint32_t timo_slot;
1882         uint32_t msg_slot;
1883         uint16_t cmp_cntxt = 0;
1884         uint8_t cmp_status = 0;
1885         uint8_t cmp_cycle = 0;
1886         uint32_t cmp_bytes = 0;
1887 
1888         (void) ddi_dma_sync(skdev->cq_dma_address.dma_handle, 0, 0,
1889             DDI_DMA_SYNC_FORKERNEL);
1890 
1891         for (;;) {
1892                 ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1893 
1894                 WAITQ_LOCK(skdev);
1895 
1896                 skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1897                 cmp_cycle = skcmp->cycle;
1898                 cmp_cntxt = skcmp->tag;
1899                 cmp_status = skcmp->status;
1900                 cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1901 
1902                 skerr = &skdev->skerr_table[skdev->skcomp_ix];
1903 
1904                 Dcmn_err(CE_NOTE,
1905                     "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d "
1906                     "qdepth_busy=%d rbytes=0x%x proto=%d",
1907                     skdev->skcomp_cycle, skdev->skcomp_ix,
1908                     cmp_cycle, cmp_cntxt, cmp_status,
1909                     skdev->queue_depth_busy, cmp_bytes, skdev->proto_ver);
1910 
1911                 if (cmp_cycle != skdev->skcomp_cycle) {
1912                         Dcmn_err(CE_NOTE, "%s:end of completions", skdev->name);
1913 
1914                         WAITQ_UNLOCK(skdev);
1915                         break;
1916                 }
1917 
1918 
1919                 skdev->n_req++;
1920 
1921                 /*
1922                  * Update the completion queue head index and possibly
1923                  * the completion cycle count.
1924                  */
1925                 skdev->skcomp_ix++;
1926                 if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1927                         skdev->skcomp_ix = 0;
1928                         skdev->skcomp_cycle++; /* 8-bit wrap-around */
1929                 }
1930 
1931 
1932                 /*
1933                  * The command context is a unique 32-bit ID. The low order
1934                  * bits help locate the request. The request is usually a
1935                  * r/w request (see skd_start() above) or a special request.
1936                  */
1937                 req_id   = cmp_cntxt;
1938                 req_slot = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1939 
1940                 Dcmn_err(CE_NOTE,
1941                     "<<<< completion_posted 1: req_id=%x req_slot=%x",
1942                     req_id, req_slot);
1943 
1944                 /* Is this other than a r/w request? */
1945                 if (req_slot >= skdev->num_req_context) {
1946                         /*
1947                          * This is not a completion for a r/w request.
1948                          */
1949                         skd_complete_other(skdev, skcmp, skerr);
1950                         WAITQ_UNLOCK(skdev);
1951                         continue;
1952                 }
1953 
1954                 skreq    = &skdev->skreq_table[req_slot];
1955 
1956                 /*
1957                  * Make sure the request ID for the slot matches.
1958                  */
1959                 ASSERT(skreq->id == req_id);
1960 
1961                 if (SKD_REQ_STATE_ABORTED == skreq->state) {
1962                         Dcmn_err(CE_NOTE, "reclaim req %p id=%04x\n",
1963                             (void *)skreq, skreq->id);
1964                         /*
1965                          * a previously timed out command can
1966                          * now be cleaned up
1967                          */
1968                         msg_slot = skreq->fitmsg_id & SKD_ID_SLOT_MASK;
1969                         ASSERT(msg_slot < skdev->num_fitmsg_context);
1970                         skmsg = &skdev->skmsg_table[msg_slot];
1971                         if (skmsg->id == skreq->fitmsg_id) {
1972                                 ASSERT(skmsg->outstanding > 0);
1973                                 skmsg->outstanding--;
1974                                 if (skmsg->outstanding == 0) {
1975                                         ASSERT(SKD_MSG_STATE_BUSY ==
1976                                             skmsg->state);
1977                                         skmsg->state = SKD_MSG_STATE_IDLE;
1978                                         skmsg->id += SKD_ID_INCR;
1979                                         skmsg->next = skdev->skmsg_free_list;
1980                                         skdev->skmsg_free_list = skmsg;
1981                                 }
1982                         }
1983                         /*
1984                          * Reclaim the skd_request_context
1985                          */
1986                         skreq->state = SKD_REQ_STATE_IDLE;
1987                         skreq->id += SKD_ID_INCR;
1988                         skreq->next = skdev->skreq_free_list;
1989                         skdev->skreq_free_list = skreq;
1990                         WAITQ_UNLOCK(skdev);
1991                         continue;
1992                 }
1993 
1994                 skreq->completion.status = cmp_status;
1995 
1996                 pbuf = skreq->pbuf;
1997                 ASSERT(pbuf != NULL);
1998 
1999                 Dcmn_err(CE_NOTE, "<<<< completion_posted 2: pbuf=%p "
2000                     "req_id=%x req_slot=%x", (void *)pbuf, req_id, req_slot);
2001                 if (cmp_status && skdev->disks_initialized) {
2002                         cmn_err(CE_WARN, "!%s: "
2003                             "I/O err: pbuf=%p blkno=%lld (%llx) nbklks=%ld ",
2004                             skdev->name, (void *)pbuf, pbuf->x_xfer->x_blkno,
2005                             pbuf->x_xfer->x_blkno, pbuf->x_xfer->x_nblks);
2006                 }
2007 
2008                 ASSERT(skdev->active_cmds);
2009                 atomic_dec_64(&skdev->active_cmds);
2010 
2011                 if (SAM_STAT_GOOD == cmp_status) {
2012                         /* Release DMA resources for the request. */
2013                         if (pbuf->x_xfer->x_nblks != 0)
2014                                         skd_blkdev_postop_sg_list(skdev, skreq);
2015                         WAITQ_UNLOCK(skdev);
2016                         skd_end_request(skdev, skreq, 0);
2017                         WAITQ_LOCK(skdev);
2018                 } else {
2019                         switch (skd_check_status(skdev, cmp_status, skerr)) {
2020                         case SKD_CHECK_STATUS_REPORT_GOOD:
2021                         case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
2022                                 WAITQ_UNLOCK(skdev);
2023                                 skd_end_request(skdev, skreq, 0);
2024                                 WAITQ_LOCK(skdev);
2025                                 break;
2026 
2027                         case SKD_CHECK_STATUS_BUSY_IMMINENT:
2028                                 skd_log_skreq(skdev, skreq, "retry(busy)");
2029                                 skd_queue(skdev, pbuf);
2030                                 skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
2031                                 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
2032 
2033                                 (void) skd_quiesce_dev(skdev);
2034                                 break;
2035 
2036                                 /* FALLTHRU */
2037                         case SKD_CHECK_STATUS_REPORT_ERROR:
2038                                 /* fall thru to report error */
2039                         default:
2040                                 /*
2041                                  * Save the entire completion
2042                                  * and error entries for
2043                                  * later error interpretation.
2044                                  */
2045                                 skreq->completion = *skcmp;
2046                                 skreq->err_info = *skerr;
2047                                 WAITQ_UNLOCK(skdev);
2048                                 skd_end_request(skdev, skreq, -EIO);
2049                                 WAITQ_LOCK(skdev);
2050                                 break;
2051                         }
2052                 }
2053 
2054                 /*
2055                  * Reclaim the FIT msg buffer if this is
2056                  * the first of the requests it carried to
2057                  * be completed. The FIT msg buffer used to
2058                  * send this request cannot be reused until
2059                  * we are sure the s1120 card has copied
2060                  * it to its memory. The FIT msg might have
2061                  * contained several requests. As soon as
2062                  * any of them are completed we know that
2063                  * the entire FIT msg was transferred.
2064                  * Only the first completed request will
2065                  * match the FIT msg buffer id. The FIT
2066                  * msg buffer id is immediately updated.
2067                  * When subsequent requests complete the FIT
2068                  * msg buffer id won't match, so we know
2069                  * quite cheaply that it is already done.
2070                  */
2071                 msg_slot = skreq->fitmsg_id & SKD_ID_SLOT_MASK;
2072 
2073                 ASSERT(msg_slot < skdev->num_fitmsg_context);
2074                 skmsg = &skdev->skmsg_table[msg_slot];
2075                 if (skmsg->id == skreq->fitmsg_id) {
2076                         ASSERT(SKD_MSG_STATE_BUSY == skmsg->state);
2077                         skmsg->state = SKD_MSG_STATE_IDLE;
2078                         skmsg->id += SKD_ID_INCR;
2079                         skmsg->next = skdev->skmsg_free_list;
2080                         skdev->skmsg_free_list = skmsg;
2081                 }
2082 
2083                 /*
2084                  * Decrease the number of active requests.
2085                  * This also decrements the count in the
2086                  * timeout slot.
2087                  */
2088                 timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
2089                 ASSERT(skdev->timeout_slot[timo_slot] > 0);
2090                 ASSERT(skdev->queue_depth_busy > 0);
2091 
2092                 atomic_dec_32(&skdev->timeout_slot[timo_slot]);
2093                 atomic_dec_32(&skdev->queue_depth_busy);
2094 
2095                 /*
2096                  * Reclaim the skd_request_context
2097                  */
2098                 skreq->state = SKD_REQ_STATE_IDLE;
2099                 skreq->id += SKD_ID_INCR;
2100                 skreq->next = skdev->skreq_free_list;
2101                 skdev->skreq_free_list = skreq;
2102 
2103                 WAITQ_UNLOCK(skdev);
2104 
2105                 /*
2106                  * make sure the lock is held by caller.
2107                  */
2108                 if ((skdev->state == SKD_DRVR_STATE_PAUSING) &&
2109                     (0 == skdev->queue_depth_busy)) {
2110                         skdev->state = SKD_DRVR_STATE_PAUSED;
2111                         cv_signal(&skdev->cv_waitq);
2112                 }
2113         } /* for(;;) */
2114 }
2115 
2116 /*
2117  *
2118  * Name:        skd_complete_other, handle the completion of a
2119  *              non-r/w request.
2120  *
2121  * Inputs:      skdev           - device state structure.
2122  *              skcomp          - FIT completion structure.
2123  *              skerr           - error structure.
2124  *
2125  * Returns:     Nothing.
2126  *
2127  */
2128 static void
2129 skd_complete_other(struct skd_device *skdev,
2130     volatile struct fit_completion_entry_v1 *skcomp,
2131     volatile struct fit_comp_error_info *skerr)
2132 {
2133         uint32_t req_id = 0;
2134         uint32_t req_table;
2135         uint32_t req_slot;
2136         struct skd_special_context *skspcl;
2137 
2138         req_id = skcomp->tag;
2139         req_table = req_id & SKD_ID_TABLE_MASK;
2140         req_slot = req_id & SKD_ID_SLOT_MASK;
2141 
2142         Dcmn_err(CE_NOTE, "complete_other: table=0x%x id=0x%x slot=%d",
2143             req_table, req_id, req_slot);
2144 
2145         /*
2146          * Based on the request id, determine how to dispatch this completion.
2147          * This swich/case is finding the good cases and forwarding the
2148          * completion entry. Errors are reported below the switch.
2149          */
2150         ASSERT(req_table == SKD_ID_INTERNAL);
2151         ASSERT(req_slot == 0);
2152 
2153         skspcl = &skdev->internal_skspcl;
2154         ASSERT(skspcl->req.id == req_id);
2155         ASSERT(skspcl->req.state == SKD_REQ_STATE_BUSY);
2156 
2157         Dcmn_err(CE_NOTE, "<<<<== complete_other: ID_INTERNAL");
2158         skd_complete_internal(skdev, skcomp, skerr, skspcl);
2159 }
2160 
2161 /*
2162  *
2163  * Name:        skd_reset_skcomp, does what it says, resetting completion
2164  *              tables.
2165  *
2166  * Inputs:      skdev           - device state structure.
2167  *
2168  * Returns:     Nothing.
2169  *
2170  */
2171 static void
2172 skd_reset_skcomp(struct skd_device *skdev)
2173 {
2174         uint32_t nbytes;
2175 
2176         nbytes =  sizeof (struct fit_completion_entry_v1) *
2177             SKD_N_COMPLETION_ENTRY;
2178         nbytes += sizeof (struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
2179 
2180         if (skdev->skcomp_table)
2181                 bzero(skdev->skcomp_table, nbytes);
2182 
2183         skdev->skcomp_ix = 0;
2184         skdev->skcomp_cycle = 1;
2185 }
2186 
2187 
2188 
2189 /*
2190  * INTERRUPTS
2191  */
2192 
2193 /*
2194  *
2195  * Name:        skd_isr_aif, handles the device interrupts.
2196  *
2197  * Inputs:      arg             - skdev device state structure.
2198  *              intvec          - not referenced
2199  *
2200  * Returns:     DDI_INTR_CLAIMED if interrupt is handled otherwise
2201  *              return DDI_INTR_UNCLAIMED.
2202  *
2203  */
2204 /* ARGSUSED */  /* Upstream common source with other platforms. */
2205 static uint_t
2206 skd_isr_aif(caddr_t arg, caddr_t intvec)
2207 {
2208         uint32_t          intstat;
2209         uint32_t          ack;
2210         int               rc = DDI_INTR_UNCLAIMED;
2211         struct skd_device *skdev;
2212 
2213         skdev = (skd_device_t *)(uintptr_t)arg;
2214 
2215         ASSERT(skdev != NULL);
2216 
2217         skdev->intr_cntr++;
2218 
2219         Dcmn_err(CE_NOTE, "skd_isr_aif: intr=%" PRId64 "\n", skdev->intr_cntr);
2220 
2221         for (;;) {
2222 
2223                 ASSERT(!WAITQ_LOCK_HELD(skdev));
2224                 INTR_LOCK(skdev);
2225 
2226                 intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2227 
2228                 ack = FIT_INT_DEF_MASK;
2229                 ack &= intstat;
2230 
2231                 Dcmn_err(CE_NOTE, "intstat=0x%x ack=0x%x", intstat, ack);
2232 
2233                 /*
2234                  * As long as there is an int pending on device, keep
2235                  * running loop.  When none, get out, but if we've never
2236                  * done any processing, call completion handler?
2237                  */
2238                 if (ack == 0) {
2239                         /*
2240                          * No interrupts on device, but run the completion
2241                          * processor anyway?
2242                          */
2243                         if (rc == DDI_INTR_UNCLAIMED &&
2244                             skdev->state == SKD_DRVR_STATE_ONLINE) {
2245                                 Dcmn_err(CE_NOTE,
2246                                     "1: Want isr_comp_posted call");
2247                                 skd_isr_completion_posted(skdev);
2248                         }
2249                         INTR_UNLOCK(skdev);
2250 
2251                         break;
2252                 }
2253                 rc = DDI_INTR_CLAIMED;
2254 
2255                 SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
2256 
2257                 if ((skdev->state != SKD_DRVR_STATE_LOAD) &&
2258                     (skdev->state != SKD_DRVR_STATE_STOPPING)) {
2259                         if (intstat & FIT_ISH_COMPLETION_POSTED) {
2260                                 Dcmn_err(CE_NOTE,
2261                                     "2: Want isr_comp_posted call");
2262                                 skd_isr_completion_posted(skdev);
2263                         }
2264 
2265                         if (intstat & FIT_ISH_FW_STATE_CHANGE) {
2266                                 Dcmn_err(CE_NOTE, "isr: fwstate change");
2267 
2268                                 skd_isr_fwstate(skdev);
2269                                 if (skdev->state == SKD_DRVR_STATE_FAULT ||
2270                                     skdev->state ==
2271                                     SKD_DRVR_STATE_DISAPPEARED) {
2272                                         INTR_UNLOCK(skdev);
2273 
2274                                         return (rc);
2275                                 }
2276                         }
2277 
2278                         if (intstat & FIT_ISH_MSG_FROM_DEV) {
2279                                 Dcmn_err(CE_NOTE, "isr: msg_from_dev change");
2280                                 skd_isr_msg_from_dev(skdev);
2281                         }
2282                 }
2283 
2284                 INTR_UNLOCK(skdev);
2285         }
2286 
2287         if (!SIMPLEQ_EMPTY(&skdev->waitqueue))
2288                 skd_start(skdev);
2289 
2290         return (rc);
2291 }
2292 
2293 /*
2294  *
2295  * Name:        skd_drive_fault, set the drive state to DRV_STATE_FAULT.
2296  *
2297  * Inputs:      skdev           - device state structure.
2298  *
2299  * Returns:     Nothing.
2300  *
2301  */
2302 static void
2303 skd_drive_fault(struct skd_device *skdev)
2304 {
2305         skdev->state = SKD_DRVR_STATE_FAULT;
2306         cmn_err(CE_WARN, "!(%s): Drive FAULT\n",
2307             skd_name(skdev));
2308 }
2309 
2310 /*
2311  *
2312  * Name:        skd_drive_disappeared, set the drive state to DISAPPEARED..
2313  *
2314  * Inputs:      skdev           - device state structure.
2315  *
2316  * Returns:     Nothing.
2317  *
2318  */
2319 static void
2320 skd_drive_disappeared(struct skd_device *skdev)
2321 {
2322         skdev->state = SKD_DRVR_STATE_DISAPPEARED;
2323         cmn_err(CE_WARN, "!(%s): Drive DISAPPEARED\n",
2324             skd_name(skdev));
2325 }
2326 
2327 /*
2328  *
2329  * Name:        skd_isr_fwstate, handles the various device states.
2330  *
2331  * Inputs:      skdev           - device state structure.
2332  *
2333  * Returns:     Nothing.
2334  *
2335  */
2336 static void
2337 skd_isr_fwstate(struct skd_device *skdev)
2338 {
2339         uint32_t sense;
2340         uint32_t state;
2341         int prev_driver_state;
2342         uint32_t mtd;
2343 
2344         prev_driver_state = skdev->state;
2345 
2346         sense = SKD_READL(skdev, FIT_STATUS);
2347         state = sense & FIT_SR_DRIVE_STATE_MASK;
2348 
2349         Dcmn_err(CE_NOTE, "s1120 state %s(%d)=>%s(%d)",
2350             skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
2351             skd_drive_state_to_str(state), state);
2352 
2353         skdev->drive_state = state;
2354 
2355         switch (skdev->drive_state) {
2356         case FIT_SR_DRIVE_INIT:
2357                 if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
2358                         skd_disable_interrupts(skdev);
2359                         break;
2360                 }
2361                 if (skdev->state == SKD_DRVR_STATE_RESTARTING) {
2362                         skd_recover_requests(skdev);
2363                 }
2364                 if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
2365                         skdev->timer_countdown =
2366                             SKD_TIMER_SECONDS(SKD_STARTING_TO);
2367                         skdev->state = SKD_DRVR_STATE_STARTING;
2368                         skd_soft_reset(skdev);
2369                         break;
2370                 }
2371                 mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
2372                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2373                 skdev->last_mtd = mtd;
2374                 break;
2375 
2376         case FIT_SR_DRIVE_ONLINE:
2377                 skdev->queue_depth_limit = skdev->soft_queue_depth_limit;
2378                 if (skdev->queue_depth_limit > skdev->hard_queue_depth_limit) {
2379                         skdev->queue_depth_limit =
2380                             skdev->hard_queue_depth_limit;
2381                 }
2382 
2383                 skdev->queue_depth_lowat = skdev->queue_depth_limit * 2 / 3 + 1;
2384                 if (skdev->queue_depth_lowat < 1)
2385                         skdev->queue_depth_lowat = 1;
2386                 Dcmn_err(CE_NOTE,
2387                     "%s queue depth limit=%d hard=%d soft=%d lowat=%d",
2388                     DRV_NAME,
2389                     skdev->queue_depth_limit,
2390                     skdev->hard_queue_depth_limit,
2391                     skdev->soft_queue_depth_limit,
2392                     skdev->queue_depth_lowat);
2393 
2394                 skd_refresh_device_data(skdev);
2395                 break;
2396         case FIT_SR_DRIVE_BUSY:
2397                 skdev->state = SKD_DRVR_STATE_BUSY;
2398                 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
2399                 (void) skd_quiesce_dev(skdev);
2400                 break;
2401         case FIT_SR_DRIVE_BUSY_SANITIZE:
2402                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2403                 skd_start(skdev);
2404                 break;
2405         case FIT_SR_DRIVE_BUSY_ERASE:
2406                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2407                 skdev->timer_countdown = SKD_TIMER_MINUTES(20);
2408                 break;
2409         case FIT_SR_DRIVE_OFFLINE:
2410                 skdev->state = SKD_DRVR_STATE_IDLE;
2411                 break;
2412         case FIT_SR_DRIVE_SOFT_RESET:
2413                 skdev->state = SKD_DRVR_STATE_RESTARTING;
2414 
2415                 switch (skdev->state) {
2416                 case SKD_DRVR_STATE_STARTING:
2417                 case SKD_DRVR_STATE_RESTARTING:
2418                         break;
2419                 default:
2420                         skdev->state = SKD_DRVR_STATE_RESTARTING;
2421                         break;
2422                 }
2423                 break;
2424         case FIT_SR_DRIVE_FW_BOOTING:
2425                 Dcmn_err(CE_NOTE,
2426                     "ISR FIT_SR_DRIVE_FW_BOOTING %s", skdev->name);
2427                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2428                 skdev->timer_countdown = SKD_TIMER_SECONDS(SKD_WAIT_BOOT_TO);
2429                 break;
2430 
2431         case FIT_SR_DRIVE_DEGRADED:
2432         case FIT_SR_PCIE_LINK_DOWN:
2433         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
2434                 break;
2435 
2436         case FIT_SR_DRIVE_FAULT:
2437                 skd_drive_fault(skdev);
2438                 skd_recover_requests(skdev);
2439                 skd_start(skdev);
2440                 break;
2441 
2442         case 0xFF:
2443                 skd_drive_disappeared(skdev);
2444                 skd_recover_requests(skdev);
2445                 skd_start(skdev);
2446                 break;
2447         default:
2448                 /*
2449                  * Uknown FW State. Wait for a state we recognize.
2450                  */
2451                 break;
2452         }
2453 
2454         Dcmn_err(CE_NOTE, "Driver state %s(%d)=>%s(%d)",
2455             skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
2456             skd_skdev_state_to_str(skdev->state), skdev->state);
2457 }
2458 
2459 /*
2460  *
2461  * Name:        skd_recover_requests, attempts to recover requests.
2462  *
2463  * Inputs:      skdev           - device state structure.
2464  *
2465  * Returns:     Nothing.
2466  *
2467  */
2468 static void
2469 skd_recover_requests(struct skd_device *skdev)
2470 {
2471         int i;
2472 
2473         ASSERT(INTR_LOCK_HELD(skdev));
2474 
2475         for (i = 0; i < skdev->num_req_context; i++) {
2476                 struct skd_request_context *skreq = &skdev->skreq_table[i];
2477 
2478                 if (skreq->state == SKD_REQ_STATE_BUSY) {
2479                         skd_log_skreq(skdev, skreq, "requeue");
2480 
2481                         ASSERT(0 != (skreq->id & SKD_ID_INCR));
2482                         ASSERT(skreq->pbuf != NULL);
2483                         /* Release DMA resources for the request. */
2484                         skd_blkdev_postop_sg_list(skdev, skreq);
2485 
2486                         skd_end_request(skdev, skreq, EAGAIN);
2487                         skreq->pbuf = NULL;
2488                         skreq->state = SKD_REQ_STATE_IDLE;
2489                         skreq->id += SKD_ID_INCR;
2490                 }
2491                 if (i > 0) {
2492                         skreq[-1].next = skreq;
2493                 }
2494                 skreq->next = NULL;
2495         }
2496 
2497         WAITQ_LOCK(skdev);
2498         skdev->skreq_free_list = skdev->skreq_table;
2499         WAITQ_UNLOCK(skdev);
2500 
2501         for (i = 0; i < skdev->num_fitmsg_context; i++) {
2502                 struct skd_fitmsg_context *skmsg = &skdev->skmsg_table[i];
2503 
2504                 if (skmsg->state == SKD_MSG_STATE_BUSY) {
2505                         skd_log_skmsg(skdev, skmsg, "salvaged");
2506                         ASSERT((skmsg->id & SKD_ID_INCR) != 0);
2507                         skmsg->state = SKD_MSG_STATE_IDLE;
2508                         skmsg->id &= ~SKD_ID_INCR;
2509                 }
2510                 if (i > 0) {
2511                         skmsg[-1].next = skmsg;
2512                 }
2513                 skmsg->next = NULL;
2514         }
2515         WAITQ_LOCK(skdev);
2516         skdev->skmsg_free_list = skdev->skmsg_table;
2517         WAITQ_UNLOCK(skdev);
2518 
2519         for (i = 0; i < SKD_N_TIMEOUT_SLOT; i++) {
2520                 skdev->timeout_slot[i] = 0;
2521         }
2522         skdev->queue_depth_busy = 0;
2523 }
2524 
2525 /*
2526  *
2527  * Name:        skd_isr_msg_from_dev, handles a message from the device.
2528  *
2529  * Inputs:      skdev           - device state structure.
2530  *
2531  * Returns:     Nothing.
2532  *
2533  */
2534 static void
2535 skd_isr_msg_from_dev(struct skd_device *skdev)
2536 {
2537         uint32_t mfd;
2538         uint32_t mtd;
2539 
2540         Dcmn_err(CE_NOTE, "skd_isr_msg_from_dev:");
2541 
2542         mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2543 
2544         Dcmn_err(CE_NOTE, "mfd=0x%x last_mtd=0x%x\n", mfd, skdev->last_mtd);
2545 
2546         /*
2547          * ignore any mtd that is an ack for something we didn't send
2548          */
2549         if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd)) {
2550                 return;
2551         }
2552 
2553         switch (FIT_MXD_TYPE(mfd)) {
2554         case FIT_MTD_FITFW_INIT:
2555                 skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
2556 
2557                 if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
2558                         cmn_err(CE_WARN, "!(%s): protocol mismatch\n",
2559                             skdev->name);
2560                         cmn_err(CE_WARN, "!(%s):   got=%d support=%d\n",
2561                             skdev->name, skdev->proto_ver,
2562                             FIT_PROTOCOL_VERSION_1);
2563                         cmn_err(CE_WARN, "!(%s):   please upgrade driver\n",
2564                             skdev->name);
2565                         skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
2566                         skd_soft_reset(skdev);
2567                         break;
2568                 }
2569                 mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
2570                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2571                 skdev->last_mtd = mtd;
2572                 break;
2573 
2574         case FIT_MTD_GET_CMDQ_DEPTH:
2575                 skdev->hard_queue_depth_limit = FIT_MXD_DATA(mfd);
2576                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
2577                     SKD_N_COMPLETION_ENTRY);
2578                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2579                 skdev->last_mtd = mtd;
2580                 break;
2581 
2582         case FIT_MTD_SET_COMPQ_DEPTH:
2583                 SKD_WRITEQ(skdev, skdev->cq_dma_address.cookies->dmac_laddress,
2584                     FIT_MSG_TO_DEVICE_ARG);
2585                 mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
2586                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2587                 skdev->last_mtd = mtd;
2588                 break;
2589 
2590         case FIT_MTD_SET_COMPQ_ADDR:
2591                 skd_reset_skcomp(skdev);
2592                 mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
2593                 SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
2594                 skdev->last_mtd = mtd;
2595                 break;
2596 
2597         case FIT_MTD_ARM_QUEUE:
2598                 skdev->last_mtd = 0;
2599                 /*
2600                  * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
2601                  */
2602                 break;
2603 
2604         default:
2605                 break;
2606         }
2607 }
2608 
2609 
2610 /*
2611  *
2612  * Name:        skd_disable_interrupts, issues command to disable
2613  *              device interrupts.
2614  *
2615  * Inputs:      skdev           - device state structure.
2616  *
2617  * Returns:     Nothing.
2618  *
2619  */
2620 static void
2621 skd_disable_interrupts(struct skd_device *skdev)
2622 {
2623         uint32_t sense;
2624 
2625         Dcmn_err(CE_NOTE, "skd_disable_interrupts:");
2626 
2627         sense = SKD_READL(skdev, FIT_CONTROL);
2628         sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2629         SKD_WRITEL(skdev, sense, FIT_CONTROL);
2630 
2631         Dcmn_err(CE_NOTE, "sense 0x%x", sense);
2632 
2633         /*
2634          * Note that the 1s is written. A 1-bit means
2635          * disable, a 0 means enable.
2636          */
2637         SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2638 }
2639 
2640 /*
2641  *
2642  * Name:        skd_enable_interrupts, issues command to enable
2643  *              device interrupts.
2644  *
2645  * Inputs:      skdev           - device state structure.
2646  *
2647  * Returns:     Nothing.
2648  *
2649  */
2650 static void
2651 skd_enable_interrupts(struct skd_device *skdev)
2652 {
2653         uint32_t val;
2654 
2655         Dcmn_err(CE_NOTE, "skd_enable_interrupts:");
2656 
2657         /* unmask interrupts first */
2658         val = FIT_ISH_FW_STATE_CHANGE +
2659             FIT_ISH_COMPLETION_POSTED +
2660             FIT_ISH_MSG_FROM_DEV;
2661 
2662         /*
2663          * Note that the compliment of mask is written. A 1-bit means
2664          * disable, a 0 means enable.
2665          */
2666         SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2667 
2668         Dcmn_err(CE_NOTE, "interrupt mask=0x%x", ~val);
2669 
2670         val = SKD_READL(skdev, FIT_CONTROL);
2671         val |= FIT_CR_ENABLE_INTERRUPTS;
2672 
2673         Dcmn_err(CE_NOTE, "control=0x%x", val);
2674 
2675         SKD_WRITEL(skdev, val, FIT_CONTROL);
2676 }
2677 
2678 /*
2679  *
2680  * Name:        skd_soft_reset, issues a soft reset to the hardware.
2681  *
2682  * Inputs:      skdev           - device state structure.
2683  *
2684  * Returns:     Nothing.
2685  *
2686  */
2687 static void
2688 skd_soft_reset(struct skd_device *skdev)
2689 {
2690         uint32_t val;
2691 
2692         Dcmn_err(CE_NOTE, "skd_soft_reset:");
2693 
2694         val = SKD_READL(skdev, FIT_CONTROL);
2695         val |= (FIT_CR_SOFT_RESET);
2696 
2697         Dcmn_err(CE_NOTE, "soft_reset: control=0x%x", val);
2698 
2699         SKD_WRITEL(skdev, val, FIT_CONTROL);
2700 }
2701 
2702 /*
2703  *
2704  * Name:        skd_start_device, gets the device going.
2705  *
2706  * Inputs:      skdev           - device state structure.
2707  *
2708  * Returns:     Nothing.
2709  *
2710  */
2711 static void
2712 skd_start_device(struct skd_device *skdev)
2713 {
2714         uint32_t state;
2715         int delay_action = 0;
2716 
2717         Dcmn_err(CE_NOTE, "skd_start_device:");
2718 
2719         /* ack all ghost interrupts */
2720         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2721 
2722         state = SKD_READL(skdev, FIT_STATUS);
2723 
2724         Dcmn_err(CE_NOTE, "initial status=0x%x", state);
2725 
2726         state &= FIT_SR_DRIVE_STATE_MASK;
2727         skdev->drive_state = state;
2728         skdev->last_mtd = 0;
2729 
2730         skdev->state = SKD_DRVR_STATE_STARTING;
2731         skdev->timer_countdown = SKD_TIMER_SECONDS(SKD_STARTING_TO);
2732 
2733         skd_enable_interrupts(skdev);
2734 
2735         switch (skdev->drive_state) {
2736         case FIT_SR_DRIVE_OFFLINE:
2737                 Dcmn_err(CE_NOTE, "(%s): Drive offline...",
2738                     skd_name(skdev));
2739                 break;
2740 
2741         case FIT_SR_DRIVE_FW_BOOTING:
2742                 Dcmn_err(CE_NOTE, "FIT_SR_DRIVE_FW_BOOTING %s\n", skdev->name);
2743                 skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2744                 skdev->timer_countdown = SKD_TIMER_SECONDS(SKD_WAIT_BOOT_TO);
2745                 break;
2746 
2747         case FIT_SR_DRIVE_BUSY_SANITIZE:
2748                 Dcmn_err(CE_NOTE, "(%s): Start: BUSY_SANITIZE\n",
2749                     skd_name(skdev));
2750                 skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2751                 skdev->timer_countdown = SKD_TIMER_SECONDS(60);
2752                 break;
2753 
2754         case FIT_SR_DRIVE_BUSY_ERASE:
2755                 Dcmn_err(CE_NOTE, "(%s): Start: BUSY_ERASE\n",
2756                     skd_name(skdev));
2757                 skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2758                 skdev->timer_countdown = SKD_TIMER_SECONDS(60);
2759                 break;
2760 
2761         case FIT_SR_DRIVE_INIT:
2762         case FIT_SR_DRIVE_ONLINE:
2763                 skd_soft_reset(skdev);
2764 
2765                 break;
2766 
2767         case FIT_SR_DRIVE_BUSY:
2768                 Dcmn_err(CE_NOTE, "(%s): Drive Busy...\n",
2769                     skd_name(skdev));
2770                 skdev->state = SKD_DRVR_STATE_BUSY;
2771                 skdev->timer_countdown = SKD_TIMER_SECONDS(60);
2772                 break;
2773 
2774         case FIT_SR_DRIVE_SOFT_RESET:
2775                 Dcmn_err(CE_NOTE, "(%s) drive soft reset in prog\n",
2776                     skd_name(skdev));
2777                 break;
2778 
2779         case FIT_SR_DRIVE_FAULT:
2780                 /*
2781                  * Fault state is bad...soft reset won't do it...
2782                  * Hard reset, maybe, but does it work on device?
2783                  * For now, just fault so the system doesn't hang.
2784                  */
2785                 skd_drive_fault(skdev);
2786 
2787                 delay_action = 1;
2788                 break;
2789 
2790         case 0xFF:
2791                 skd_drive_disappeared(skdev);
2792 
2793                 delay_action = 1;
2794                 break;
2795 
2796         default:
2797                 Dcmn_err(CE_NOTE, "(%s) Start: unknown state %x\n",
2798                     skd_name(skdev), skdev->drive_state);
2799                 break;
2800         }
2801 
2802         state = SKD_READL(skdev, FIT_CONTROL);
2803         Dcmn_err(CE_NOTE, "FIT Control Status=0x%x\n", state);
2804 
2805         state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2806         Dcmn_err(CE_NOTE, "Intr Status=0x%x\n", state);
2807 
2808         state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2809         Dcmn_err(CE_NOTE, "Intr Mask=0x%x\n", state);
2810 
2811         state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2812         Dcmn_err(CE_NOTE, "Msg from Dev=0x%x\n", state);
2813 
2814         state = SKD_READL(skdev, FIT_HW_VERSION);
2815         Dcmn_err(CE_NOTE, "HW version=0x%x\n", state);
2816 
2817         if (delay_action) {
2818                 /* start the queue so we can respond with error to requests */
2819                 Dcmn_err(CE_NOTE, "Starting %s queue\n", skdev->name);
2820                 skd_start(skdev);
2821                 skdev->gendisk_on = -1;
2822                 cv_signal(&skdev->cv_waitq);
2823         }
2824 }
2825 
2826 /*
2827  *
2828  * Name:        skd_restart_device, restart the hardware.
2829  *
2830  * Inputs:      skdev           - device state structure.
2831  *
2832  * Returns:     Nothing.
2833  *
2834  */
2835 static void
2836 skd_restart_device(struct skd_device *skdev)
2837 {
2838         uint32_t state;
2839 
2840         Dcmn_err(CE_NOTE, "skd_restart_device:");
2841 
2842         /* ack all ghost interrupts */
2843         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2844 
2845         state = SKD_READL(skdev, FIT_STATUS);
2846 
2847         Dcmn_err(CE_NOTE, "skd_restart_device: drive status=0x%x\n", state);
2848 
2849         state &= FIT_SR_DRIVE_STATE_MASK;
2850         skdev->drive_state = state;
2851         skdev->last_mtd = 0;
2852 
2853         skdev->state = SKD_DRVR_STATE_RESTARTING;
2854         skdev->timer_countdown = SKD_TIMER_MINUTES(4);
2855 
2856         skd_soft_reset(skdev);
2857 }
2858 
2859 /*
2860  *
2861  * Name:        skd_stop_device, stops the device.
2862  *
2863  * Inputs:      skdev           - device state structure.
2864  *
2865  * Returns:     Nothing.
2866  *
2867  */
2868 static void
2869 skd_stop_device(struct skd_device *skdev)
2870 {
2871         clock_t cur_ticks, tmo;
2872         int secs;
2873         struct skd_special_context *skspcl = &skdev->internal_skspcl;
2874 
2875         if (SKD_DRVR_STATE_ONLINE != skdev->state) {
2876                 Dcmn_err(CE_NOTE, "(%s): skd_stop_device not online no sync\n",
2877                     skdev->name);
2878                 goto stop_out;
2879         }
2880 
2881         if (SKD_REQ_STATE_IDLE != skspcl->req.state) {
2882                 Dcmn_err(CE_NOTE, "(%s): skd_stop_device no special\n",
2883                     skdev->name);
2884                 goto stop_out;
2885         }
2886 
2887         skdev->state = SKD_DRVR_STATE_SYNCING;
2888         skdev->sync_done = 0;
2889 
2890         skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2891 
2892         secs = 10;
2893         mutex_enter(&skdev->skd_internalio_mutex);
2894         while (skdev->sync_done == 0) {
2895                 cur_ticks = ddi_get_lbolt();
2896                 tmo = cur_ticks + drv_sectohz(secs);
2897                 if (cv_timedwait(&skdev->cv_waitq,
2898                     &skdev->skd_internalio_mutex, tmo) == -1) {
2899                         /* Oops - timed out */
2900 
2901                         Dcmn_err(CE_NOTE, "stop_device - %d secs TMO", secs);
2902                 }
2903         }
2904 
2905         mutex_exit(&skdev->skd_internalio_mutex);
2906 
2907         switch (skdev->sync_done) {
2908         case 0:
2909                 Dcmn_err(CE_NOTE, "(%s): skd_stop_device no sync\n",
2910                     skdev->name);
2911                 break;
2912         case 1:
2913                 Dcmn_err(CE_NOTE, "(%s): skd_stop_device sync done\n",
2914                     skdev->name);
2915                 break;
2916         default:
2917                 Dcmn_err(CE_NOTE, "(%s): skd_stop_device sync error\n",
2918                     skdev->name);
2919         }
2920 
2921 
2922 stop_out:
2923         skdev->state = SKD_DRVR_STATE_STOPPING;
2924 
2925         skd_disable_interrupts(skdev);
2926 
2927         /* ensure all ints on device are cleared */
2928         SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2929         /* soft reset the device to unload with a clean slate */
2930         SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2931 }
2932 
2933 /*
2934  * CONSTRUCT
2935  */
2936 
2937 static int skd_cons_skcomp(struct skd_device *);
2938 static int skd_cons_skmsg(struct skd_device *);
2939 static int skd_cons_skreq(struct skd_device *);
2940 static int skd_cons_sksb(struct skd_device *);
2941 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *, uint32_t,
2942     dma_mem_t *);
2943 
2944 /*
2945  *
2946  * Name:        skd_construct, calls other routines to build device
2947  *              interface structures.
2948  *
2949  * Inputs:      skdev           - device state structure.
2950  *              instance        - DDI instance number.
2951  *
2952  * Returns:     Returns DDI_FAILURE on any failure otherwise returns
2953  *              DDI_SUCCESS.
2954  *
2955  */
2956 /* ARGSUSED */  /* Upstream common source with other platforms. */
2957 static int
2958 skd_construct(skd_device_t *skdev, int instance)
2959 {
2960         int rc = 0;
2961 
2962         skdev->state = SKD_DRVR_STATE_LOAD;
2963         skdev->irq_type = skd_isr_type;
2964         skdev->soft_queue_depth_limit = skd_max_queue_depth;
2965         skdev->hard_queue_depth_limit = 10; /* until GET_CMDQ_DEPTH */
2966 
2967         skdev->num_req_context = skd_max_queue_depth;
2968         skdev->num_fitmsg_context = skd_max_queue_depth;
2969 
2970         skdev->queue_depth_limit = skdev->hard_queue_depth_limit;
2971         skdev->queue_depth_lowat = 1;
2972         skdev->proto_ver = 99; /* initialize to invalid value */
2973         skdev->sgs_per_request = skd_sgs_per_request;
2974         skdev->dbg_level = skd_dbg_level;
2975 
2976         rc = skd_cons_skcomp(skdev);
2977         if (rc < 0) {
2978                 goto err_out;
2979         }
2980 
2981         rc = skd_cons_skmsg(skdev);
2982         if (rc < 0) {
2983                 goto err_out;
2984         }
2985 
2986         rc = skd_cons_skreq(skdev);
2987         if (rc < 0) {
2988                 goto err_out;
2989         }
2990 
2991         rc = skd_cons_sksb(skdev);
2992         if (rc < 0) {
2993                 goto err_out;
2994         }
2995 
2996         Dcmn_err(CE_NOTE, "CONSTRUCT VICTORY");
2997 
2998         return (DDI_SUCCESS);
2999 
3000 err_out:
3001         Dcmn_err(CE_NOTE, "construct failed\n");
3002         skd_destruct(skdev);
3003 
3004         return (DDI_FAILURE);
3005 }
3006 
3007 /*
3008  *
3009  * Name:        skd_free_phys, frees DMA memory.
3010  *
3011  * Inputs:      skdev           - device state structure.
3012  *              mem             - DMA info.
3013  *
3014  * Returns:     Nothing.
3015  *
3016  */
3017 static void
3018 skd_free_phys(skd_device_t *skdev, dma_mem_t *mem)
3019 {
3020         _NOTE(ARGUNUSED(skdev));
3021 
3022         if (mem == NULL || mem->dma_handle == NULL)
3023                 return;
3024 
3025         (void) ddi_dma_unbind_handle(mem->dma_handle);
3026 
3027         if (mem->acc_handle != NULL) {
3028                 ddi_dma_mem_free(&mem->acc_handle);
3029                 mem->acc_handle = NULL;
3030         }
3031 
3032         mem->bp = NULL;
3033         ddi_dma_free_handle(&mem->dma_handle);
3034         mem->dma_handle = NULL;
3035 }
3036 
3037 /*
3038  *
3039  * Name:        skd_alloc_dma_mem, allocates DMA memory.
3040  *
3041  * Inputs:      skdev           - device state structure.
3042  *              mem             - DMA data structure.
3043  *              sleep           - indicates whether called routine can sleep.
3044  *              atype           - specified 32 or 64 bit allocation.
3045  *
3046  * Returns:     Void pointer to mem->bp on success else NULL.
3047  *              NOTE:  There are some failure modes even if sleep is set
3048  *              to KM_SLEEP, so callers MUST check the return code even
3049  *              if KM_SLEEP is passed in.
3050  *
3051  */
3052 static void *
3053 skd_alloc_dma_mem(skd_device_t *skdev, dma_mem_t *mem, uint8_t atype)
3054 {
3055         size_t          rlen;
3056         uint_t          cnt;
3057         ddi_dma_attr_t  dma_attr = skd_64bit_io_dma_attr;
3058         ddi_device_acc_attr_t acc_attr = {
3059                 DDI_DEVICE_ATTR_V0,
3060                 DDI_STRUCTURE_LE_ACC,
3061                 DDI_STRICTORDER_ACC
3062         };
3063 
3064         if (atype == ATYPE_32BIT)
3065                 dma_attr.dma_attr_addr_hi = SKD_DMA_HIGH_32BIT_ADDRESS;
3066 
3067         dma_attr.dma_attr_sgllen = 1;
3068 
3069         /*
3070          * Allocate DMA memory.
3071          */
3072         if (ddi_dma_alloc_handle(skdev->dip, &dma_attr, DDI_DMA_SLEEP, NULL,
3073             &mem->dma_handle) != DDI_SUCCESS) {
3074                 cmn_err(CE_WARN, "!alloc_dma_mem-1, failed");
3075 
3076                 mem->dma_handle = NULL;
3077 
3078                 return (NULL);
3079         }
3080 
3081         if (ddi_dma_mem_alloc(mem->dma_handle, mem->size, &acc_attr,
3082             DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, (caddr_t *)&mem->bp, &rlen,
3083             &mem->acc_handle) != DDI_SUCCESS) {
3084                 cmn_err(CE_WARN, "!skd_alloc_dma_mem-2, failed");
3085                 ddi_dma_free_handle(&mem->dma_handle);
3086                 mem->dma_handle = NULL;
3087                 mem->acc_handle = NULL;
3088                 mem->bp = NULL;
3089 
3090                 return (NULL);
3091         }
3092         bzero(mem->bp, mem->size);
3093 
3094         if (ddi_dma_addr_bind_handle(mem->dma_handle, NULL, mem->bp,
3095             mem->size, (DDI_DMA_CONSISTENT | DDI_DMA_RDWR), DDI_DMA_SLEEP, NULL,
3096             &mem->cookie, &cnt) != DDI_DMA_MAPPED) {
3097                 cmn_err(CE_WARN, "!skd_alloc_dma_mem-3, failed");
3098                 ddi_dma_mem_free(&mem->acc_handle);
3099                 ddi_dma_free_handle(&mem->dma_handle);
3100 
3101                 return (NULL);
3102         }
3103 
3104         if (cnt > 1) {
3105                 (void) ddi_dma_unbind_handle(mem->dma_handle);
3106                 cmn_err(CE_WARN, "!skd_alloc_dma_mem-4, failed, "
3107                     "cookie_count %d > 1", cnt);
3108                 skd_free_phys(skdev, mem);
3109 
3110                 return (NULL);
3111         }
3112         mem->cookies = &mem->cookie;
3113         mem->cookies->dmac_size = mem->size;
3114 
3115         return (mem->bp);
3116 }
3117 
3118 /*
3119  *
3120  * Name:        skd_cons_skcomp, allocates space for the skcomp table.
3121  *
3122  * Inputs:      skdev           - device state structure.
3123  *
3124  * Returns:     -ENOMEM if no memory otherwise NULL.
3125  *
3126  */
3127 static int
3128 skd_cons_skcomp(struct skd_device *skdev)
3129 {
3130         uint64_t        *dma_alloc;
3131         struct fit_completion_entry_v1 *skcomp;
3132         int             rc = 0;
3133         uint32_t                nbytes;
3134         dma_mem_t       *mem;
3135 
3136         nbytes = sizeof (*skcomp) * SKD_N_COMPLETION_ENTRY;
3137         nbytes += sizeof (struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
3138 
3139         Dcmn_err(CE_NOTE, "cons_skcomp: nbytes=%d,entries=%d", nbytes,
3140             SKD_N_COMPLETION_ENTRY);
3141 
3142         mem                     = &skdev->cq_dma_address;
3143         mem->size            = nbytes;
3144 
3145         dma_alloc = skd_alloc_dma_mem(skdev, mem, ATYPE_64BIT);
3146         skcomp = (struct fit_completion_entry_v1 *)dma_alloc;
3147         if (skcomp == NULL) {
3148                 rc = -ENOMEM;
3149                 goto err_out;
3150         }
3151 
3152         bzero(skcomp, nbytes);
3153 
3154         Dcmn_err(CE_NOTE, "cons_skcomp: skcomp=%p nbytes=%d",
3155             (void *)skcomp, nbytes);
3156 
3157         skdev->skcomp_table = skcomp;
3158         skdev->skerr_table = (struct fit_comp_error_info *)(dma_alloc +
3159             (SKD_N_COMPLETION_ENTRY * sizeof (*skcomp) / sizeof (uint64_t)));
3160 
3161 err_out:
3162         return (rc);
3163 }
3164 
3165 /*
3166  *
3167  * Name:        skd_cons_skmsg, allocates space for the skmsg table.
3168  *
3169  * Inputs:      skdev           - device state structure.
3170  *
3171  * Returns:     -ENOMEM if no memory otherwise NULL.
3172  *
3173  */
3174 static int
3175 skd_cons_skmsg(struct skd_device *skdev)
3176 {
3177         dma_mem_t       *mem;
3178         int             rc = 0;
3179         uint32_t                i;
3180 
3181         Dcmn_err(CE_NOTE, "skmsg_table kzalloc, struct %lu, count %u total %lu",
3182             (ulong_t)sizeof (struct skd_fitmsg_context),
3183             skdev->num_fitmsg_context,
3184             (ulong_t)(sizeof (struct skd_fitmsg_context) *
3185             skdev->num_fitmsg_context));
3186 
3187         skdev->skmsg_table = (struct skd_fitmsg_context *)kmem_zalloc(
3188             sizeof (struct skd_fitmsg_context) * skdev->num_fitmsg_context,
3189             KM_SLEEP);
3190 
3191         for (i = 0; i < skdev->num_fitmsg_context; i++) {
3192                 struct skd_fitmsg_context *skmsg;
3193 
3194                 skmsg = &skdev->skmsg_table[i];
3195 
3196                 skmsg->id = i + SKD_ID_FIT_MSG;
3197 
3198                 skmsg->state = SKD_MSG_STATE_IDLE;
3199 
3200                 mem = &skmsg->mb_dma_address;
3201                 mem->size = SKD_N_FITMSG_BYTES + 64;
3202 
3203                 skmsg->msg_buf = skd_alloc_dma_mem(skdev, mem, ATYPE_64BIT);
3204 
3205                 if (NULL == skmsg->msg_buf) {
3206                         rc = -ENOMEM;
3207                         i++;
3208                         break;
3209                 }
3210 
3211                 skmsg->offset = 0;
3212 
3213                 bzero(skmsg->msg_buf, SKD_N_FITMSG_BYTES);
3214 
3215                 skmsg->next = &skmsg[1];
3216         }
3217 
3218         /* Free list is in order starting with the 0th entry. */
3219         skdev->skmsg_table[i - 1].next = NULL;
3220         skdev->skmsg_free_list = skdev->skmsg_table;
3221 
3222         return (rc);
3223 }
3224 
3225 /*
3226  *
3227  * Name:        skd_cons_skreq, allocates space for the skreq table.
3228  *
3229  * Inputs:      skdev           - device state structure.
3230  *
3231  * Returns:     -ENOMEM if no memory otherwise NULL.
3232  *
3233  */
3234 static int
3235 skd_cons_skreq(struct skd_device *skdev)
3236 {
3237         int     rc = 0;
3238         uint32_t        i;
3239 
3240         Dcmn_err(CE_NOTE,
3241             "skreq_table kmem_zalloc, struct %lu, count %u total %lu",
3242             (ulong_t)sizeof (struct skd_request_context),
3243             skdev->num_req_context,
3244             (ulong_t) (sizeof (struct skd_request_context) *
3245             skdev->num_req_context));
3246 
3247         skdev->skreq_table = (struct skd_request_context *)kmem_zalloc(
3248             sizeof (struct skd_request_context) * skdev->num_req_context,
3249             KM_SLEEP);
3250 
3251         for (i = 0; i < skdev->num_req_context; i++) {
3252                 struct skd_request_context *skreq;
3253 
3254                 skreq = &skdev->skreq_table[i];
3255 
3256                 skreq->id = (uint16_t)(i + SKD_ID_RW_REQUEST);
3257                 skreq->state = SKD_REQ_STATE_IDLE;
3258 
3259                 skreq->sksg_list = skd_cons_sg_list(skdev,
3260                     skdev->sgs_per_request,
3261                     &skreq->sksg_dma_address);
3262 
3263                 if (NULL == skreq->sksg_list) {
3264                         rc = -ENOMEM;
3265                         goto err_out;
3266                 }
3267 
3268                 skreq->next = &skreq[1];
3269         }
3270 
3271         /* Free list is in order starting with the 0th entry. */
3272         skdev->skreq_table[i - 1].next = NULL;
3273         skdev->skreq_free_list = skdev->skreq_table;
3274 
3275 err_out:
3276         return (rc);
3277 }
3278 
3279 /*
3280  *
3281  * Name:        skd_cons_sksb, allocates space for the skspcl msg buf
3282  *              and data buf.
3283  *
3284  * Inputs:      skdev           - device state structure.
3285  *
3286  * Returns:     -ENOMEM if no memory otherwise NULL.
3287  *
3288  */
3289 static int
3290 skd_cons_sksb(struct skd_device *skdev)
3291 {
3292         int                             rc = 0;
3293         struct skd_special_context      *skspcl;
3294         dma_mem_t                       *mem;
3295         uint32_t                                nbytes;
3296 
3297         skspcl = &skdev->internal_skspcl;
3298 
3299         skspcl->req.id = 0 + SKD_ID_INTERNAL;
3300         skspcl->req.state = SKD_REQ_STATE_IDLE;
3301 
3302         nbytes = SKD_N_INTERNAL_BYTES;
3303 
3304         mem                     = &skspcl->db_dma_address;
3305         mem->size            = nbytes;
3306 
3307         /* data_buf's DMA pointer is skspcl->db_dma_address */
3308         skspcl->data_buf = skd_alloc_dma_mem(skdev, mem, ATYPE_64BIT);
3309         if (skspcl->data_buf == NULL) {
3310                 rc = -ENOMEM;
3311                 goto err_out;
3312         }
3313 
3314         bzero(skspcl->data_buf, nbytes);
3315 
3316         nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
3317 
3318         mem                     = &skspcl->mb_dma_address;
3319         mem->size            = nbytes;
3320 
3321         /* msg_buf DMA pointer is skspcl->mb_dma_address */
3322         skspcl->msg_buf = skd_alloc_dma_mem(skdev, mem, ATYPE_64BIT);
3323         if (skspcl->msg_buf == NULL) {
3324                 rc = -ENOMEM;
3325                 goto err_out;
3326         }
3327 
3328 
3329         bzero(skspcl->msg_buf, nbytes);
3330 
3331         skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
3332             &skspcl->req.sksg_dma_address);
3333 
3334 
3335         if (skspcl->req.sksg_list == NULL) {
3336                 rc = -ENOMEM;
3337                 goto err_out;
3338         }
3339 
3340         if (skd_format_internal_skspcl(skdev) == 0) {
3341                 rc = -EINVAL;
3342                 goto err_out;
3343         }
3344 
3345 err_out:
3346         return (rc);
3347 }
3348 
3349 /*
3350  *
3351  * Name:        skd_cons_sg_list, allocates the S/G list.
3352  *
3353  * Inputs:      skdev           - device state structure.
3354  *              n_sg            - Number of scatter-gather entries.
3355  *              ret_dma_addr    - S/G list DMA pointer.
3356  *
3357  * Returns:     A list of FIT message descriptors.
3358  *
3359  */
3360 static struct fit_sg_descriptor
3361 *skd_cons_sg_list(struct skd_device *skdev,
3362     uint32_t n_sg, dma_mem_t *ret_dma_addr)
3363 {
3364         struct fit_sg_descriptor *sg_list;
3365         uint32_t nbytes;
3366         dma_mem_t *mem;
3367 
3368         nbytes = sizeof (*sg_list) * n_sg;
3369 
3370         mem                     = ret_dma_addr;
3371         mem->size            = nbytes;
3372 
3373         /* sg_list's DMA pointer is *ret_dma_addr */
3374         sg_list = skd_alloc_dma_mem(skdev, mem, ATYPE_32BIT);
3375 
3376         if (sg_list != NULL) {
3377                 uint64_t dma_address = ret_dma_addr->cookie.dmac_laddress;
3378                 uint32_t i;
3379 
3380                 bzero(sg_list, nbytes);
3381 
3382                 for (i = 0; i < n_sg - 1; i++) {
3383                         uint64_t ndp_off;
3384                         ndp_off = (i + 1) * sizeof (struct fit_sg_descriptor);
3385 
3386                         sg_list[i].next_desc_ptr = dma_address + ndp_off;
3387                 }
3388                 sg_list[i].next_desc_ptr = 0LL;
3389         }
3390 
3391         return (sg_list);
3392 }
3393 
3394 /*
3395  * DESTRUCT (FREE)
3396  */
3397 
3398 static void skd_free_skcomp(struct skd_device *skdev);
3399 static void skd_free_skmsg(struct skd_device *skdev);
3400 static void skd_free_skreq(struct skd_device *skdev);
3401 static void skd_free_sksb(struct skd_device *skdev);
3402 
3403 static void skd_free_sg_list(struct skd_device *skdev,
3404     struct fit_sg_descriptor *sg_list,
3405     uint32_t n_sg, dma_mem_t dma_addr);
3406 
3407 /*
3408  *
3409  * Name:        skd_destruct, call various rouines to deallocate
3410  *              space acquired during initialization.
3411  *
3412  * Inputs:      skdev           - device state structure.
3413  *
3414  * Returns:     Nothing.
3415  *
3416  */
3417 static void
3418 skd_destruct(struct skd_device *skdev)
3419 {
3420         if (skdev == NULL) {
3421                 return;
3422         }
3423 
3424         Dcmn_err(CE_NOTE, "destruct sksb");
3425         skd_free_sksb(skdev);
3426 
3427         Dcmn_err(CE_NOTE, "destruct skreq");
3428         skd_free_skreq(skdev);
3429 
3430         Dcmn_err(CE_NOTE, "destruct skmsg");
3431         skd_free_skmsg(skdev);
3432 
3433         Dcmn_err(CE_NOTE, "destruct skcomp");
3434         skd_free_skcomp(skdev);
3435 
3436         Dcmn_err(CE_NOTE, "DESTRUCT VICTORY");
3437 }
3438 
3439 /*
3440  *
3441  * Name:        skd_free_skcomp, deallocates skcomp table DMA resources.
3442  *
3443  * Inputs:      skdev           - device state structure.
3444  *
3445  * Returns:     Nothing.
3446  *
3447  */
3448 static void
3449 skd_free_skcomp(struct skd_device *skdev)
3450 {
3451         if (skdev->skcomp_table != NULL) {
3452                 skd_free_phys(skdev, &skdev->cq_dma_address);
3453         }
3454 
3455         skdev->skcomp_table = NULL;
3456 }
3457 
3458 /*
3459  *
3460  * Name:        skd_free_skmsg, deallocates skmsg table DMA resources.
3461  *
3462  * Inputs:      skdev           - device state structure.
3463  *
3464  * Returns:     Nothing.
3465  *
3466  */
3467 static void
3468 skd_free_skmsg(struct skd_device *skdev)
3469 {
3470         uint32_t                i;
3471 
3472         if (NULL == skdev->skmsg_table)
3473                 return;
3474 
3475         for (i = 0; i < skdev->num_fitmsg_context; i++) {
3476                 struct skd_fitmsg_context *skmsg;
3477 
3478                 skmsg = &skdev->skmsg_table[i];
3479 
3480                 if (skmsg->msg_buf != NULL) {
3481                         skd_free_phys(skdev, &skmsg->mb_dma_address);
3482                 }
3483 
3484 
3485                 skmsg->msg_buf = NULL;
3486         }
3487 
3488         kmem_free(skdev->skmsg_table, sizeof (struct skd_fitmsg_context) *
3489             skdev->num_fitmsg_context);
3490 
3491         skdev->skmsg_table = NULL;
3492 
3493 }
3494 
3495 /*
3496  *
3497  * Name:        skd_free_skreq, deallocates skspcl table DMA resources.
3498  *
3499  * Inputs:      skdev           - device state structure.
3500  *
3501  * Returns:     Nothing.
3502  *
3503  */
3504 static void
3505 skd_free_skreq(struct skd_device *skdev)
3506 {
3507         uint32_t i;
3508 
3509         if (NULL == skdev->skreq_table)
3510                 return;
3511 
3512         for (i = 0; i < skdev->num_req_context; i++) {
3513                 struct skd_request_context *skreq;
3514 
3515                 skreq = &skdev->skreq_table[i];
3516 
3517                 skd_free_sg_list(skdev, skreq->sksg_list,
3518                     skdev->sgs_per_request, skreq->sksg_dma_address);
3519 
3520                 skreq->sksg_list = NULL;
3521         }
3522 
3523         kmem_free(skdev->skreq_table, sizeof (struct skd_request_context) *
3524             skdev->num_req_context);
3525 
3526         skdev->skreq_table = NULL;
3527 
3528 }
3529 
3530 /*
3531  *
3532  * Name:        skd_free_sksb, deallocates skspcl data buf and
3533  *              msg buf DMA resources.
3534  *
3535  * Inputs:      skdev           - device state structure.
3536  *
3537  * Returns:     Nothing.
3538  *
3539  */
3540 static void
3541 skd_free_sksb(struct skd_device *skdev)
3542 {
3543         struct skd_special_context *skspcl;
3544 
3545         skspcl = &skdev->internal_skspcl;
3546 
3547         if (skspcl->data_buf != NULL) {
3548                 skd_free_phys(skdev, &skspcl->db_dma_address);
3549         }
3550 
3551         skspcl->data_buf = NULL;
3552 
3553         if (skspcl->msg_buf != NULL) {
3554                 skd_free_phys(skdev, &skspcl->mb_dma_address);
3555         }
3556 
3557         skspcl->msg_buf = NULL;
3558 
3559         skd_free_sg_list(skdev, skspcl->req.sksg_list, 1,
3560             skspcl->req.sksg_dma_address);
3561 
3562         skspcl->req.sksg_list = NULL;
3563 }
3564 
3565 /*
3566  *
3567  * Name:        skd_free_sg_list, deallocates S/G DMA resources.
3568  *
3569  * Inputs:      skdev           - device state structure.
3570  *              sg_list         - S/G list itself.
3571  *              n_sg            - nukmber of segments
3572  *              dma_addr        - S/G list DMA address.
3573  *
3574  * Returns:     Nothing.
3575  *
3576  */
3577 /* ARGSUSED */  /* Upstream common source with other platforms. */
3578 static void
3579 skd_free_sg_list(struct skd_device *skdev,
3580     struct fit_sg_descriptor *sg_list,
3581     uint32_t n_sg, dma_mem_t dma_addr)
3582 {
3583         if (sg_list != NULL) {
3584                 skd_free_phys(skdev, &dma_addr);
3585         }
3586 }
3587 
3588 /*
3589  *
3590  * Name:        skd_queue, queues the I/O request.
3591  *
3592  * Inputs:      skdev           - device state structure.
3593  *              pbuf            - I/O request
3594  *
3595  * Returns:     Nothing.
3596  *
3597  */
3598 static void
3599 skd_queue(skd_device_t *skdev, skd_buf_private_t *pbuf)
3600 {
3601         struct waitqueue *waitq;
3602 
3603         ASSERT(skdev != NULL);
3604         ASSERT(pbuf != NULL);
3605 
3606         ASSERT(WAITQ_LOCK_HELD(skdev));
3607 
3608         waitq = &skdev->waitqueue;
3609 
3610         if (SIMPLEQ_EMPTY(waitq))
3611                 SIMPLEQ_INSERT_HEAD(waitq, pbuf, sq);
3612         else
3613                 SIMPLEQ_INSERT_TAIL(waitq, pbuf, sq);
3614 }
3615 
3616 /*
3617  *
3618  * Name:        skd_list_skreq, displays the skreq table entries.
3619  *
3620  * Inputs:      skdev           - device state structure.
3621  *              list            - flag, if true displays the entry address.
3622  *
3623  * Returns:     Returns number of skmsg entries found.
3624  *
3625  */
3626 /* ARGSUSED */  /* Upstream common source with other platforms. */
3627 static int
3628 skd_list_skreq(skd_device_t *skdev, int list)
3629 {
3630         int     inx = 0;
3631         struct skd_request_context *skreq;
3632 
3633         if (list) {
3634                 Dcmn_err(CE_NOTE, "skreq_table[0]\n");
3635 
3636                 skreq = &skdev->skreq_table[0];
3637                 while (skreq) {
3638                         if (list)
3639                                 Dcmn_err(CE_NOTE,
3640                                     "%d: skreq=%p state=%d id=%x fid=%x "
3641                                     "pbuf=%p dir=%d comp=%d\n",
3642                                     inx, (void *)skreq, skreq->state,
3643                                     skreq->id, skreq->fitmsg_id,
3644                                     (void *)skreq->pbuf,
3645                                     skreq->sg_data_dir, skreq->did_complete);
3646                         inx++;
3647                         skreq = skreq->next;
3648                 }
3649         }
3650 
3651         inx = 0;
3652         skreq = skdev->skreq_free_list;
3653 
3654         if (list)
3655                 Dcmn_err(CE_NOTE, "skreq_free_list\n");
3656         while (skreq) {
3657                 if (list)
3658                         Dcmn_err(CE_NOTE, "%d: skreq=%p state=%d id=%x fid=%x "
3659                             "pbuf=%p dir=%d\n", inx, (void *)skreq,
3660                             skreq->state, skreq->id, skreq->fitmsg_id,
3661                             (void *)skreq->pbuf, skreq->sg_data_dir);
3662                 inx++;
3663                 skreq = skreq->next;
3664         }
3665 
3666         return (inx);
3667 }
3668 
3669 /*
3670  *
3671  * Name:        skd_list_skmsg, displays the skmsg table entries.
3672  *
3673  * Inputs:      skdev           - device state structure.
3674  *              list            - flag, if true displays the entry address.
3675  *
3676  * Returns:     Returns number of skmsg entries found.
3677  *
3678  */
3679 static int
3680 skd_list_skmsg(skd_device_t *skdev, int list)
3681 {
3682         int     inx = 0;
3683         struct skd_fitmsg_context *skmsgp;
3684 
3685         skmsgp = &skdev->skmsg_table[0];
3686 
3687         if (list) {
3688                 Dcmn_err(CE_NOTE, "skmsg_table[0]\n");
3689 
3690                 while (skmsgp) {
3691                         if (list)
3692                                 Dcmn_err(CE_NOTE, "%d: skmsgp=%p id=%x outs=%d "
3693                                     "l=%d o=%d nxt=%p\n", inx, (void *)skmsgp,
3694                                     skmsgp->id, skmsgp->outstanding,
3695                                     skmsgp->length, skmsgp->offset,
3696                                     (void *)skmsgp->next);
3697                         inx++;
3698                         skmsgp = skmsgp->next;
3699                 }
3700         }
3701 
3702         inx = 0;
3703         if (list)
3704                 Dcmn_err(CE_NOTE, "skmsg_free_list\n");
3705         skmsgp = skdev->skmsg_free_list;
3706         while (skmsgp) {
3707                 if (list)
3708                         Dcmn_err(CE_NOTE, "%d: skmsgp=%p id=%x outs=%d l=%d "
3709                             "o=%d nxt=%p\n",
3710                             inx, (void *)skmsgp, skmsgp->id,
3711                             skmsgp->outstanding, skmsgp->length,
3712                             skmsgp->offset, (void *)skmsgp->next);
3713                 inx++;
3714                 skmsgp = skmsgp->next;
3715         }
3716 
3717         return (inx);
3718 }
3719 
3720 /*
3721  *
3722  * Name:        skd_get_queue_pbuf, retrieves top of queue entry and
3723  *              delinks entry from the queue.
3724  *
3725  * Inputs:      skdev           - device state structure.
3726  *              drive           - device number
3727  *
3728  * Returns:     Returns the top of the job queue entry.
3729  *
3730  */
3731 static skd_buf_private_t
3732 *skd_get_queued_pbuf(skd_device_t *skdev)
3733 {
3734         skd_buf_private_t *pbuf;
3735 
3736         ASSERT(WAITQ_LOCK_HELD(skdev));
3737         pbuf = SIMPLEQ_FIRST(&skdev->waitqueue);
3738         if (pbuf != NULL)
3739                 SIMPLEQ_REMOVE_HEAD(&skdev->waitqueue, sq);
3740         return (pbuf);
3741 }
3742 
3743 /*
3744  * PCI DRIVER GLUE
3745  */
3746 
3747 /*
3748  *
3749  * Name:        skd_pci_info, logs certain device PCI info.
3750  *
3751  * Inputs:      skdev           - device state structure.
3752  *
3753  * Returns:     str which contains the device speed info..
3754  *
3755  */
3756 static char *
3757 skd_pci_info(struct skd_device *skdev, char *str, size_t len)
3758 {
3759         int pcie_reg;
3760 
3761         str[0] = '\0';
3762 
3763         pcie_reg = skd_pci_find_capability(skdev, PCI_CAP_ID_EXP);
3764 
3765         if (pcie_reg) {
3766                 uint16_t lstat, lspeed, lwidth;
3767 
3768                 pcie_reg += 0x12;
3769                 lstat  = pci_config_get16(skdev->pci_handle, pcie_reg);
3770                 lspeed = lstat & (0xF);
3771                 lwidth = (lstat & 0x3F0) >> 4;
3772 
3773                 (void) snprintf(str, len, "PCIe (%s rev %d)",
3774                     lspeed == 1 ? "2.5GT/s" :
3775                     lspeed == 2 ? "5.0GT/s" : "<unknown>",
3776                     lwidth);
3777         }
3778 
3779         return (str);
3780 }
3781 
3782 /*
3783  * MODULE GLUE
3784  */
3785 
3786 /*
3787  *
3788  * Name:        skd_init, initializes certain values.
3789  *
3790  * Inputs:      skdev           - device state structure.
3791  *
3792  * Returns:     Zero.
3793  *
3794  */
3795 /* ARGSUSED */  /* Upstream common source with other platforms. */
3796 static int
3797 skd_init(skd_device_t *skdev)
3798 {
3799         Dcmn_err(CE_NOTE, "skd_init: v%s-b%s\n", DRV_VERSION, DRV_BUILD_ID);
3800 
3801         if (skd_max_queue_depth < 1 ||
3802             skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3803                 cmn_err(CE_NOTE, "skd_max_q_depth %d invalid, re-set to %d\n",
3804                     skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3805                 skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3806         }
3807 
3808         if (skd_max_req_per_msg < 1 || skd_max_req_per_msg > 14) {
3809                 cmn_err(CE_NOTE, "skd_max_req_per_msg %d invalid, set to %d\n",
3810                     skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3811                 skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3812         }
3813 
3814 
3815         if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3816                 cmn_err(CE_NOTE, "skd_sg_per_request %d invalid, set to %d\n",
3817                     skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3818                 skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3819         }
3820 
3821         if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3822                 cmn_err(CE_NOTE, "skd_dbg_level %d invalid, re-set to %d\n",
3823                     skd_dbg_level, 0);
3824                 skd_dbg_level = 0;
3825         }
3826 
3827         return (0);
3828 }
3829 
3830 /*
3831  *
3832  * Name:        skd_exit, exits the driver & logs the fact.
3833  *
3834  * Inputs:      none.
3835  *
3836  * Returns:     Nothing.
3837  *
3838  */
3839 static void
3840 skd_exit(void)
3841 {
3842         cmn_err(CE_NOTE, "skd v%s unloading", DRV_VERSION);
3843 }
3844 
3845 /*
3846  *
3847  * Name:        skd_drive_state_to_str, converts binary drive state
3848  *              to its corresponding string value.
3849  *
3850  * Inputs:      Drive state.
3851  *
3852  * Returns:     String representing drive state.
3853  *
3854  */
3855 const char *
3856 skd_drive_state_to_str(int state)
3857 {
3858         switch (state) {
3859         case FIT_SR_DRIVE_OFFLINE:      return ("OFFLINE");
3860         case FIT_SR_DRIVE_INIT:         return ("INIT");
3861         case FIT_SR_DRIVE_ONLINE:       return ("ONLINE");
3862         case FIT_SR_DRIVE_BUSY:         return ("BUSY");
3863         case FIT_SR_DRIVE_FAULT:        return ("FAULT");
3864         case FIT_SR_DRIVE_DEGRADED:     return ("DEGRADED");
3865         case FIT_SR_PCIE_LINK_DOWN:     return ("LINK_DOWN");
3866         case FIT_SR_DRIVE_SOFT_RESET:   return ("SOFT_RESET");
3867         case FIT_SR_DRIVE_NEED_FW_DOWNLOAD: return ("NEED_FW");
3868         case FIT_SR_DRIVE_INIT_FAULT:   return ("INIT_FAULT");
3869         case FIT_SR_DRIVE_BUSY_SANITIZE:return ("BUSY_SANITIZE");
3870         case FIT_SR_DRIVE_BUSY_ERASE:   return ("BUSY_ERASE");
3871         case FIT_SR_DRIVE_FW_BOOTING:   return ("FW_BOOTING");
3872         default:                        return ("???");
3873         }
3874 }
3875 
3876 /*
3877  *
3878  * Name:        skd_skdev_state_to_str, converts binary driver state
3879  *              to its corresponding string value.
3880  *
3881  * Inputs:      Driver state.
3882  *
3883  * Returns:     String representing driver state.
3884  *
3885  */
3886 static const char *
3887 skd_skdev_state_to_str(enum skd_drvr_state state)
3888 {
3889         switch (state) {
3890         case SKD_DRVR_STATE_LOAD:       return ("LOAD");
3891         case SKD_DRVR_STATE_IDLE:       return ("IDLE");
3892         case SKD_DRVR_STATE_BUSY:       return ("BUSY");
3893         case SKD_DRVR_STATE_STARTING:   return ("STARTING");
3894         case SKD_DRVR_STATE_ONLINE:     return ("ONLINE");
3895         case SKD_DRVR_STATE_PAUSING:    return ("PAUSING");
3896         case SKD_DRVR_STATE_PAUSED:     return ("PAUSED");
3897         case SKD_DRVR_STATE_DRAINING_TIMEOUT: return ("DRAINING_TIMEOUT");
3898         case SKD_DRVR_STATE_RESTARTING: return ("RESTARTING");
3899         case SKD_DRVR_STATE_RESUMING:   return ("RESUMING");
3900         case SKD_DRVR_STATE_STOPPING:   return ("STOPPING");
3901         case SKD_DRVR_STATE_SYNCING:    return ("SYNCING");
3902         case SKD_DRVR_STATE_FAULT:      return ("FAULT");
3903         case SKD_DRVR_STATE_DISAPPEARED: return ("DISAPPEARED");
3904         case SKD_DRVR_STATE_BUSY_ERASE: return ("BUSY_ERASE");
3905         case SKD_DRVR_STATE_BUSY_SANITIZE:return ("BUSY_SANITIZE");
3906         case SKD_DRVR_STATE_BUSY_IMMINENT: return ("BUSY_IMMINENT");
3907         case SKD_DRVR_STATE_WAIT_BOOT:  return ("WAIT_BOOT");
3908 
3909         default:                        return ("???");
3910         }
3911 }
3912 
3913 /*
3914  *
3915  * Name:        skd_skmsg_state_to_str, converts binary driver state
3916  *              to its corresponding string value.
3917  *
3918  * Inputs:      Msg state.
3919  *
3920  * Returns:     String representing msg state.
3921  *
3922  */
3923 static const char *
3924 skd_skmsg_state_to_str(enum skd_fit_msg_state state)
3925 {
3926         switch (state) {
3927         case SKD_MSG_STATE_IDLE:        return ("IDLE");
3928         case SKD_MSG_STATE_BUSY:        return ("BUSY");
3929         default:                        return ("???");
3930         }
3931 }
3932 
3933 /*
3934  *
3935  * Name:        skd_skreq_state_to_str, converts binary req state
3936  *              to its corresponding string value.
3937  *
3938  * Inputs:      Req state.
3939  *
3940  * Returns:     String representing req state.
3941  *
3942  */
3943 static const char *
3944 skd_skreq_state_to_str(enum skd_req_state state)
3945 {
3946         switch (state) {
3947         case SKD_REQ_STATE_IDLE:        return ("IDLE");
3948         case SKD_REQ_STATE_SETUP:       return ("SETUP");
3949         case SKD_REQ_STATE_BUSY:        return ("BUSY");
3950         case SKD_REQ_STATE_COMPLETED:   return ("COMPLETED");
3951         case SKD_REQ_STATE_TIMEOUT:     return ("TIMEOUT");
3952         case SKD_REQ_STATE_ABORTED:     return ("ABORTED");
3953         default:                        return ("???");
3954         }
3955 }
3956 
3957 /*
3958  *
3959  * Name:        skd_log_skdev, logs device state & parameters.
3960  *
3961  * Inputs:      skdev           - device state structure.
3962  *              event           - event (string) to log.
3963  *
3964  * Returns:     Nothing.
3965  *
3966  */
3967 static void
3968 skd_log_skdev(struct skd_device *skdev, const char *event)
3969 {
3970         Dcmn_err(CE_NOTE, "log_skdev(%s) skdev=%p event='%s'",
3971             skdev->name, (void *)skdev, event);
3972         Dcmn_err(CE_NOTE, "  drive_state=%s(%d) driver_state=%s(%d)",
3973             skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3974             skd_skdev_state_to_str(skdev->state), skdev->state);
3975         Dcmn_err(CE_NOTE, "  busy=%d limit=%d soft=%d hard=%d lowat=%d",
3976             skdev->queue_depth_busy, skdev->queue_depth_limit,
3977             skdev->soft_queue_depth_limit, skdev->hard_queue_depth_limit,
3978             skdev->queue_depth_lowat);
3979         Dcmn_err(CE_NOTE, "  timestamp=0x%x cycle=%d cycle_ix=%d",
3980             skdev->timeout_stamp, skdev->skcomp_cycle, skdev->skcomp_ix);
3981 }
3982 
3983 /*
3984  *
3985  * Name:        skd_log_skmsg, logs the skmsg event.
3986  *
3987  * Inputs:      skdev           - device state structure.
3988  *              skmsg           - FIT message structure.
3989  *              event           - event string to log.
3990  *
3991  * Returns:     Nothing.
3992  *
3993  */
3994 static void
3995 skd_log_skmsg(struct skd_device *skdev,
3996     struct skd_fitmsg_context *skmsg, const char *event)
3997 {
3998         Dcmn_err(CE_NOTE, "log_skmsg:(%s) skmsg=%p event='%s'",
3999             skdev->name, (void *)skmsg, event);
4000         Dcmn_err(CE_NOTE, "  state=%s(%d) id=0x%04x length=%d",
4001             skd_skmsg_state_to_str(skmsg->state), skmsg->state,
4002             skmsg->id, skmsg->length);
4003 }
4004 
4005 /*
4006  *
4007  * Name:        skd_log_skreq, logs the skreq event.
4008  *
4009  * Inputs:      skdev           - device state structure.
4010  *              skreq           -skreq structure.
4011  *              event           - event string to log.
4012  *
4013  * Returns:     Nothing.
4014  *
4015  */
4016 static void
4017 skd_log_skreq(struct skd_device *skdev,
4018     struct skd_request_context *skreq, const char *event)
4019 {
4020         skd_buf_private_t *pbuf;
4021 
4022         Dcmn_err(CE_NOTE, "log_skreq: (%s) skreq=%p pbuf=%p event='%s'",
4023             skdev->name, (void *)skreq, (void *)skreq->pbuf, event);
4024 
4025         Dcmn_err(CE_NOTE, "  state=%s(%d) id=0x%04x fitmsg=0x%04x",
4026             skd_skreq_state_to_str(skreq->state), skreq->state,
4027             skreq->id, skreq->fitmsg_id);
4028         Dcmn_err(CE_NOTE, "  timo=0x%x sg_dir=%d n_sg=%d",
4029             skreq->timeout_stamp, skreq->sg_data_dir, skreq->n_sg);
4030 
4031         if ((pbuf = skreq->pbuf) != NULL) {
4032                 uint32_t lba, count;
4033                 lba = pbuf->x_xfer->x_blkno;
4034                 count = pbuf->x_xfer->x_nblks;
4035                 Dcmn_err(CE_NOTE, "  pbuf=%p lba=%u(0x%x) count=%u(0x%x) ",
4036                     (void *)pbuf, lba, lba, count, count);
4037                 Dcmn_err(CE_NOTE, "  dir=%s "
4038                     " intrs=%" PRId64 " qdepth=%d",
4039                     (pbuf->dir & B_READ) ? "Read" : "Write",
4040                     skdev->intr_cntr, skdev->queue_depth_busy);
4041         } else {
4042                 Dcmn_err(CE_NOTE, "  req=NULL\n");
4043         }
4044 }
4045 
4046 /*
4047  *
4048  * Name:        skd_init_mutex, initializes all mutexes.
4049  *
4050  * Inputs:      skdev           - device state structure.
4051  *
4052  * Returns:     DDI_FAILURE on failure otherwise DDI_SUCCESS.
4053  *
4054  */
4055 static int
4056 skd_init_mutex(skd_device_t *skdev)
4057 {
4058         void    *intr;
4059 
4060         Dcmn_err(CE_CONT, "(%s%d): init_mutex flags=%x", DRV_NAME,
4061             skdev->instance, skdev->flags);
4062 
4063         intr = (void *)(uintptr_t)skdev->intr_pri;
4064 
4065         if (skdev->flags & SKD_MUTEX_INITED)
4066                 cmn_err(CE_NOTE, "init_mutex: Oh-Oh - already INITED");
4067 
4068         /* mutexes to protect the adapter state structure. */
4069         mutex_init(&skdev->skd_lock_mutex, NULL, MUTEX_DRIVER,
4070             DDI_INTR_PRI(intr));
4071         mutex_init(&skdev->skd_intr_mutex, NULL, MUTEX_DRIVER,
4072             DDI_INTR_PRI(intr));
4073         mutex_init(&skdev->waitqueue_mutex, NULL, MUTEX_DRIVER,
4074             DDI_INTR_PRI(intr));
4075         mutex_init(&skdev->skd_internalio_mutex, NULL, MUTEX_DRIVER,
4076             DDI_INTR_PRI(intr));
4077 
4078         cv_init(&skdev->cv_waitq, NULL, CV_DRIVER, NULL);
4079 
4080         skdev->flags |= SKD_MUTEX_INITED;
4081         if (skdev->flags & SKD_MUTEX_DESTROYED)
4082                 skdev->flags &= ~SKD_MUTEX_DESTROYED;
4083 
4084         Dcmn_err(CE_CONT, "init_mutex (%s%d): done, flags=%x", DRV_NAME,
4085             skdev->instance, skdev->flags);
4086 
4087         return (DDI_SUCCESS);
4088 }
4089 
4090 /*
4091  *
4092  * Name:        skd_destroy_mutex, destroys all mutexes.
4093  *
4094  * Inputs:      skdev           - device state structure.
4095  *
4096  * Returns:     Nothing.
4097  *
4098  */
4099 static void
4100 skd_destroy_mutex(skd_device_t *skdev)
4101 {
4102         if ((skdev->flags & SKD_MUTEX_DESTROYED) == 0) {
4103                 if (skdev->flags & SKD_MUTEX_INITED) {
4104                         mutex_destroy(&skdev->waitqueue_mutex);
4105                         mutex_destroy(&skdev->skd_intr_mutex);
4106                         mutex_destroy(&skdev->skd_lock_mutex);
4107                         mutex_destroy(&skdev->skd_internalio_mutex);
4108 
4109                         cv_destroy(&skdev->cv_waitq);
4110 
4111                         skdev->flags |= SKD_MUTEX_DESTROYED;
4112 
4113                         if (skdev->flags & SKD_MUTEX_INITED)
4114                                 skdev->flags &= ~SKD_MUTEX_INITED;
4115                 }
4116         }
4117 }
4118 
4119 /*
4120  *
4121  * Name:        skd_setup_intr, setup the interrupt handling
4122  *
4123  * Inputs:      skdev           - device state structure.
4124  *              intr_type       - requested DDI interrupt type.
4125  *
4126  * Returns:     DDI_FAILURE on failure otherwise DDI_SUCCESS.
4127  *
4128  */
4129 static int
4130 skd_setup_intr(skd_device_t *skdev, int intr_type)
4131 {
4132         int32_t         count = 0;
4133         int32_t         avail = 0;
4134         int32_t         actual = 0;
4135         int32_t         ret;
4136         uint32_t        i;
4137 
4138         Dcmn_err(CE_CONT, "(%s%d): setup_intr", DRV_NAME, skdev->instance);
4139 
4140         /* Get number of interrupts the platform h/w supports */
4141         if (((ret = ddi_intr_get_nintrs(skdev->dip, intr_type, &count)) !=
4142             DDI_SUCCESS) || count == 0) {
4143                 cmn_err(CE_WARN, "!intr_setup failed, nintrs ret=%xh, cnt=%xh",
4144                     ret, count);
4145 
4146                 return (DDI_FAILURE);
4147         }
4148 
4149         /* Get number of available system interrupts */
4150         if (((ret = ddi_intr_get_navail(skdev->dip, intr_type, &avail)) !=
4151             DDI_SUCCESS) || avail == 0) {
4152                 cmn_err(CE_WARN, "!intr_setup failed, navail ret=%xh, "
4153                     "avail=%xh", ret, avail);
4154 
4155                 return (DDI_FAILURE);
4156         }
4157 
4158         if (intr_type == DDI_INTR_TYPE_MSIX && avail < SKD_MSIX_MAXAIF) {
4159                 cmn_err(CE_WARN, "!intr_setup failed, min MSI-X h/w vectors "
4160                     "req'd: %d, avail: %d",
4161                     SKD_MSIX_MAXAIF, count);
4162 
4163                 return (DDI_FAILURE);
4164         }
4165 
4166         /* Allocate space for interrupt handles */
4167         skdev->hsize = sizeof (ddi_intr_handle_t) * avail;
4168         skdev->htable = kmem_zalloc(skdev->hsize, KM_SLEEP);
4169 
4170         /* Allocate the interrupts */
4171         if ((ret = ddi_intr_alloc(skdev->dip, skdev->htable, intr_type,
4172             0, count, &actual, 0)) != DDI_SUCCESS) {
4173                 cmn_err(CE_WARN, "!intr_setup failed, intr_alloc ret=%xh, "
4174                     "count = %xh, " "actual=%xh", ret, count, actual);
4175 
4176                 skd_release_intr(skdev);
4177 
4178                 return (DDI_FAILURE);
4179         }
4180 
4181         skdev->intr_cnt = actual;
4182 
4183         if (intr_type == DDI_INTR_TYPE_FIXED)
4184                 (void) ddi_intr_set_pri(skdev->htable[0], 10);
4185 
4186         /* Get interrupt priority */
4187         if ((ret = ddi_intr_get_pri(skdev->htable[0], &skdev->intr_pri)) !=
4188             DDI_SUCCESS) {
4189                 cmn_err(CE_WARN, "!intr_setup failed, get_pri ret=%xh", ret);
4190                 skd_release_intr(skdev);
4191 
4192                 return (ret);
4193         }
4194 
4195         /* Add the interrupt handlers */
4196         for (i = 0; i < actual; i++) {
4197                 if ((ret = ddi_intr_add_handler(skdev->htable[i],
4198                     skd_isr_aif, (void *)skdev, (void *)((ulong_t)i))) !=
4199                     DDI_SUCCESS) {
4200                         cmn_err(CE_WARN, "!intr_setup failed, addh#=%xh, "
4201                             "act=%xh, ret=%xh", i, actual, ret);
4202                         skd_release_intr(skdev);
4203 
4204                         return (ret);
4205                 }
4206         }
4207 
4208         /* Setup mutexes */
4209         if ((ret = skd_init_mutex(skdev)) != DDI_SUCCESS) {
4210                 cmn_err(CE_WARN, "!intr_setup failed, mutex init ret=%xh", ret);
4211                 skd_release_intr(skdev);
4212 
4213                 return (ret);
4214         }
4215 
4216         /* Get the capabilities */
4217         (void) ddi_intr_get_cap(skdev->htable[0], &skdev->intr_cap);
4218 
4219         /* Enable interrupts */
4220         if (skdev->intr_cap & DDI_INTR_FLAG_BLOCK) {
4221                 if ((ret = ddi_intr_block_enable(skdev->htable,
4222                     skdev->intr_cnt)) != DDI_SUCCESS) {
4223                         cmn_err(CE_WARN, "!failed, intr_setup block enable, "
4224                             "ret=%xh", ret);
4225                         skd_destroy_mutex(skdev);
4226                         skd_release_intr(skdev);
4227 
4228                         return (ret);
4229                 }
4230         } else {
4231                 for (i = 0; i < skdev->intr_cnt; i++) {
4232                         if ((ret = ddi_intr_enable(skdev->htable[i])) !=
4233                             DDI_SUCCESS) {
4234                                 cmn_err(CE_WARN, "!intr_setup failed, "
4235                                     "intr enable, ret=%xh", ret);
4236                                 skd_destroy_mutex(skdev);
4237                                 skd_release_intr(skdev);
4238 
4239                                 return (ret);
4240                         }
4241                 }
4242         }
4243 
4244         if (intr_type == DDI_INTR_TYPE_FIXED)
4245                 (void) ddi_intr_clr_mask(skdev->htable[0]);
4246 
4247         skdev->irq_type = intr_type;
4248 
4249         return (DDI_SUCCESS);
4250 }
4251 
4252 /*
4253  *
4254  * Name:        skd_disable_intr, disable interrupt handling.
4255  *
4256  * Inputs:      skdev           - device state structure.
4257  *
4258  * Returns:     Nothing.
4259  *
4260  */
4261 static void
4262 skd_disable_intr(skd_device_t *skdev)
4263 {
4264         uint32_t        i, rval;
4265 
4266         if (skdev->intr_cap & DDI_INTR_FLAG_BLOCK) {
4267                 /* Remove AIF block interrupts (MSI/MSI-X) */
4268                 if ((rval = ddi_intr_block_disable(skdev->htable,
4269                     skdev->intr_cnt)) != DDI_SUCCESS) {
4270                         cmn_err(CE_WARN, "!failed intr block disable, rval=%x",
4271                             rval);
4272                 }
4273         } else {
4274                 /* Remove AIF non-block interrupts (fixed).  */
4275                 for (i = 0; i < skdev->intr_cnt; i++) {
4276                         if ((rval = ddi_intr_disable(skdev->htable[i])) !=
4277                             DDI_SUCCESS) {
4278                                 cmn_err(CE_WARN, "!failed intr disable, "
4279                                     "intr#=%xh, " "rval=%xh", i, rval);
4280                         }
4281                 }
4282         }
4283 }
4284 
4285 /*
4286  *
4287  * Name:        skd_release_intr, disables interrupt handling.
4288  *
4289  * Inputs:      skdev           - device state structure.
4290  *
4291  * Returns:     Nothing.
4292  *
4293  */
4294 static void
4295 skd_release_intr(skd_device_t *skdev)
4296 {
4297         int32_t         i;
4298         int             rval;
4299 
4300 
4301         Dcmn_err(CE_CONT, "REL_INTR intr_cnt=%d", skdev->intr_cnt);
4302 
4303         if (skdev->irq_type == 0) {
4304                 Dcmn_err(CE_CONT, "release_intr: (%s%d): done",
4305                     DRV_NAME, skdev->instance);
4306                 return;
4307         }
4308 
4309         if (skdev->htable != NULL && skdev->hsize > 0) {
4310                 i = (int32_t)skdev->hsize / (int32_t)sizeof (ddi_intr_handle_t);
4311 
4312                 while (i-- > 0) {
4313                         if (skdev->htable[i] == 0) {
4314                                 Dcmn_err(CE_NOTE, "htable[%x]=0h", i);
4315                                 continue;
4316                         }
4317 
4318                         if ((rval = ddi_intr_disable(skdev->htable[i])) !=
4319                             DDI_SUCCESS)
4320                                 Dcmn_err(CE_NOTE, "release_intr: intr_disable "
4321                                     "htable[%d], rval=%d", i, rval);
4322 
4323                         if (i < skdev->intr_cnt) {
4324                                 if ((rval = ddi_intr_remove_handler(
4325                                     skdev->htable[i])) != DDI_SUCCESS)
4326                                         cmn_err(CE_WARN, "!release_intr: "
4327                                             "intr_remove_handler FAILED, "
4328                                             "rval=%d", rval);
4329 
4330                                 Dcmn_err(CE_NOTE, "release_intr: "
4331                                     "remove_handler htable[%d]", i);
4332                         }
4333 
4334                         if ((rval = ddi_intr_free(skdev->htable[i])) !=
4335                             DDI_SUCCESS)
4336                                 cmn_err(CE_WARN, "!release_intr: intr_free "
4337                                     "FAILED, rval=%d", rval);
4338                         Dcmn_err(CE_NOTE, "release_intr: intr_free htable[%d]",
4339                             i);
4340                 }
4341 
4342                 kmem_free(skdev->htable, skdev->hsize);
4343                 skdev->htable = NULL;
4344         }
4345 
4346         skdev->hsize    = 0;
4347         skdev->intr_cnt = 0;
4348         skdev->intr_pri = 0;
4349         skdev->intr_cap = 0;
4350         skdev->irq_type = 0;
4351 }
4352 
4353 /*
4354  *
4355  * Name:        skd_dealloc_resources, deallocate resources allocated
4356  *              during attach.
4357  *
4358  * Inputs:      dip             - DDI device info pointer.
4359  *              skdev           - device state structure.
4360  *              seq             - bit flag representing allocated item.
4361  *              instance        - device instance.
4362  *
4363  * Returns:     Nothing.
4364  *
4365  */
4366 /* ARGSUSED */  /* Upstream common source with other platforms. */
4367 static void
4368 skd_dealloc_resources(dev_info_t *dip, skd_device_t *skdev,
4369     uint32_t seq, int instance)
4370 {
4371 
4372         if (skdev == NULL)
4373                 return;
4374 
4375         if (seq & SKD_CONSTRUCTED)
4376                 skd_destruct(skdev);
4377 
4378         if (seq & SKD_INTR_ADDED) {
4379                 skd_disable_intr(skdev);
4380                 skd_release_intr(skdev);
4381         }
4382 
4383         if (seq & SKD_DEV_IOBASE_MAPPED)
4384                 ddi_regs_map_free(&skdev->dev_handle);
4385 
4386         if (seq & SKD_IOMAP_IOBASE_MAPPED)
4387                 ddi_regs_map_free(&skdev->iomap_handle);
4388 
4389         if (seq & SKD_REGS_MAPPED)
4390                 ddi_regs_map_free(&skdev->iobase_handle);
4391 
4392         if (seq & SKD_CONFIG_SPACE_SETUP)
4393                 pci_config_teardown(&skdev->pci_handle);
4394 
4395         if (seq & SKD_SOFT_STATE_ALLOCED)  {
4396                 if (skdev->pathname &&
4397                     (skdev->flags & SKD_PATHNAME_ALLOCED)) {
4398                         kmem_free(skdev->pathname,
4399                             strlen(skdev->pathname)+1);
4400                 }
4401         }
4402 
4403         if (skdev->s1120_devid)
4404                 ddi_devid_free(skdev->s1120_devid);
4405 }
4406 
4407 /*
4408  *
4409  * Name:        skd_setup_interrupt, sets up the appropriate interrupt type
4410  *              msi, msix, or fixed.
4411  *
4412  * Inputs:      skdev           - device state structure.
4413  *
4414  * Returns:     DDI_FAILURE on failure otherwise DDI_SUCCESS.
4415  *
4416  */
4417 static int
4418 skd_setup_interrupts(skd_device_t *skdev)
4419 {
4420         int32_t         rval = DDI_FAILURE;
4421         int32_t         i;
4422         int32_t         itypes = 0;
4423 
4424         /*
4425          * See what types of interrupts this adapter and platform support
4426          */
4427         if ((i = ddi_intr_get_supported_types(skdev->dip, &itypes)) !=
4428             DDI_SUCCESS) {
4429                 cmn_err(CE_NOTE, "intr supported types failed, rval=%xh, ", i);
4430                 return (DDI_FAILURE);
4431         }
4432 
4433         Dcmn_err(CE_NOTE, "%s:supported interrupts types: %x",
4434             skdev->name, itypes);
4435 
4436         itypes &= skdev->irq_type;
4437 
4438         if (!skd_disable_msix && (itypes & DDI_INTR_TYPE_MSIX) &&
4439             (rval = skd_setup_intr(skdev, DDI_INTR_TYPE_MSIX)) == DDI_SUCCESS) {
4440                 cmn_err(CE_NOTE, "!%s: successful MSI-X setup",
4441                     skdev->name);
4442         } else if (!skd_disable_msi && (itypes & DDI_INTR_TYPE_MSI) &&
4443             (rval = skd_setup_intr(skdev, DDI_INTR_TYPE_MSI)) == DDI_SUCCESS) {
4444                 cmn_err(CE_NOTE, "!%s: successful MSI setup",
4445                     skdev->name);
4446         } else if ((itypes & DDI_INTR_TYPE_FIXED) &&
4447             (rval = skd_setup_intr(skdev, DDI_INTR_TYPE_FIXED))
4448             == DDI_SUCCESS) {
4449                 cmn_err(CE_NOTE, "!%s: successful fixed intr setup",
4450                     skdev->name);
4451         } else {
4452                 cmn_err(CE_WARN, "!%s: no supported interrupt types",
4453                     skdev->name);
4454                 return (DDI_FAILURE);
4455         }
4456 
4457         Dcmn_err(CE_CONT, "%s: setup interrupts done", skdev->name);
4458 
4459         return (rval);
4460 }
4461 
4462 /*
4463  *
4464  * Name:        skd_get_properties, retrieves properties from skd.conf.
4465  *
4466  * Inputs:      skdev           - device state structure.
4467  *              dip             - dev_info data structure.
4468  *
4469  * Returns:     Nothing.
4470  *
4471  */
4472 /* ARGSUSED */  /* Upstream common source with other platforms. */
4473 static void
4474 skd_get_properties(dev_info_t *dip, skd_device_t *skdev)
4475 {
4476         int     prop_value;
4477 
4478         skd_isr_type =  ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
4479             "intr-type-cap", -1);
4480 
4481         prop_value =  ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
4482             "max-scsi-reqs", -1);
4483         if (prop_value >= 1 && prop_value <= SKD_MAX_QUEUE_DEPTH)
4484                 skd_max_queue_depth = prop_value;
4485 
4486         prop_value =  ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
4487             "max-scsi-reqs-per-msg", -1);
4488         if (prop_value >= 1 && prop_value <= SKD_MAX_REQ_PER_MSG)
4489                 skd_max_req_per_msg = prop_value;
4490 
4491         prop_value =  ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
4492             "max-sgs-per-req", -1);
4493         if (prop_value >= 1 && prop_value <= SKD_MAX_N_SG_PER_REQ)
4494                 skd_sgs_per_request = prop_value;
4495 
4496         prop_value =  ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
4497             "dbg-level", -1);
4498         if (prop_value >= 1 && prop_value <= 2)
4499                 skd_dbg_level = prop_value;
4500 }
4501 
4502 /*
4503  *
4504  * Name:        skd_wait_for_s1120, wait for device to finish
4505  *              its initialization.
4506  *
4507  * Inputs:      skdev           - device state structure.
4508  *
4509  * Returns:     DDI_SUCCESS or DDI_FAILURE.
4510  *
4511  */
4512 static int
4513 skd_wait_for_s1120(skd_device_t *skdev)
4514 {
4515         clock_t cur_ticks, tmo;
4516         int     loop_cntr = 0;
4517         int     rc = DDI_FAILURE;
4518 
4519         mutex_enter(&skdev->skd_internalio_mutex);
4520 
4521         while (skdev->gendisk_on == 0) {
4522                 cur_ticks = ddi_get_lbolt();
4523                 tmo = cur_ticks + drv_sectohz(1);
4524                 if (cv_timedwait(&skdev->cv_waitq,
4525                     &skdev->skd_internalio_mutex, tmo) == -1) {
4526                         /* Oops - timed out */
4527                         if (loop_cntr++ > 10)
4528                                 break;
4529                 }
4530         }
4531 
4532         mutex_exit(&skdev->skd_internalio_mutex);
4533 
4534         if (skdev->gendisk_on == 1)
4535                 rc = DDI_SUCCESS;
4536 
4537         return (rc);
4538 }
4539 
4540 /*
4541  *
4542  * Name:        skd_update_props, updates certain device properties.
4543  *
4544  * Inputs:      skdev           - device state structure.
4545  *              dip             - dev info structure
4546  *
4547  * Returns:     Nothing.
4548  *
4549  */
4550 static void
4551 skd_update_props(skd_device_t *skdev, dev_info_t *dip)
4552 {
4553         int     blksize = 512;
4554 
4555         if ((ddi_prop_update_int64(DDI_DEV_T_NONE, dip, "device-nblocks",
4556             skdev->Nblocks) != DDI_SUCCESS) ||
4557             (ddi_prop_update_int(DDI_DEV_T_NONE,   dip, "device-blksize",
4558             blksize) != DDI_SUCCESS)) {
4559                 cmn_err(CE_NOTE, "%s: FAILED to create driver properties",
4560                     skdev->name);
4561         }
4562 }
4563 
4564 /*
4565  *
4566  * Name:        skd_setup_devid, sets up device ID info.
4567  *
4568  * Inputs:      skdev           - device state structure.
4569  *              devid           - Device ID for the DDI.
4570  *
4571  * Returns:     DDI_SUCCESS or DDI_FAILURE.
4572  *
4573  */
4574 static int
4575 skd_setup_devid(skd_device_t *skdev, ddi_devid_t *devid)
4576 {
4577         int  rc, sz_model, sz_sn, sz;
4578 
4579         sz_model = strlen(skdev->inq_product_id);
4580         sz_sn = strlen(skdev->inq_serial_num);
4581         sz = sz_model + sz_sn + 1;
4582 
4583         (void) snprintf(skdev->devid_str, sizeof (skdev->devid_str), "%s=%s",
4584             skdev->inq_product_id, skdev->inq_serial_num);
4585         rc = ddi_devid_init(skdev->dip, DEVID_SCSI_SERIAL, sz,
4586             skdev->devid_str, devid);
4587 
4588         if (rc != DDI_SUCCESS)
4589                 cmn_err(CE_WARN, "!%s: devid_init FAILED", skdev->name);
4590 
4591         return (rc);
4592 
4593 }
4594 
4595 /*
4596  *
4597  * Name:        skd_bd_attach, attach to blkdev driver
4598  *
4599  * Inputs:      skdev           - device state structure.
4600  *              dip             - device info structure.
4601  *
4602  * Returns:     DDI_SUCCESS or DDI_FAILURE.
4603  *
4604  */
4605 static int
4606 skd_bd_attach(dev_info_t *dip, skd_device_t *skdev)
4607 {
4608         int             rv;
4609 
4610         skdev->s_bdh = bd_alloc_handle(skdev, &skd_bd_ops,
4611             &skd_64bit_io_dma_attr, KM_SLEEP);
4612 
4613         if (skdev->s_bdh == NULL) {
4614                 cmn_err(CE_WARN, "!skd_bd_attach: FAILED");
4615 
4616                 return (DDI_FAILURE);
4617         }
4618 
4619         rv = bd_attach_handle(dip, skdev->s_bdh);
4620 
4621         if (rv != DDI_SUCCESS) {
4622                 cmn_err(CE_WARN, "!bd_attach_handle FAILED\n");
4623         } else {
4624                 Dcmn_err(CE_NOTE, "bd_attach_handle OK\n");
4625                 skdev->bd_attached++;
4626         }
4627 
4628         return (rv);
4629 }
4630 
4631 /*
4632  *
4633  * Name:        skd_bd_detach, detach from the blkdev driver.
4634  *
4635  * Inputs:      skdev           - device state structure.
4636  *
4637  * Returns:     Nothing.
4638  *
4639  */
4640 static void
4641 skd_bd_detach(skd_device_t *skdev)
4642 {
4643         if (skdev->bd_attached)
4644                 (void) bd_detach_handle(skdev->s_bdh);
4645 
4646         bd_free_handle(skdev->s_bdh);
4647 }
4648 
4649 /*
4650  *
4651  * Name:        skd_attach, attach sdk device driver
4652  *
4653  * Inputs:      dip             - device info structure.
4654  *              cmd             - DDI attach argument (ATTACH, RESUME, etc.)
4655  *
4656  * Returns:     DDI_SUCCESS or DDI_FAILURE.
4657  *
4658  */
4659 static int
4660 skd_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
4661 {
4662         int                     instance;
4663         int                     nregs;
4664         skd_device_t            *skdev = NULL;
4665         int                     inx;
4666         uint16_t                cmd_reg;
4667         int                     progress = 0;
4668         char                    name[MAXPATHLEN];
4669         off_t                   regsize;
4670         char                    pci_str[32];
4671         char                    fw_version[8];
4672 
4673         instance = ddi_get_instance(dip);
4674 
4675         (void) ddi_get_parent_data(dip);
4676 
4677         switch (cmd) {
4678         case DDI_ATTACH:
4679                 break;
4680 
4681         case DDI_RESUME:
4682                 /* Re-enable timer */
4683                 skd_start_timer(skdev);
4684 
4685                 return (DDI_SUCCESS);
4686 
4687         default:
4688                 return (DDI_FAILURE);
4689         }
4690 
4691         Dcmn_err(CE_NOTE, "sTec S1120 Driver v%s Instance: %d",
4692             VERSIONSTR, instance);
4693 
4694         /*
4695          * Check that hardware is installed in a DMA-capable slot
4696          */
4697         if (ddi_slaveonly(dip) == DDI_SUCCESS) {
4698                 cmn_err(CE_WARN, "!%s%d: installed in a "
4699                     "slot that isn't DMA-capable slot", DRV_NAME, instance);
4700                 return (DDI_FAILURE);
4701         }
4702 
4703         /*
4704          * No support for high-level interrupts
4705          */
4706         if (ddi_intr_hilevel(dip, 0) != 0) {
4707                 cmn_err(CE_WARN, "!%s%d: High level interrupt not supported",
4708                     DRV_NAME, instance);
4709                 return (DDI_FAILURE);
4710         }
4711 
4712         /*
4713          * Allocate our per-device-instance structure
4714          */
4715         if (ddi_soft_state_zalloc(skd_state, instance) !=
4716             DDI_SUCCESS) {
4717                 cmn_err(CE_WARN, "!%s%d: soft state zalloc failed ",
4718                     DRV_NAME, instance);
4719                 return (DDI_FAILURE);
4720         }
4721 
4722         progress |= SKD_SOFT_STATE_ALLOCED;
4723 
4724         skdev = ddi_get_soft_state(skd_state, instance);
4725         if (skdev == NULL) {
4726                 cmn_err(CE_WARN, "!%s%d: Unable to get soft state structure",
4727                     DRV_NAME, instance);
4728                 goto skd_attach_failed;
4729         }
4730 
4731         (void) snprintf(skdev->name, sizeof (skdev->name),
4732             DRV_NAME "%d", instance);
4733 
4734         skdev->dip      = dip;
4735         skdev->instance         = instance;
4736 
4737         ddi_set_driver_private(dip, skdev);
4738 
4739         (void) ddi_pathname(dip, name);
4740         for (inx = strlen(name); inx; inx--) {
4741                 if (name[inx] == ',') {
4742                         name[inx] = '\0';
4743                         break;
4744                 }
4745                 if (name[inx] == '@') {
4746                         break;
4747                 }
4748         }
4749 
4750         skdev->pathname = kmem_zalloc(strlen(name) + 1, KM_SLEEP);
4751         (void) strlcpy(skdev->pathname, name, strlen(name) + 1);
4752 
4753         progress        |= SKD_PATHNAME_ALLOCED;
4754         skdev->flags |= SKD_PATHNAME_ALLOCED;
4755 
4756         if (pci_config_setup(dip, &skdev->pci_handle) != DDI_SUCCESS) {
4757                 cmn_err(CE_WARN, "!%s%d: pci_config_setup FAILED",
4758                     DRV_NAME, instance);
4759                 goto skd_attach_failed;
4760         }
4761 
4762         progress |= SKD_CONFIG_SPACE_SETUP;
4763 
4764         /* Save adapter path. */
4765 
4766         (void) ddi_dev_nregs(dip, &nregs);
4767 
4768         /*
4769          *      0x0   Configuration Space
4770          *      0x1   I/O Space
4771          *      0x2   s1120 register space
4772          */
4773         if (ddi_dev_regsize(dip, 1, &regsize) != DDI_SUCCESS ||
4774             ddi_regs_map_setup(dip, 1, &skdev->iobase, 0, regsize,
4775             &dev_acc_attr, &skdev->iobase_handle) != DDI_SUCCESS) {
4776                 cmn_err(CE_WARN, "!%s%d: regs_map_setup(mem) failed",
4777                     DRV_NAME, instance);
4778                 goto skd_attach_failed;
4779         }
4780         progress |= SKD_REGS_MAPPED;
4781 
4782                 skdev->iomap_iobase = skdev->iobase;
4783                 skdev->iomap_handle = skdev->iobase_handle;
4784 
4785         Dcmn_err(CE_NOTE, "%s: PCI iobase=%ph, iomap=%ph, regnum=%d, "
4786             "regsize=%ld", skdev->name, (void *)skdev->iobase,
4787             (void *)skdev->iomap_iobase, 1, regsize);
4788 
4789         if (ddi_dev_regsize(dip, 2, &regsize) != DDI_SUCCESS ||
4790             ddi_regs_map_setup(dip, 2, &skdev->dev_iobase, 0, regsize,
4791             &dev_acc_attr, &skdev->dev_handle) != DDI_SUCCESS) {
4792                 cmn_err(CE_WARN, "!%s%d: regs_map_setup(mem) failed",
4793                     DRV_NAME, instance);
4794 
4795                 goto skd_attach_failed;
4796         }
4797 
4798         skdev->dev_memsize = (int)regsize;
4799 
4800         Dcmn_err(CE_NOTE, "%s: DEV iobase=%ph regsize=%d",
4801             skdev->name, (void *)skdev->dev_iobase,
4802             skdev->dev_memsize);
4803 
4804         progress |= SKD_DEV_IOBASE_MAPPED;
4805 
4806         cmd_reg = pci_config_get16(skdev->pci_handle, PCI_CONF_COMM);
4807         cmd_reg |= (PCI_COMM_ME | PCI_COMM_INTX_DISABLE);
4808         cmd_reg &= ~PCI_COMM_PARITY_DETECT;
4809         pci_config_put16(skdev->pci_handle, PCI_CONF_COMM, cmd_reg);
4810 
4811         /* Get adapter PCI device information. */
4812         skdev->vendor_id = pci_config_get16(skdev->pci_handle, PCI_CONF_VENID);
4813         skdev->device_id = pci_config_get16(skdev->pci_handle, PCI_CONF_DEVID);
4814 
4815         Dcmn_err(CE_NOTE, "%s: %x-%x card detected",
4816             skdev->name, skdev->vendor_id, skdev->device_id);
4817 
4818         skd_get_properties(dip, skdev);
4819 
4820         (void) skd_init(skdev);
4821 
4822         if (skd_construct(skdev, instance)) {
4823                 cmn_err(CE_WARN, "!%s: construct FAILED", skdev->name);
4824                 goto skd_attach_failed;
4825         }
4826 
4827         progress |= SKD_PROBED;
4828         progress |= SKD_CONSTRUCTED;
4829 
4830         SIMPLEQ_INIT(&skdev->waitqueue);
4831 
4832         /*
4833          * Setup interrupt handler
4834          */
4835         if (skd_setup_interrupts(skdev) != DDI_SUCCESS) {
4836                 cmn_err(CE_WARN, "!%s: Unable to add interrupt",
4837                     skdev->name);
4838                 goto skd_attach_failed;
4839         }
4840 
4841         progress |= SKD_INTR_ADDED;
4842 
4843         ADAPTER_STATE_LOCK(skdev);
4844         skdev->flags |= SKD_ATTACHED;
4845         ADAPTER_STATE_UNLOCK(skdev);
4846 
4847         skdev->d_blkshift = 9;
4848         progress |= SKD_ATTACHED;
4849 
4850 
4851         skd_start_device(skdev);
4852 
4853         ADAPTER_STATE_LOCK(skdev);
4854         skdev->progress = progress;
4855         ADAPTER_STATE_UNLOCK(skdev);
4856 
4857         /*
4858          * Give the board a chance to
4859          * complete its initialization.
4860          */
4861         if (skdev->gendisk_on != 1)
4862                 (void) skd_wait_for_s1120(skdev);
4863 
4864         if (skdev->gendisk_on != 1) {
4865                 cmn_err(CE_WARN, "!%s: s1120 failed to come ONLINE",
4866                     skdev->name);
4867                 goto skd_attach_failed;
4868         }
4869 
4870         ddi_report_dev(dip);
4871 
4872         skd_send_internal_skspcl(skdev, &skdev->internal_skspcl, INQUIRY);
4873 
4874         skdev->disks_initialized++;
4875 
4876         (void) strcpy(fw_version, "???");
4877         (void) skd_pci_info(skdev, pci_str, sizeof (pci_str));
4878         Dcmn_err(CE_NOTE, " sTec S1120 Driver(%s) version %s-b%s",
4879             DRV_NAME, DRV_VERSION, DRV_BUILD_ID);
4880 
4881         Dcmn_err(CE_NOTE, " sTec S1120 %04x:%04x %s 64 bit",
4882             skdev->vendor_id, skdev->device_id, pci_str);
4883 
4884         Dcmn_err(CE_NOTE, " sTec S1120 %s\n", skdev->pathname);
4885 
4886         if (*skdev->inq_serial_num)
4887                 Dcmn_err(CE_NOTE, " sTec S1120 serial#=%s",
4888                     skdev->inq_serial_num);
4889 
4890         if (*skdev->inq_product_id &&
4891             *skdev->inq_product_rev)
4892                 Dcmn_err(CE_NOTE, " sTec S1120 prod ID=%s prod rev=%s",
4893                     skdev->inq_product_id, skdev->inq_product_rev);
4894 
4895         Dcmn_err(CE_NOTE, "%s: intr-type-cap:        %d",
4896             skdev->name, skdev->irq_type);
4897         Dcmn_err(CE_NOTE, "%s: max-scsi-reqs:        %d",
4898             skdev->name, skd_max_queue_depth);
4899         Dcmn_err(CE_NOTE, "%s: max-sgs-per-req:      %d",
4900             skdev->name, skd_sgs_per_request);
4901         Dcmn_err(CE_NOTE, "%s: max-scsi-req-per-msg: %d",
4902             skdev->name, skd_max_req_per_msg);
4903 
4904         if (skd_bd_attach(dip, skdev) == DDI_FAILURE)
4905                 goto skd_attach_failed;
4906 
4907         skd_update_props(skdev, dip);
4908 
4909         /* Enable timer */
4910         skd_start_timer(skdev);
4911 
4912         ADAPTER_STATE_LOCK(skdev);
4913         skdev->progress = progress;
4914         ADAPTER_STATE_UNLOCK(skdev);
4915 
4916         skdev->attached = 1;
4917         return (DDI_SUCCESS);
4918 
4919 skd_attach_failed:
4920         skd_dealloc_resources(dip, skdev, progress, instance);
4921 
4922         if ((skdev->flags & SKD_MUTEX_DESTROYED) == 0) {
4923                 skd_destroy_mutex(skdev);
4924         }
4925 
4926         ddi_soft_state_free(skd_state, instance);
4927 
4928         cmn_err(CE_WARN, "!skd_attach FAILED: progress=%x", progress);
4929         return (DDI_FAILURE);
4930 }
4931 
4932 /*
4933  *
4934  * Name:        skd_halt
4935  *
4936  * Inputs:      skdev           - device state structure.
4937  *
4938  * Returns:     Nothing.
4939  *
4940  */
4941 static void
4942 skd_halt(skd_device_t *skdev)
4943 {
4944         Dcmn_err(CE_NOTE, "%s: halt/suspend ......", skdev->name);
4945 }
4946 
4947 /*
4948  *
4949  * Name:        skd_detach, detaches driver from the system.
4950  *
4951  * Inputs:      dip             - device info structure.
4952  *
4953  * Returns:     DDI_SUCCESS on successful detach otherwise DDI_FAILURE.
4954  *
4955  */
4956 static int
4957 skd_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
4958 {
4959         skd_buf_private_t *pbuf;
4960         skd_device_t    *skdev;
4961         int             instance;
4962         timeout_id_t    timer_id = NULL;
4963         int             rv1 = DDI_SUCCESS;
4964         struct skd_special_context *skspcl;
4965 
4966         instance = ddi_get_instance(dip);
4967 
4968         skdev = ddi_get_soft_state(skd_state, instance);
4969         if (skdev == NULL) {
4970                 cmn_err(CE_WARN, "!detach failed: NULL skd state");
4971 
4972                 return (DDI_FAILURE);
4973         }
4974 
4975         Dcmn_err(CE_CONT, "skd_detach(%d): entered", instance);
4976 
4977         switch (cmd) {
4978         case DDI_DETACH:
4979                 /* Test for packet cache inuse. */
4980                 ADAPTER_STATE_LOCK(skdev);
4981 
4982                 /* Stop command/event processing. */
4983                 skdev->flags |= (SKD_SUSPENDED | SKD_CMD_ABORT_TMO);
4984 
4985                 /* Disable driver timer if no adapters. */
4986                 if (skdev->skd_timer_timeout_id != 0) {
4987                         timer_id = skdev->skd_timer_timeout_id;
4988                         skdev->skd_timer_timeout_id = 0;
4989                 }
4990                 ADAPTER_STATE_UNLOCK(skdev);
4991 
4992                 if (timer_id != 0) {
4993                         (void) untimeout(timer_id);
4994                 }
4995 
4996 #ifdef  SKD_PM
4997                 if (skdev->power_level != LOW_POWER_LEVEL) {
4998                         skd_halt(skdev);
4999                         skdev->power_level = LOW_POWER_LEVEL;
5000                 }
5001 #endif
5002                 skspcl = &skdev->internal_skspcl;
5003                 skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
5004 
5005                 skd_stop_device(skdev);
5006 
5007                 /*
5008                  * Clear request queue.
5009                  */
5010                 while (!SIMPLEQ_EMPTY(&skdev->waitqueue)) {
5011                         pbuf = skd_get_queued_pbuf(skdev);
5012                         skd_end_request_abnormal(skdev, pbuf, ECANCELED,
5013                             SKD_IODONE_WNIOC);
5014                         Dcmn_err(CE_NOTE,
5015                             "detach: cancelled pbuf %p %ld <%s> %lld\n",
5016                             (void *)pbuf, pbuf->x_xfer->x_nblks,
5017                             (pbuf->dir & B_READ) ? "Read" : "Write",
5018                             pbuf->x_xfer->x_blkno);
5019                 }
5020 
5021                 skd_bd_detach(skdev);
5022 
5023                 skd_dealloc_resources(dip, skdev, skdev->progress, instance);
5024 
5025                 if ((skdev->flags & SKD_MUTEX_DESTROYED) == 0) {
5026                         skd_destroy_mutex(skdev);
5027                 }
5028 
5029                 ddi_soft_state_free(skd_state, instance);
5030 
5031                 skd_exit();
5032 
5033                 break;
5034 
5035         case DDI_SUSPEND:
5036                 /* Block timer. */
5037 
5038                 ADAPTER_STATE_LOCK(skdev);
5039                 skdev->flags |= SKD_SUSPENDED;
5040 
5041                 /* Disable driver timer if last adapter. */
5042                 if (skdev->skd_timer_timeout_id != 0) {
5043                         timer_id = skdev->skd_timer_timeout_id;
5044                         skdev->skd_timer_timeout_id = 0;
5045                 }
5046                 ADAPTER_STATE_UNLOCK(skdev);
5047 
5048                 if (timer_id != 0) {
5049                         (void) untimeout(timer_id);
5050                 }
5051 
5052                 ddi_prop_remove_all(dip);
5053 
5054                 skd_halt(skdev);
5055 
5056                 break;
5057         default:
5058                 rv1 = DDI_FAILURE;
5059                 break;
5060         }
5061 
5062         if (rv1 != DDI_SUCCESS) {
5063                 cmn_err(CE_WARN, "!skd_detach, failed, rv1=%x", rv1);
5064         } else {
5065                 Dcmn_err(CE_CONT, "skd_detach: exiting");
5066         }
5067 
5068         if (rv1 != DDI_SUCCESS)
5069                 return (DDI_FAILURE);
5070 
5071         return (rv1);
5072 }
5073 
5074 /*
5075  *
5076  * Name:        skd_devid_init, calls skd_setup_devid to setup
5077  *              the device's devid structure.
5078  *
5079  * Inputs:      arg             - device state structure.
5080  *              dip             - dev_info structure.
5081  *              devid           - devid structure.
5082  *
5083  * Returns:     Nothing.
5084  *
5085  */
5086 /* ARGSUSED */  /* Upstream common source with other platforms. */
5087 static int
5088 skd_devid_init(void *arg, dev_info_t *dip, ddi_devid_t *devid)
5089 {
5090         skd_device_t    *skdev = arg;
5091 
5092         (void) skd_setup_devid(skdev, devid);
5093 
5094         return (0);
5095 }
5096 
5097 /*
5098  *
5099  * Name:        skd_bd_driveinfo, retrieves device's info.
5100  *
5101  * Inputs:      drive           - drive data structure.
5102  *              arg             - device state structure.
5103  *
5104  * Returns:     Nothing.
5105  *
5106  */
5107 static void
5108 skd_bd_driveinfo(void *arg, bd_drive_t *drive)
5109 {
5110         skd_device_t    *skdev = arg;
5111 
5112         drive->d_qsize               = (skdev->queue_depth_limit * 4) / 5;
5113         drive->d_maxxfer     = SKD_DMA_MAXXFER;
5114         drive->d_removable   = B_FALSE;
5115         drive->d_hotpluggable        = B_FALSE;
5116         drive->d_target              = 0;
5117         drive->d_lun         = 0;
5118 }
5119 
5120 /*
5121  *
5122  * Name:        skd_bd_mediainfo, retrieves device media info.
5123  *
5124  * Inputs:      arg             - device state structure.
5125  *              media           - container for media info.
5126  *
5127  * Returns:     Zero.
5128  *
5129  */
5130 static int
5131 skd_bd_mediainfo(void *arg, bd_media_t *media)
5132 {
5133         skd_device_t    *skdev = arg;
5134 
5135         media->m_nblks    = skdev->Nblocks;
5136         media->m_blksize  = 512;
5137         media->m_pblksize = 4096;
5138         media->m_readonly = B_FALSE;
5139         media->m_solidstate = B_TRUE;
5140 
5141         return (0);
5142 }
5143 
5144 /*
5145  *
5146  * Name:        skd_rw, performs R/W requests for blkdev driver.
5147  *
5148  * Inputs:      skdev           - device state structure.
5149  *              xfer            - tranfer structure.
5150  *              dir             - I/O direction.
5151  *
5152  * Returns:     EAGAIN if device is not online.  EIO if blkdev wants us to
5153  *              be a dump device (for now).
5154  *              Value returned by skd_start().
5155  *
5156  */
5157 static int
5158 skd_rw(skd_device_t *skdev, bd_xfer_t *xfer, int dir)
5159 {
5160         skd_buf_private_t       *pbuf;
5161 
5162         /*
5163          * The x_flags structure element is not defined in Oracle Solaris
5164          */
5165         /* We'll need to fix this in order to support dump on this device. */
5166         if (xfer->x_flags & BD_XFER_POLL)
5167                 return (EIO);
5168 
5169         if (skdev->state != SKD_DRVR_STATE_ONLINE) {
5170                 Dcmn_err(CE_NOTE, "Device - not ONLINE");
5171 
5172                 skd_request_fn_not_online(skdev);
5173 
5174                 return (EAGAIN);
5175         }
5176 
5177         pbuf = kmem_zalloc(sizeof (skd_buf_private_t), KM_NOSLEEP);
5178         if (pbuf == NULL)
5179                 return (ENOMEM);
5180 
5181         WAITQ_LOCK(skdev);
5182         pbuf->dir = dir;
5183         pbuf->x_xfer = xfer;
5184 
5185         skd_queue(skdev, pbuf);
5186         skdev->ios_queued++;
5187         WAITQ_UNLOCK(skdev);
5188 
5189         skd_start(skdev);
5190 
5191         return (0);
5192 }
5193 
5194 /*
5195  *
5196  * Name:        skd_bd_read, performs blkdev read requests.
5197  *
5198  * Inputs:      arg             - device state structure.
5199  *              xfer            - tranfer request structure.
5200  *
5201  * Returns:     Value return by skd_rw().
5202  *
5203  */
5204 static int
5205 skd_bd_read(void *arg, bd_xfer_t *xfer)
5206 {
5207         return (skd_rw(arg, xfer, B_READ));
5208 }
5209 
5210 /*
5211  *
5212  * Name:        skd_bd_write, performs blkdev write requests.
5213  *
5214  * Inputs:      arg             - device state structure.
5215  *              xfer            - tranfer request structure.
5216  *
5217  * Returns:     Value return by skd_rw().
5218  *
5219  */
5220 static int
5221 skd_bd_write(void *arg, bd_xfer_t *xfer)
5222 {
5223         return (skd_rw(arg, xfer, B_WRITE));
5224 }