1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 /*
  27  * Implementation of ri_init routine for obtaining mapping
  28  * of system board attachment points to physical devices and to
  29  * the Reconfiguration Coordination Manager (RCM) client usage
  30  * of these devices.
  31  */
  32 #include <string.h>
  33 #include <stdlib.h>
  34 #include <unistd.h>
  35 #include <kstat.h>
  36 #include <sys/param.h>
  37 #include <sys/sbd_ioctl.h>
  38 #include "rsrc_info_impl.h"
  39 
  40 /*
  41  * Occupant types exported by cfgadm sbd plugin via
  42  * config_admin(3CFGADM).
  43  */
  44 #define SBD_CM_CPU      "cpu"
  45 #define SBD_CM_MEM      "memory"
  46 #define SBD_CM_IO       "io"
  47 
  48 /*
  49  * RCM abstract resource names.
  50  */
  51 #define RCM_MEM_ALL     "SUNW_memory"
  52 #define RCM_CPU_ALL     "SUNW_cpu"
  53 #define RCM_CPU         RCM_CPU_ALL"/cpu"
  54 
  55 #define KBYTE           1024
  56 #define MBYTE           1048576
  57 #define USAGE_ALLOC_SIZE        128
  58 
  59 /*
  60  * define to allow io_cm_info to return NODE is NULL to ri_init,
  61  * in order to skip over nodes w/unattached drivers
  62  */
  63 #define RI_NODE_NIL     1
  64 
  65 /*
  66  * This code is CMP aware as it parses the
  67  * cfgadm info field for individual cpuids.
  68  */
  69 #define CPUID_SEP       ","
  70 #define CPU_INFO_FMT    "cpuid=%s speed=%d ecache=%d"
  71 
  72 typedef struct {
  73         cfga_list_data_t *cfga_list_data;
  74         int             nlist;
  75 } apd_t;
  76 
  77 typedef struct {
  78         long            pagesize;
  79         long            syspages;
  80         long            sysmb;
  81 } mem_stat_t;
  82 
  83 #define ms_syspages     m_stat.syspages
  84 #define ms_pagesize     m_stat.pagesize
  85 #define ms_sysmb        m_stat.sysmb
  86 
  87 typedef int32_t         cpuid_t;
  88 
  89 typedef struct {
  90         int     cpuid_max;      /* maximum cpuid value */
  91         int     ecache_curr;    /* cached during tree walk */
  92         int     *ecache_sizes;  /* indexed by cpuid */
  93 } ecache_info_t;
  94 
  95 typedef struct {
  96         rcm_handle_t    *hdl;
  97         rcm_info_t      *offline_query_info;
  98         char            **rlist;
  99         int             nrlist;
 100         cpuid_t         *cpus;
 101         int             ncpus;
 102         int             ndevs;
 103         uint_t          query_pages;
 104         mem_stat_t      m_stat;
 105         ecache_info_t   ecache_info;
 106 } rcmd_t;
 107 
 108 typedef struct {
 109         const char      *rsrc;
 110         const char      *info;
 111 } usage_t;
 112 
 113 /* Lookup table entry for matching IO devices to RCM resource usage */
 114 typedef struct {
 115         int             index;          /* index into the table array */
 116         di_node_t       node;           /* associated devinfo node */
 117         char            *name;          /* device full path name */
 118         int             n_usage;
 119         usage_t         *usage;
 120 } lookup_entry_t;
 121 
 122 typedef struct {
 123         int             n_entries;
 124         int             n_slots;
 125         lookup_entry_t  *table;
 126 } lookup_table_t;
 127 
 128 typedef struct {
 129         int                     err;
 130         di_node_t               node;
 131         char                    *pathbuf;
 132         lookup_table_t          *table;
 133         di_devlink_handle_t     linkhd;
 134 } devinfo_arg_t;
 135 
 136 static int dyn_ap_ids(char *, cfga_list_data_t **, int *);
 137 static int rcm_init(rcmd_t *, apd_t [], int, int);
 138 static void rcm_fini(rcmd_t *);
 139 static int rcm_query_init(rcmd_t *, apd_t [], int);
 140 static int cap_request(ri_hdl_t *, rcmd_t *);
 141 static int syscpus(cpuid_t **, int *);
 142 static int cpu_cap_request(ri_hdl_t *, rcmd_t *);
 143 static int mem_cap_request(ri_hdl_t *, rcmd_t *);
 144 static int (*cm_rcm_qpass_func(cfga_type_t))(cfga_list_data_t *, rcmd_t *);
 145 static int cpu_rcm_qpass(cfga_list_data_t *, rcmd_t *);
 146 static int mem_rcm_qpass(cfga_list_data_t *, rcmd_t *);
 147 static int io_rcm_qpass(cfga_list_data_t *, rcmd_t *);
 148 static int (*cm_info_func(cfga_type_t))(ri_ap_t *, cfga_list_data_t *, int,
 149     rcmd_t *);
 150 static int cpu_cm_info(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
 151 static int i_cpu_cm_info(processorid_t, int, int, ri_ap_t *, rcmd_t *);
 152 static int mem_cm_info(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
 153 static int io_cm_info(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
 154 static int ident_leaf(di_node_t);
 155 static int mk_drv_inst(di_node_t, char [], char *);
 156 static int devinfo_node_walk(di_node_t, void *);
 157 static int devinfo_minor_walk(di_node_t, di_minor_t, void *);
 158 static int devinfo_devlink_walk(di_devlink_t, void *);
 159 static int add_rcm_clients(ri_client_t **, rcmd_t *, rcm_info_t *, int, int *);
 160 static int rcm_ignore(char *, char *);
 161 static int add_query_state(rcmd_t *, ri_client_t *, const char *, const char *);
 162 static int state2query(int);
 163 static void dev_list_append(ri_dev_t **, ri_dev_t *);
 164 static void dev_list_cpu_insert(ri_dev_t **, ri_dev_t *, processorid_t);
 165 static rcm_info_tuple_t *tuple_lookup(rcmd_t *, const char *, const char *);
 166 static ri_ap_t *ri_ap_alloc(char *, ri_hdl_t *);
 167 static ri_dev_t *ri_dev_alloc(void);
 168 static ri_dev_t *io_dev_alloc(char *);
 169 static ri_client_t *ri_client_alloc(char *, char *);
 170 static void apd_tbl_free(apd_t [], int);
 171 static char *pstate2str(int);
 172 static int ecache_info_init(ecache_info_t *);
 173 static int find_cpu_nodes(di_node_t, void *);
 174 static int prop_lookup_int(di_node_t, di_prom_handle_t, char *, int **);
 175 static int add_lookup_entry(lookup_table_t *, const char *, di_node_t);
 176 static int table_compare_names(const void *, const void *);
 177 static int table_compare_indices(const void *, const void *);
 178 static lookup_entry_t *lookup(lookup_table_t *table, const char *);
 179 static int add_usage(lookup_entry_t *, const char *, rcm_info_tuple_t *);
 180 static void empty_table(lookup_table_t *);
 181 
 182 #ifdef DEBUG
 183 static void             dump_apd_tbl(FILE *, apd_t *, int);
 184 #endif /* DEBUG */
 185 
 186 static struct {
 187         char    *type;
 188         int     (*cm_info)(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
 189         int     (*cm_rcm_qpass)(cfga_list_data_t *, rcmd_t *);
 190 } cm_ctl[] = {
 191         {SBD_CM_CPU,    cpu_cm_info,    cpu_rcm_qpass},
 192         {SBD_CM_MEM,    mem_cm_info,    mem_rcm_qpass},
 193         {SBD_CM_IO,     io_cm_info,     io_rcm_qpass}
 194 };
 195 
 196 /*
 197  * Table of known info string prefixes for RCM modules that do not
 198  * represent actual resource usage, but instead provide name translations
 199  * or sequencing within the RCM namespace. Since RCM provides no way to
 200  * filter these out, we must maintain this hack.
 201  */
 202 static char *rcm_info_filter[] = {
 203         "Network interface",            /* Network naming module */
 204         NULL
 205 };
 206 
 207 
 208 /*
 209  * Allocate snapshot handle.
 210  */
 211 int
 212 ri_init(int n_apids, char **ap_ids, int flags, ri_hdl_t **hdlp)
 213 {
 214         int                     i, j;
 215         ri_hdl_t                *ri_hdl;
 216         ri_ap_t                 *ap_hdl;
 217         rcmd_t                  *rcm = NULL;
 218         cfga_list_data_t        *cfga_ldata;
 219         apd_t                   *apd, *apd_tbl = NULL;
 220         int                     (*cm_info)(ri_ap_t *, cfga_list_data_t *,
 221                                     int, rcmd_t *);
 222         int                     rv = RI_SUCCESS;
 223         int                     cm_info_rv;
 224 
 225         if (n_apids <= 0 || ap_ids == NULL || hdlp == NULL)
 226                 return (RI_INVAL);
 227 
 228         if (flags & ~RI_REQ_MASK)
 229                 return (RI_NOTSUP);
 230 
 231         *hdlp = NULL;
 232         if ((ri_hdl = calloc(1, sizeof (*ri_hdl))) == NULL ||
 233             (rcm = calloc(1, sizeof (*rcm))) == NULL ||
 234             (apd_tbl = calloc(n_apids, sizeof (*apd_tbl))) == NULL) {
 235                 dprintf((stderr, "calloc: %s\n", strerror(errno)));
 236                 rv = RI_FAILURE;
 237                 goto out;
 238         }
 239 
 240         /*
 241          * Create mapping of boards to components.
 242          */
 243         for (i = 0, apd = apd_tbl; i < n_apids; i++, apd++) {
 244                 if (dyn_ap_ids(ap_ids[i], &apd->cfga_list_data,
 245                     &apd->nlist) == -1) {
 246                         rv = RI_INVAL;
 247                         goto out;
 248                 }
 249         }
 250 #ifdef DEBUG
 251         dump_apd_tbl(stderr, apd_tbl, n_apids);
 252 #endif /* DEBUG */
 253 
 254         if (rcm_init(rcm, apd_tbl, n_apids, flags) != 0) {
 255                 rv = RI_FAILURE;
 256                 goto out;
 257         }
 258 
 259         /*
 260          * Best effort attempt to read cpu ecache sizes from
 261          * OBP/Solaris device trees. These are later looked up
 262          * in i_cpu_cm_info().
 263          */
 264         (void) ecache_info_init(&rcm->ecache_info);
 265 
 266         for (i = 0, apd = apd_tbl; i < n_apids; i++, apd++) {
 267                 if ((ap_hdl = ri_ap_alloc(ap_ids[i], ri_hdl)) == NULL) {
 268                         rv = RI_FAILURE;
 269                         goto out;
 270                 }
 271 
 272                 /*
 273                  * Add component info based on occupant type. Note all
 274                  * passes through the apd table skip over the first
 275                  * cfgadm_list_data entry, which is the static system board
 276                  * attachment point.
 277                  */
 278                 for (j = 1, cfga_ldata = &apd->cfga_list_data[1];
 279                     j < apd->nlist; j++, cfga_ldata++) {
 280                         if (cfga_ldata->ap_o_state != CFGA_STAT_CONFIGURED) {
 281                                 continue;
 282                         }
 283 
 284                         if ((cm_info =
 285                             cm_info_func(cfga_ldata->ap_type)) != NULL) {
 286                                 cm_info_rv =
 287                                     (*cm_info)(ap_hdl, cfga_ldata, flags, rcm);
 288                                 if (cm_info_rv != 0) {
 289                                         /*
 290                                          * If we cannot obtain info for the ap,
 291                                          * skip it and do not fail the entire
 292                                          * operation.  This case occurs when the
 293                                          * driver for a device is not attached:
 294                                          * di_init() returns failed back to
 295                                          * io_cm_info().
 296                                          */
 297                                         if (cm_info_rv == RI_NODE_NIL)
 298                                                 continue;
 299                                         else {
 300                                                 rv = RI_FAILURE;
 301                                                 goto out;
 302                                         }
 303                                 }
 304                         }
 305                 }
 306         }
 307 
 308         if ((flags & RI_INCLUDE_QUERY) && cap_request(ri_hdl, rcm) != 0)
 309                 rv = RI_FAILURE;
 310 
 311 out:
 312         if (apd_tbl != NULL)
 313                 apd_tbl_free(apd_tbl, n_apids);
 314         if (rcm != NULL)
 315                 rcm_fini(rcm);
 316 
 317         if (rv == RI_SUCCESS)
 318                 *hdlp = ri_hdl;
 319         else
 320                 ri_fini(ri_hdl);
 321 
 322         return (rv);
 323 }
 324 
 325 /*
 326  * Map static board attachment point to dynamic attachment points (components).
 327  */
 328 static int
 329 dyn_ap_ids(char *ap_id, cfga_list_data_t **ap_id_list, int *nlist)
 330 {
 331         cfga_err_t      cfga_err;
 332         char            *errstr;
 333         char            *opts = "parsable";
 334         char            *listops = "class=sbd";
 335 
 336         cfga_err = config_list_ext(1, &ap_id, ap_id_list, nlist,
 337             opts, listops, &errstr, CFGA_FLAG_LIST_ALL);
 338         if (cfga_err != CFGA_OK) {
 339                 dprintf((stderr, "config_list_ext: %s\n",
 340                     config_strerror(cfga_err)));
 341                 return (-1);
 342         }
 343 
 344         return (0);
 345 }
 346 
 347 /*
 348  * Initialize rcm handle, memory stats. Cache query result if necessary.
 349  */
 350 static int
 351 rcm_init(rcmd_t *rcm, apd_t apd_tbl[], int napds, int flags)
 352 {
 353         longlong_t      ii;
 354         int             rv = 0;
 355 
 356         rcm->offline_query_info = NULL;
 357         rcm->rlist = NULL;
 358         rcm->cpus = NULL;
 359 
 360         if (rcm_alloc_handle(NULL, RCM_NOPID, NULL, &rcm->hdl) != RCM_SUCCESS) {
 361                 dprintf((stderr, "rcm_alloc_handle (errno=%d)\n", errno));
 362                 return (-1);
 363         }
 364 
 365         if ((rcm->ms_pagesize = sysconf(_SC_PAGE_SIZE)) == -1 ||
 366             (rcm->ms_syspages = sysconf(_SC_PHYS_PAGES)) == -1) {
 367                 dprintf((stderr, "sysconf: %s\n", strerror(errno)));
 368                 return (-1);
 369         }
 370         ii = (longlong_t)rcm->ms_pagesize * rcm->ms_syspages;
 371         rcm->ms_sysmb = (int)((ii+MBYTE-1) / MBYTE);
 372 
 373         if (flags & RI_INCLUDE_QUERY)
 374                 rv = rcm_query_init(rcm, apd_tbl, napds);
 375 
 376         return (rv);
 377 }
 378 
 379 static void
 380 rcm_fini(rcmd_t *rcm)
 381 {
 382         char    **cpp;
 383 
 384         assert(rcm != NULL);
 385 
 386         if (rcm->offline_query_info != NULL)
 387                 rcm_free_info(rcm->offline_query_info);
 388         if (rcm->hdl != NULL)
 389                 rcm_free_handle(rcm->hdl);
 390 
 391         if (rcm->rlist != NULL) {
 392                 for (cpp = rcm->rlist; *cpp != NULL; cpp++)
 393                         s_free(*cpp);
 394                 free(rcm->rlist);
 395         }
 396 
 397         s_free(rcm->cpus);
 398         free(rcm);
 399 }
 400 
 401 #define NODENAME_CMP            "cmp"
 402 #define NODENAME_SSM            "ssm"
 403 #define PROP_CPUID              "cpuid"
 404 #define PROP_DEVICE_TYPE        "device-type"
 405 #define PROP_ECACHE_SIZE        "ecache-size"
 406 #define PROP_L2_CACHE_SIZE      "l2-cache-size"
 407 #define PROP_L3_CACHE_SIZE      "l3-cache-size"
 408 
 409 typedef struct {
 410         di_node_t               root;
 411         di_prom_handle_t        ph;
 412         ecache_info_t           *ecache_info;
 413 } di_arg_t;
 414 
 415 /*
 416  * The ecache sizes for individual cpus are read from the
 417  * OBP/Solaris device trees. This info cannot be derived
 418  * from the cfgadm_sbd cpu attachment point ecache info,
 419  * which may be a sum of multiple cores for CMP.
 420  */
 421 static int
 422 ecache_info_init(ecache_info_t *ec)
 423 {
 424         di_arg_t        di_arg;
 425         di_prom_handle_t ph = DI_PROM_HANDLE_NIL;
 426         di_node_t       root = DI_NODE_NIL;
 427         int             cpuid_max, rv = 0;
 428 
 429         assert(ec != NULL && ec->cpuid_max == 0 && ec->ecache_sizes == NULL);
 430 
 431         if ((cpuid_max = sysconf(_SC_CPUID_MAX)) == -1) {
 432                 dprintf((stderr, "sysconf fail: %s\n", strerror(errno)));
 433                 rv = -1;
 434                 goto done;
 435         }
 436 
 437         if ((root = di_init("/", DINFOCPYALL)) == DI_NODE_NIL) {
 438                 dprintf((stderr, "di_init fail: %s\n", strerror(errno)));
 439                 rv = -1;
 440                 goto done;
 441         }
 442 
 443         if ((ph = di_prom_init()) == DI_PROM_HANDLE_NIL) {
 444                 dprintf((stderr, "di_prom_init fail: %s\n", strerror(errno)));
 445                 rv = -1;
 446                 goto done;
 447         }
 448 
 449         if ((ec->ecache_sizes = calloc(cpuid_max + 1, sizeof (int))) == NULL) {
 450                 dprintf((stderr, "calloc fail: %s\n", strerror(errno)));
 451                 rv = -1;
 452                 goto done;
 453         }
 454         ec->cpuid_max = cpuid_max;
 455 
 456         dprintf((stderr, "cpuid_max is set to %d\n", ec->cpuid_max));
 457 
 458         di_arg.ph = ph;
 459         di_arg.root = root;
 460         di_arg.ecache_info = ec;
 461 
 462         if (di_walk_node(root, DI_WALK_CLDFIRST, (void *)&di_arg,
 463             find_cpu_nodes) != 0) {
 464                 dprintf((stderr, "di_walk_node fail: %s\n", strerror(errno)));
 465                 rv = -1;
 466         }
 467 
 468 done:
 469         if (root != DI_NODE_NIL)
 470                 di_fini(root);
 471         if (ph != DI_PROM_HANDLE_NIL)
 472                 di_prom_fini(ph);
 473 
 474         return (rv);
 475 }
 476 
 477 /*
 478  * Libdevinfo node walk callback for reading ecache size
 479  * properties for cpu device nodes. Subtrees not containing
 480  * cpu nodes are filtered out.
 481  */
 482 static int
 483 find_cpu_nodes(di_node_t node, void *arg)
 484 {
 485         char                    *name;
 486         int                     *cpuid, *ecache;
 487         di_arg_t                *di_arg = (di_arg_t *)arg;
 488         ecache_info_t           *ec = di_arg->ecache_info;
 489         di_prom_handle_t        ph = di_arg->ph;
 490         int                     walk_child = 0;
 491 
 492         if (node == DI_NODE_NIL) {
 493                 return (DI_WALK_TERMINATE);
 494         }
 495 
 496         if (node == di_arg->root) {
 497                 return (DI_WALK_CONTINUE);
 498         }
 499 
 500         if (di_nodeid(node) == DI_PSEUDO_NODEID) {
 501                 return (DI_WALK_PRUNECHILD);
 502         }
 503 
 504         name = di_node_name(node);
 505         if (name != NULL) {
 506                 /*
 507                  * CMP nodes will be the parent of cpu nodes. On some platforms,
 508                  * cpu nodes will be under the ssm node. In either case,
 509                  * continue searching this subtree.
 510                  */
 511                 if (strncmp(name, NODENAME_SSM, strlen(NODENAME_SSM)) == 0 ||
 512                     strncmp(name, NODENAME_CMP, strlen(NODENAME_CMP)) == 0) {
 513                         return (DI_WALK_CONTINUE);
 514                 }
 515         }
 516 
 517         dprintf((stderr, "find_cpu_nodes: node=%p, name=%s, binding_name=%s\n",
 518             node, di_node_name(node), di_binding_name(node)));
 519 
 520         /*
 521          * Ecache size property name differs with processor implementation.
 522          * Panther has both L2 and L3, so check for L3 first to differentiate
 523          * from Jaguar, which has only L2.
 524          */
 525         if (prop_lookup_int(node, ph, PROP_ECACHE_SIZE, &ecache) == 0 ||
 526             prop_lookup_int(node, ph, PROP_L3_CACHE_SIZE, &ecache) == 0 ||
 527             prop_lookup_int(node, ph, PROP_L2_CACHE_SIZE, &ecache) == 0) {
 528                 /*
 529                  * On some platforms the cache property is in the core
 530                  * node while the cpuid is in the child cpu node.  It may
 531                  * be needed while processing this node or a child node.
 532                  */
 533                 ec->ecache_curr = *ecache;
 534                 walk_child = 1;
 535         }
 536 
 537         if (prop_lookup_int(node, ph, PROP_CPUID, &cpuid) == 0) {
 538 
 539                 assert(ec != NULL && ec->ecache_sizes != NULL &&
 540                     *cpuid <= ec->cpuid_max);
 541 
 542                 if (ec->ecache_curr != 0) {
 543                         ec->ecache_sizes[*cpuid] = ec->ecache_curr;
 544 
 545                 }
 546         }
 547 
 548         return (walk_child ? DI_WALK_CONTINUE : DI_WALK_PRUNECHILD);
 549 }
 550 
 551 /*
 552  * Given a di_node_t, call the appropriate int property lookup routine.
 553  * Note: This lookup fails if the int property has multiple value entries.
 554  */
 555 static int
 556 prop_lookup_int(di_node_t node, di_prom_handle_t ph, char *propname, int **ival)
 557 {
 558         int rv;
 559 
 560         rv = (di_nodeid(node) == DI_PROM_NODEID) ?
 561             di_prom_prop_lookup_ints(ph, node, propname, ival) :
 562             di_prop_lookup_ints(DDI_DEV_T_ANY, node, propname, ival);
 563 
 564         return (rv == 1 ? 0 : -1);
 565 }
 566 
 567 /*
 568  * For offline queries, RCM must be given a list of all resources
 569  * so modules can have access to the full scope of the operation.
 570  * The rcm_get_info calls are made individually in order to map the
 571  * returned rcm_info_t's to physical devices. The rcm_request_offline
 572  * result is cached so the query state can be looked up as we process
 573  * the rcm_get_info calls. This routine also tallies up the amount of
 574  * memory going away and creates a list of cpu ids to be used
 575  * later for rcm_request_capacity_change.
 576  */
 577 static int
 578 rcm_query_init(rcmd_t *rcm, apd_t apd_tbl[], int napds)
 579 {
 580         apd_t                   *apd;
 581         int                     i, j;
 582         cfga_list_data_t        *cfga_ldata;
 583         int                     (*cm_rcm_qpass)(cfga_list_data_t *, rcmd_t *);
 584 #ifdef DEBUG
 585         char                    **cpp;
 586 #endif /* DEBUG */
 587 
 588         /*
 589          * Initial pass to size cpu and resource name arrays needed to
 590          * interface with RCM. Attachment point ids for CMP can represent
 591          * multiple cpus (and resource names). Instead of parsing the
 592          * cfgadm info field here, use the worse case that all component
 593          * attachment points are CMP.
 594          */
 595         rcm->ndevs = 0;
 596         for (i = 0, apd = apd_tbl; i < napds; i++, apd++) {
 597                 for (j = 1, cfga_ldata = &apd->cfga_list_data[1];
 598                     j < apd->nlist; j++, cfga_ldata++) {
 599                         if (cfga_ldata->ap_o_state != CFGA_STAT_CONFIGURED) {
 600                                 continue;
 601                         }
 602                         rcm->ndevs += SBD_MAX_CORES_PER_CMP;
 603                 }
 604         }
 605 
 606         /* account for trailing NULL in rlist */
 607         if (rcm->ndevs > 0 &&
 608             ((rcm->cpus = calloc(rcm->ndevs, sizeof (cpuid_t))) == NULL ||
 609             (rcm->rlist = calloc(rcm->ndevs + 1, sizeof (char *))) == NULL)) {
 610                 dprintf((stderr, "calloc: %s\n", strerror(errno)));
 611                 return (-1);
 612         }
 613 
 614         /*
 615          * Second pass to fill in the RCM resource and cpu lists.
 616          */
 617         for (i = 0, apd = apd_tbl; i < napds; i++, apd++) {
 618                 for (j = 1, cfga_ldata = &apd->cfga_list_data[1];
 619                     j < apd->nlist; j++, cfga_ldata++) {
 620                         if (cfga_ldata->ap_o_state != CFGA_STAT_CONFIGURED) {
 621                                 continue;
 622                         }
 623                         if ((cm_rcm_qpass =
 624                             cm_rcm_qpass_func(cfga_ldata->ap_type)) != NULL &&
 625                             (*cm_rcm_qpass)(cfga_ldata, rcm) != 0) {
 626                                 return (-1);
 627                         }
 628                 }
 629         }
 630 
 631         if (rcm->nrlist == 0)
 632                 return (0);
 633 
 634         /*
 635          * Cache query result. Since we are only interested in the
 636          * set of RCM clients processed and not their request status,
 637          * the return value is irrelevant.
 638          */
 639         (void) rcm_request_offline_list(rcm->hdl, rcm->rlist,
 640             RCM_QUERY|RCM_SCOPE, &rcm->offline_query_info);
 641 
 642 #ifdef DEBUG
 643         dprintf((stderr, "RCM rlist: nrlist=%d\n", rcm->nrlist));
 644         for (cpp = rcm->rlist, i = 0; *cpp != NULL; cpp++, i++) {
 645                 dprintf((stderr, "rlist[%d]=%s\n", i, *cpp));
 646         }
 647 #endif /* DEBUG */
 648 
 649         return (0);
 650 }
 651 
 652 static int
 653 cap_request(ri_hdl_t *ri_hdl, rcmd_t *rcm)
 654 {
 655         return (((rcm->ncpus > 0 && cpu_cap_request(ri_hdl, rcm) != 0) ||
 656             (rcm->query_pages > 0 && mem_cap_request(ri_hdl, rcm) != 0)) ?
 657             -1 : 0);
 658 }
 659 
 660 /*
 661  * RCM capacity change request for cpus.
 662  */
 663 static int
 664 cpu_cap_request(ri_hdl_t *ri_hdl, rcmd_t *rcm)
 665 {
 666         cpuid_t         *syscpuids, *newcpuids;
 667         int             sysncpus, newncpus;
 668         rcm_info_t      *rcm_info = NULL;
 669         int             i, j, k;
 670         nvlist_t        *nvl;
 671         int             rv = 0;
 672 
 673         /* get all cpus in the system */
 674         if (syscpus(&syscpuids, &sysncpus) == -1)
 675                 return (-1);
 676 
 677         newncpus = sysncpus - rcm->ncpus;
 678         if ((newcpuids = calloc(newncpus, sizeof (cpuid_t))) == NULL) {
 679                 dprintf((stderr, "calloc: %s", strerror(errno)));
 680                 rv = -1;
 681                 goto out;
 682         }
 683 
 684         if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) {
 685                 dprintf((stderr, "nvlist_alloc fail\n"));
 686                 rv = -1;
 687                 goto out;
 688         }
 689 
 690         /*
 691          * Construct the new cpu list.
 692          */
 693         for (i = 0, j = 0; i < sysncpus; i++) {
 694                 for (k = 0; k < rcm->ncpus; k++) {
 695                         if (rcm->cpus[k] == syscpuids[i]) {
 696                                 break;
 697                         }
 698                 }
 699                 if (k == rcm->ncpus) {
 700                         newcpuids[j++] = syscpuids[i];
 701                 }
 702         }
 703 
 704         if (nvlist_add_int32(nvl, "old_total", sysncpus) != 0 ||
 705             nvlist_add_int32(nvl, "new_total", newncpus) != 0 ||
 706             nvlist_add_int32_array(nvl, "old_cpu_list", syscpuids,
 707             sysncpus) != 0 ||
 708             nvlist_add_int32_array(nvl, "new_cpu_list", newcpuids,
 709             newncpus) != 0) {
 710                 dprintf((stderr, "nvlist_add fail\n"));
 711                 rv = -1;
 712                 goto out;
 713         }
 714 
 715 #ifdef DEBUG
 716         dprintf((stderr, "old_total=%d\n", sysncpus));
 717         for (i = 0; i < sysncpus; i++) {
 718                 dprintf((stderr, "old_cpu_list[%d]=%d\n", i, syscpuids[i]));
 719         }
 720         dprintf((stderr, "new_total=%d\n", newncpus));
 721         for (i = 0; i < newncpus; i++) {
 722                 dprintf((stderr, "new_cpu_list[%d]=%d\n", i, newcpuids[i]));
 723         }
 724 #endif /* DEBUG */
 725 
 726         (void) rcm_request_capacity_change(rcm->hdl, RCM_CPU_ALL,
 727             RCM_QUERY|RCM_SCOPE, nvl, &rcm_info);
 728 
 729         rv = add_rcm_clients(&ri_hdl->cpu_cap_clients, rcm, rcm_info, 0, NULL);
 730 
 731 out:
 732         s_free(syscpuids);
 733         s_free(newcpuids);
 734         nvlist_free(nvl);
 735         if (rcm_info != NULL)
 736                 rcm_free_info(rcm_info);
 737 
 738         return (rv);
 739 }
 740 
 741 static int
 742 syscpus(cpuid_t **cpuids, int *ncpus)
 743 {
 744         kstat_t         *ksp;
 745         kstat_ctl_t     *kc;
 746         cpuid_t         *cp;
 747         int             i;
 748 
 749         if ((*ncpus = sysconf(_SC_NPROCESSORS_CONF)) == -1) {
 750                 dprintf((stderr, "sysconf: %s\n", errno));
 751                 return (-1);
 752         }
 753 
 754         if ((kc = kstat_open()) == NULL) {
 755                 dprintf((stderr, "kstat_open fail\n"));
 756                 return (-1);
 757         }
 758 
 759         if ((cp = calloc(*ncpus, sizeof (cpuid_t))) == NULL) {
 760                 dprintf((stderr, "calloc: %s\n", errno));
 761                 (void) kstat_close(kc);
 762                 return (-1);
 763         }
 764 
 765         for (i = 0, ksp = kc->kc_chain; ksp != NULL; ksp = ksp->ks_next) {
 766                 if (strcmp(ksp->ks_module, "cpu_info") == 0) {
 767                         cp[i++] = ksp->ks_instance;
 768                 }
 769         }
 770 
 771         (void) kstat_close(kc);
 772         *cpuids = cp;
 773 
 774         return (0);
 775 }
 776 
 777 /*
 778  * RCM capacity change request for memory.
 779  */
 780 static int
 781 mem_cap_request(ri_hdl_t *ri_hdl, rcmd_t *rcm)
 782 {
 783         nvlist_t        *nvl;
 784         rcm_info_t      *rcm_info = NULL;
 785         long            newpages;
 786         int             rv = 0;
 787 
 788         if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) {
 789                 dprintf((stderr, "nvlist_alloc fail\n"));
 790                 return (-1);
 791         }
 792 
 793         newpages = rcm->ms_syspages - rcm->query_pages;
 794         if (nvlist_add_int32(nvl, "page_size", rcm->ms_pagesize) != 0 ||
 795             nvlist_add_int32(nvl, "old_pages", rcm->ms_syspages) != 0 ||
 796             nvlist_add_int32(nvl, "new_pages", newpages) != 0) {
 797                 dprintf((stderr, "nvlist_add fail\n"));
 798                 nvlist_free(nvl);
 799                 return (-1);
 800         }
 801 
 802         dprintf((stderr, "memory capacity change req: "
 803             "page_size=%d, old_pages=%d, new_pages=%d\n",
 804             rcm->ms_pagesize, rcm->ms_syspages, newpages));
 805 
 806         (void) rcm_request_capacity_change(rcm->hdl, RCM_MEM_ALL,
 807             RCM_QUERY|RCM_SCOPE, nvl, &rcm_info);
 808 
 809         rv = add_rcm_clients(&ri_hdl->mem_cap_clients, rcm, rcm_info, 0, NULL);
 810 
 811         nvlist_free(nvl);
 812         if (rcm_info != NULL)
 813                 rcm_free_info(rcm_info);
 814 
 815         return (rv);
 816 }
 817 
 818 static int
 819 (*cm_rcm_qpass_func(cfga_type_t ap_type))(cfga_list_data_t *, rcmd_t *)
 820 {
 821         int i;
 822 
 823         for (i = 0; i < sizeof (cm_ctl) / sizeof (cm_ctl[0]); i++) {
 824                 if (strcmp(cm_ctl[i].type, ap_type) == 0) {
 825                         return (cm_ctl[i].cm_rcm_qpass);
 826                 }
 827         }
 828         return (NULL);
 829 }
 830 
 831 /*
 832  * Save cpu ids and RCM abstract resource names.
 833  * Cpu ids will be used for the capacity change request.
 834  * Resource names will be used for the offline query.
 835  */
 836 static int
 837 cpu_rcm_qpass(cfga_list_data_t *cfga_ldata, rcmd_t *rcm)
 838 {
 839         processorid_t   cpuid;
 840         char            *cpustr, *lasts, *rsrcname, rbuf[32];
 841         char            cbuf[CFGA_INFO_LEN];
 842         int             speed, ecache;
 843 
 844         assert(sscanf(cfga_ldata->ap_info, CPU_INFO_FMT, &cbuf, &speed,
 845             &ecache) == 3);
 846 
 847         for (cpustr = (char *)strtok_r(cbuf, CPUID_SEP, &lasts);
 848             cpustr != NULL;
 849             cpustr = (char *)strtok_r(NULL, CPUID_SEP, &lasts)) {
 850                 cpuid = atoi(cpustr);
 851 
 852                 (void) snprintf(rbuf, sizeof (rbuf), "%s%d", RCM_CPU, cpuid);
 853                 if ((rsrcname = strdup(rbuf)) == NULL) {
 854                         dprintf((stderr, "strdup fail\n"));
 855                         return (-1);
 856                 }
 857                 assert(rcm->nrlist < rcm->ndevs && rcm->ncpus < rcm->ndevs);
 858                 rcm->rlist[rcm->nrlist++] = rsrcname;
 859                 rcm->cpus[rcm->ncpus++] = (cpuid_t)cpuid;
 860 
 861                 dprintf((stderr, "cpu_cm_info: cpuid=%d, rsrcname=%s",
 862                     cpuid, rsrcname));
 863         }
 864 
 865         return (0);
 866 }
 867 
 868 /*
 869  * No RCM resource names for individual memory units, so
 870  * just add to offline query page count.
 871  */
 872 static int
 873 mem_rcm_qpass(cfga_list_data_t *cfga, rcmd_t *rcm)
 874 {
 875         char            *cp;
 876         uint_t          kbytes;
 877         longlong_t      ii;
 878 
 879         if ((cp = strstr(cfga->ap_info, "size")) == NULL ||
 880             sscanf(cp, "size=%u", &kbytes) != 1) {
 881                 dprintf((stderr, "unknown sbd info format: %s\n", cp));
 882                 return (-1);
 883         }
 884 
 885         ii = (longlong_t)kbytes * KBYTE;
 886         rcm->query_pages += (uint_t)(ii / rcm->ms_pagesize);
 887 
 888         dprintf((stderr, "%s: npages=%u\n", cfga->ap_log_id,
 889             (uint_t)(ii / rcm->ms_pagesize)));
 890 
 891         return (0);
 892 }
 893 
 894 /*
 895  * Add physical I/O bus name to RCM resource list.
 896  */
 897 static int
 898 io_rcm_qpass(cfga_list_data_t *cfga, rcmd_t *rcm)
 899 {
 900         char            path[MAXPATHLEN];
 901         char            buf[MAXPATHLEN];
 902         char            *rsrcname;
 903 
 904         if (sscanf(cfga->ap_info, "device=%s", path) != 1) {
 905                 dprintf((stderr, "unknown sbd info format: %s\n",
 906                     cfga->ap_info));
 907                 return (-1);
 908         }
 909 
 910         (void) snprintf(buf, sizeof (buf), "/devices%s", path);
 911         if ((rsrcname = strdup(buf)) == NULL) {
 912                 dprintf((stderr, "strdup fail\n"));
 913                 return (-1);
 914         }
 915 
 916         assert(rcm->nrlist < rcm->ndevs);
 917         rcm->rlist[rcm->nrlist++] = rsrcname;
 918 
 919         return (0);
 920 }
 921 
 922 static int
 923 (*cm_info_func(cfga_type_t ap_type))(ri_ap_t *, cfga_list_data_t *,
 924     int, rcmd_t *)
 925 {
 926         int i;
 927 
 928         for (i = 0; i < sizeof (cm_ctl) / sizeof (cm_ctl[0]); i++) {
 929                 if (strcmp(cm_ctl[i].type, ap_type) == 0) {
 930                         return (cm_ctl[i].cm_info);
 931                 }
 932         }
 933         return (NULL);
 934 }
 935 
 936 /*
 937  * Create cpu handle, adding properties exported by sbd plugin and
 938  * RCM client usage.
 939  */
 940 /* ARGSUSED */
 941 static int
 942 cpu_cm_info(ri_ap_t *ap, cfga_list_data_t *cfga, int flags, rcmd_t *rcm)
 943 {
 944         processorid_t   cpuid;
 945         int             speed, ecache, rv = 0;
 946         char            buf[CFGA_INFO_LEN], *cpustr, *lasts;
 947 
 948         if (sscanf(cfga->ap_info, CPU_INFO_FMT, &buf, &speed, &ecache) != 3) {
 949                 dprintf((stderr, "unknown sbd info format: %s\n",
 950                     cfga->ap_info));
 951                 return (-1);
 952         }
 953 
 954         /* parse cpuids */
 955         for (cpustr = (char *)strtok_r(buf, CPUID_SEP, &lasts);
 956             cpustr != NULL;
 957             cpustr = (char *)strtok_r(NULL, CPUID_SEP, &lasts)) {
 958                 cpuid = atoi(cpustr);
 959                 if ((rv = i_cpu_cm_info(cpuid, speed, ecache, ap, rcm)) != 0) {
 960                         break;
 961                 }
 962         }
 963 
 964         return (rv);
 965 }
 966 
 967 static int
 968 i_cpu_cm_info(processorid_t cpuid, int speed, int ecache_cfga, ri_ap_t *ap,
 969     rcmd_t *rcm)
 970 {
 971         int             ecache_mb = 0;
 972         int             ecache_kb = 0;
 973         char            *state, buf[32];
 974         processor_info_t cpu_info;
 975         ri_dev_t        *cpu = NULL;
 976         rcm_info_t      *rcm_info = NULL;
 977 
 978         /*
 979          * Could have been unconfigured in the interim, so cannot
 980          * count on processor_info recognizing it.
 981          */
 982         state = (processor_info(cpuid, &cpu_info) == 0) ?
 983             pstate2str(cpu_info.pi_state) : "unknown";
 984 
 985         if ((cpu = ri_dev_alloc()) == NULL) {
 986                 dprintf((stderr, "ri_dev_alloc failed\n"));
 987                 return (-1);
 988         }
 989 
 990         /*
 991          * Assume the ecache_info table has the right e-cache size for
 992          * this CPU.  Use the value found in cfgadm (ecache_cfga) if not.
 993          */
 994         if (rcm->ecache_info.ecache_sizes != NULL) {
 995                 assert(rcm->ecache_info.cpuid_max != 0 &&
 996                     cpuid <= rcm->ecache_info.cpuid_max);
 997                 ecache_mb = rcm->ecache_info.ecache_sizes[cpuid] / MBYTE;
 998                 ecache_kb = rcm->ecache_info.ecache_sizes[cpuid] / KBYTE;
 999         }
1000 
1001         if (ecache_mb == 0) {
1002                 ecache_mb = ecache_cfga;
1003         }
1004 
1005         dprintf((stderr, "i_cpu_cm_info: cpu(%d) ecache=%d MB\n",
1006             cpuid, ecache));
1007 
1008         if (nvlist_add_int32(cpu->conf_props, RI_CPU_ID, cpuid) != 0 ||
1009             nvlist_add_int32(cpu->conf_props, RI_CPU_SPEED, speed) != 0 ||
1010             nvlist_add_int32(cpu->conf_props, RI_CPU_ECACHE, ecache_mb) != 0 ||
1011             nvlist_add_string(cpu->conf_props, RI_CPU_STATE, state) != 0) {
1012                 dprintf((stderr, "nvlist_add fail\n"));
1013                 ri_dev_free(cpu);
1014                 return (-1);
1015         }
1016 
1017         /*
1018          * Report cache size in kilobyte units if available.  This info is
1019          * added to support processors with cache sizes that are non-integer
1020          * megabyte multiples.
1021          */
1022         if (ecache_kb != 0) {
1023                 if (nvlist_add_int32(cpu->conf_props, RI_CPU_ECACHE_KBYTE,
1024                     ecache_kb) != 0)  {
1025                         dprintf((stderr, "nvlist_add fail: %s\n",
1026                             RI_CPU_ECACHE_KBYTE));
1027                         ri_dev_free(cpu);
1028                         return (-1);
1029                 }
1030         }
1031 
1032         (void) snprintf(buf, sizeof (buf), "%s%d", RCM_CPU, cpuid);
1033         dprintf((stderr, "rcm_get_info(%s)\n", buf));
1034         if (rcm_get_info(rcm->hdl, buf, RCM_INCLUDE_DEPENDENT,
1035             &rcm_info) != RCM_SUCCESS) {
1036                 dprintf((stderr, "rcm_get_info (errno=%d)\n", errno));
1037                 ri_dev_free(cpu);
1038                 if (rcm_info != NULL)
1039                         rcm_free_info(rcm_info);
1040                 return (-1);
1041         }
1042 
1043         dev_list_cpu_insert(&ap->cpus, cpu, cpuid);
1044 
1045         return (0);
1046 }
1047 
1048 /*
1049  * Create memory handle, adding properties exported by sbd plugin.
1050  * No RCM tuples to be saved unless RCM is modified to export names
1051  * for individual memory units.
1052  */
1053 /* ARGSUSED */
1054 static int
1055 mem_cm_info(ri_ap_t *ap, cfga_list_data_t *cfga, int flags, rcmd_t *rcm)
1056 {
1057         ri_dev_t        *mem;
1058         char            *cp;
1059         char            *cpval;
1060         int             len;
1061         uint64_t        base_addr;                              /* required */
1062         int32_t         size_kb;                                /* required */
1063         int32_t         perm_kb = 0;                            /* optional */
1064         char            target[CFGA_AP_LOG_ID_LEN] = "";        /* optional */
1065         int32_t         del_kb = 0;                             /* optional */
1066         int32_t         rem_kb = 0;                             /* optional */
1067         char            source[CFGA_AP_LOG_ID_LEN] = "";        /* optional */
1068 
1069         if (sscanf(cfga->ap_info, "address=0x%llx size=%u", &base_addr,
1070             &size_kb) != 2) {
1071                 goto err_fmt;
1072         }
1073 
1074         if ((cp = strstr(cfga->ap_info, "permanent")) != NULL &&
1075             sscanf(cp, "permanent=%u", &perm_kb) != 1) {
1076                 goto err_fmt;
1077         }
1078 
1079         if ((cp = strstr(cfga->ap_info, "target")) != NULL) {
1080                 if ((cpval = strstr(cp, "=")) == NULL) {
1081                         goto err_fmt;
1082                 }
1083                 for (len = 0; cpval[len] != '\0' && cpval[len] != ' '; len++) {
1084                         if (len >= CFGA_AP_LOG_ID_LEN) {
1085                                 goto err_fmt;
1086                         }
1087                 }
1088                 if (sscanf(cp, "target=%s deleted=%u remaining=%u", &target,
1089                     &del_kb, &rem_kb) != 3) {
1090                         goto err_fmt;
1091                 }
1092         }
1093 
1094         if ((cp = strstr(cfga->ap_info, "source")) != NULL) {
1095                 if ((cpval = strstr(cp, "=")) == NULL) {
1096                         goto err_fmt;
1097                 }
1098                 for (len = 0; cpval[len] != '\0' && cpval[len] != ' '; len++) {
1099                         if (len >= CFGA_AP_LOG_ID_LEN) {
1100                                 goto err_fmt;
1101                         }
1102                 }
1103                 if (sscanf(cp, "source=%s", &source) != 1) {
1104                         goto err_fmt;
1105                 }
1106         }
1107 
1108         dprintf((stderr, "%s: base=0x%llx, size=%u, permanent=%u\n",
1109             cfga->ap_log_id, base_addr, size_kb, perm_kb));
1110 
1111         if ((mem = ri_dev_alloc()) == NULL)
1112                 return (-1);
1113 
1114         /*
1115          * Convert memory sizes to MB (truncate).
1116          */
1117         if (nvlist_add_uint64(mem->conf_props, RI_MEM_ADDR, base_addr) != 0 ||
1118             nvlist_add_int32(mem->conf_props, RI_MEM_BRD, size_kb/KBYTE) != 0 ||
1119             nvlist_add_int32(mem->conf_props, RI_MEM_PERM,
1120             perm_kb/KBYTE) != 0) {
1121                 dprintf((stderr, "nvlist_add failure\n"));
1122                 ri_dev_free(mem);
1123                 return (-1);
1124         }
1125 
1126         if (target[0] != '\0' &&
1127             (nvlist_add_string(mem->conf_props, RI_MEM_TARG, target) != 0 ||
1128             nvlist_add_int32(mem->conf_props, RI_MEM_DEL, del_kb/KBYTE) != 0 ||
1129             nvlist_add_int32(mem->conf_props, RI_MEM_REMAIN,
1130             rem_kb/KBYTE) != 0)) {
1131                 dprintf((stderr, "nvlist_add failure\n"));
1132                 ri_dev_free(mem);
1133                 return (-1);
1134         }
1135 
1136         if (source[0] != '\0' &&
1137             nvlist_add_string(mem->conf_props, RI_MEM_SRC, source) != 0) {
1138                 dprintf((stderr, "nvlist_add failure\n"));
1139                 ri_dev_free(mem);
1140                 return (-1);
1141         }
1142 
1143         /*
1144          * XXX - move this property to attachment point hdl?
1145          */
1146         if (nvlist_add_int32(mem->conf_props, RI_MEM_DOMAIN,
1147             rcm->ms_sysmb) != 0) {
1148                 dprintf((stderr, "nvlist_add failure\n"));
1149                 ri_dev_free(mem);
1150                 return (-1);
1151         }
1152 
1153         dev_list_append(&ap->mems, mem);
1154         return (0);
1155 
1156 err_fmt:
1157         dprintf((stderr, "unknown sbd info format: %s\n", cfga->ap_info));
1158         return (-1);
1159 }
1160 
1161 /*
1162  * Initiate a libdevinfo walk on the IO bus path.
1163  * XXX - investigate performance using two threads here: one thread to do the
1164  * libdevinfo snapshot and treewalk; and one thread to get RCM usage info
1165  */
1166 static int
1167 io_cm_info(ri_ap_t *ap, cfga_list_data_t *cfga, int flags, rcmd_t *rcm)
1168 {
1169         int                     i;
1170         int                     j;
1171         int                     k;
1172         int                     set_size;
1173         int                     retval = 0;
1174         int                     n_usage;
1175         devinfo_arg_t           di_arg;
1176         lookup_table_t          devicetable;
1177         lookup_entry_t          *deventry;
1178         lookup_entry_t          *lastdeventry;
1179         ri_dev_t                *io = NULL;
1180         ri_client_t             *client;
1181         ri_client_t             *tmp;
1182         di_devlink_handle_t     linkhd = NULL;
1183         di_node_t               root = DI_NODE_NIL;
1184         di_node_t               node = DI_NODE_NIL;
1185         rcm_info_tuple_t        *rcm_tuple;
1186         rcm_info_t              *rcm_info = NULL;
1187         const char              *rcm_rsrc = NULL;
1188         char                    drv_inst[MAXPATHLEN];
1189         char                    path[MAXPATHLEN];
1190         char                    pathbuf[MAXPATHLEN];
1191 
1192         dprintf((stderr, "io_cm_info(%s)\n", cfga->ap_log_id));
1193 
1194         /* Extract devfs path from cfgadm information */
1195         if (sscanf(cfga->ap_info, "device=%s\n", path) != 1) {
1196                 dprintf((stderr, "unknown sbd info format: %s\n",
1197                     cfga->ap_info));
1198                 return (-1);
1199         }
1200 
1201         /* Initialize empty device lookup table */
1202         devicetable.n_entries = 0;
1203         devicetable.n_slots = 0;
1204         devicetable.table = NULL;
1205 
1206         /* Get libdevinfo snapshot */
1207         dprintf((stderr, "di_init(%s)\n", path));
1208         if ((root = di_init(path, DINFOCPYALL)) == DI_NODE_NIL) {
1209                 dprintf((stderr, "di_init: %s\n", strerror(errno)));
1210                 retval = RI_NODE_NIL; /* tell ri_init to skip this node */
1211                 goto end;
1212         }
1213 
1214         /*
1215          * Map in devlinks database.
1216          * XXX - This could be moved to ri_init() for better performance.
1217          */
1218         dprintf((stderr, "di_devlink_init()\n"));
1219         if ((linkhd = di_devlink_init(NULL, 0)) == NULL) {
1220                 dprintf((stderr, "di_devlink_init: %s\n", strerror(errno)));
1221                 retval = -1;
1222                 goto end;
1223         }
1224 
1225         /* Initialize argument for devinfo treewalk */
1226         di_arg.err = 0;
1227         di_arg.node = DI_NODE_NIL;
1228         di_arg.pathbuf = pathbuf;
1229         di_arg.table = &devicetable;
1230         di_arg.linkhd = linkhd;
1231 
1232         /* Use libdevinfo treewalk to build device lookup table */
1233         if (di_walk_node(root, DI_WALK_CLDFIRST, (void *)&di_arg,
1234             devinfo_node_walk) != 0) {
1235                 dprintf((stderr, "di_walk_node: %s\n", strerror(errno)));
1236                 retval = -1;
1237                 goto end;
1238         }
1239         if (di_arg.err != 0) {
1240                 dprintf((stderr, "di_walk_node: device tree walk failed\n"));
1241                 retval = -1;
1242                 goto end;
1243         }
1244 
1245         /* Call RCM to gather usage information */
1246         (void) snprintf(pathbuf, MAXPATHLEN, "/devices%s", path);
1247         dprintf((stderr, "rcm_get_info(%s)\n", pathbuf));
1248         if (rcm_get_info(rcm->hdl, pathbuf,
1249             RCM_INCLUDE_SUBTREE|RCM_INCLUDE_DEPENDENT, &rcm_info) !=
1250             RCM_SUCCESS) {
1251                 dprintf((stderr, "rcm_get_info (errno=%d)\n", errno));
1252                 retval = -1;
1253                 goto end;
1254         }
1255 
1256         /* Sort the device table by name (proper order for lookups) */
1257         qsort(devicetable.table, devicetable.n_entries, sizeof (lookup_entry_t),
1258             table_compare_names);
1259 
1260         /* Perform mappings of RCM usage segments to device table entries */
1261         lastdeventry = NULL;
1262         rcm_tuple = NULL;
1263         while ((rcm_tuple = rcm_info_next(rcm_info, rcm_tuple)) != NULL) {
1264                 if ((rcm_rsrc = rcm_info_rsrc(rcm_tuple)) == NULL)
1265                         continue;
1266                 if (deventry = lookup(&devicetable, rcm_rsrc)) {
1267                         if (add_usage(deventry, rcm_rsrc, rcm_tuple)) {
1268                                 retval = -1;
1269                                 goto end;
1270                         }
1271                         lastdeventry = deventry;
1272                 } else {
1273                         if (add_usage(lastdeventry, rcm_rsrc, rcm_tuple)) {
1274                                 retval = -1;
1275                                 goto end;
1276                         }
1277                 }
1278         }
1279 
1280         /* Re-sort the device table by index number (original treewalk order) */
1281         qsort(devicetable.table, devicetable.n_entries, sizeof (lookup_entry_t),
1282             table_compare_indices);
1283 
1284         /*
1285          * Use the mapped usage and the device table to construct ri_dev_t's.
1286          * Construct one for each set of entries in the device table with
1287          * matching di_node_t's, if: 1) it has mapped RCM usage, or 2) it is
1288          * a leaf node and the caller has requested that unmanaged nodes be
1289          * included in the output.
1290          */
1291         i = 0;
1292         while (i < devicetable.n_entries) {
1293 
1294                 node = devicetable.table[i].node;
1295 
1296                 /* Count how many usage records are mapped to this node's set */
1297                 n_usage = 0;
1298                 set_size = 0;
1299                 while (((i + set_size) < devicetable.n_entries) &&
1300                     (devicetable.table[i + set_size].node == node)) {
1301                         n_usage += devicetable.table[i + set_size].n_usage;
1302                         set_size += 1;
1303                 }
1304 
1305                 /*
1306                  * If there's no usage, then the node is unmanaged.  Skip this
1307                  * set of devicetable entries unless the node is a leaf node
1308                  * and the caller has requested information on unmanaged leaves.
1309                  */
1310                 if ((n_usage == 0) &&
1311                     !((flags & RI_INCLUDE_UNMANAGED) && (ident_leaf(node)))) {
1312                         i += set_size;
1313                         continue;
1314                 }
1315 
1316                 /*
1317                  * The checks above determined that this node is going in.
1318                  * So determine its driver/instance name and allocate an
1319                  * ri_dev_t for this node.
1320                  */
1321                 if (mk_drv_inst(node, drv_inst, devicetable.table[i].name)) {
1322                         dprintf((stderr, "mk_drv_inst failed\n"));
1323                         retval = -1;
1324                         break;
1325                 }
1326                 if ((io = io_dev_alloc(drv_inst)) == NULL) {
1327                         dprintf((stderr, "io_dev_alloc failed\n"));
1328                         retval = -1;
1329                         break;
1330                 }
1331 
1332                 /* Now add all the RCM usage records (if any) to the ri_dev_t */
1333                 for (j = i; j < (i + set_size); j++) {
1334                         for (k = 0; k < devicetable.table[j].n_usage; k++) {
1335                                 /* Create new ri_client_t for basic usage */
1336                                 client = ri_client_alloc(
1337                                     (char *)devicetable.table[j].usage[k].rsrc,
1338                                     (char *)devicetable.table[j].usage[k].info);
1339                                 if (client == NULL) {
1340                                         dprintf((stderr,
1341                                             "ri_client_alloc failed\n"));
1342                                         ri_dev_free(io);
1343                                         retval = -1;
1344                                         goto end;
1345                                 }
1346 
1347                                 /* Add extra query usage to the ri_client_t */
1348                                 if ((flags & RI_INCLUDE_QUERY) &&
1349                                     (add_query_state(rcm, client,
1350                                     devicetable.table[j].usage[k].rsrc,
1351                                     devicetable.table[j].usage[k].info) != 0)) {
1352                                         dprintf((stderr,
1353                                             "add_query_state failed\n"));
1354                                         ri_dev_free(io);
1355                                         ri_client_free(client);
1356                                         retval = -1;
1357                                         goto end;
1358                                 }
1359 
1360                                 /* Link new ri_client_t to ri_dev_t */
1361                                 if (io->rcm_clients) {
1362                                         tmp = io->rcm_clients;
1363                                         while (tmp->next)
1364                                                 tmp = tmp->next;
1365                                         tmp->next = client;
1366                                 } else {
1367                                         io->rcm_clients = client;
1368                                 }
1369                         }
1370                 }
1371 
1372                 /* Link the ri_dev_t into the return value */
1373                 dev_list_append(&ap->ios, io);
1374 
1375                 /* Advance to the next node set */
1376                 i += set_size;
1377         }
1378 
1379 end:
1380         if (rcm_info != NULL)
1381                 rcm_free_info(rcm_info);
1382         if (linkhd != NULL)
1383                 di_devlink_fini(&linkhd);
1384         if (root != DI_NODE_NIL)
1385                 di_fini(root);
1386         empty_table(&devicetable);
1387 
1388         dprintf((stderr, "io_cm_info: returning %d\n", retval));
1389         return (retval);
1390 }
1391 
1392 static int
1393 ident_leaf(di_node_t node)
1394 {
1395         di_minor_t      minor = DI_MINOR_NIL;
1396 
1397         return ((minor = di_minor_next(node, minor)) != DI_MINOR_NIL &&
1398             di_child_node(node) == DI_NODE_NIL);
1399 }
1400 
1401 /* ARGSUSED */
1402 static int
1403 mk_drv_inst(di_node_t node, char drv_inst[], char *devfs_path)
1404 {
1405         char    *drv;
1406         int     inst;
1407 
1408         if ((drv = di_driver_name(node)) == NULL) {
1409                 dprintf((stderr, "no driver bound to %s\n",
1410                     devfs_path));
1411                 return (-1);
1412         }
1413 
1414         if ((inst = di_instance(node)) == -1) {
1415                 dprintf((stderr, "no instance assigned to %s\n",
1416                     devfs_path));
1417                 return (-1);
1418         }
1419         (void) snprintf(drv_inst, MAXPATHLEN, "%s%d", drv, inst);
1420 
1421         return (0);
1422 }
1423 
1424 /*
1425  * Libdevinfo walker.
1426  *
1427  * During the tree walk of the attached IO devices, for each node
1428  * and all of its associated minors, the following actions are performed:
1429  *  -  The /devices path of the physical device node or minor
1430  *     is stored in a lookup table along with a reference to the
1431  *     libdevinfo node it represents via add_lookup_entry().
1432  *  -  The device links associated with each device are also
1433  *     stored in the same lookup table along with a reference to
1434  *     the libdevinfo node it represents via the minor walk callback.
1435  *
1436  */
1437 static int
1438 devinfo_node_walk(di_node_t node, void *arg)
1439 {
1440         char                    *devfs_path;
1441 #ifdef DEBUG
1442         char                    *drv;
1443 #endif /* DEBUG */
1444         devinfo_arg_t           *di_arg = (devinfo_arg_t *)arg;
1445 
1446         if (node == DI_NODE_NIL) {
1447                 return (DI_WALK_TERMINATE);
1448         }
1449 
1450         if (((di_state(node) & DI_DRIVER_DETACHED) == 0) &&
1451             ((devfs_path = di_devfs_path(node)) != NULL)) {
1452 
1453                 /* Use the provided path buffer to create full /devices path */
1454                 (void) snprintf(di_arg->pathbuf, MAXPATHLEN, "/devices%s",
1455                     devfs_path);
1456 
1457 #ifdef DEBUG
1458                 dprintf((stderr, "devinfo_node_walk(%s)\n", di_arg->pathbuf));
1459                 if ((drv = di_driver_name(node)) != NULL)
1460                         dprintf((stderr, " driver name %s instance %d\n", drv,
1461                             di_instance(node)));
1462 #endif
1463 
1464                 /* Free the devfs_path */
1465                 di_devfs_path_free(devfs_path);
1466 
1467                 /* Add an entry to the lookup table for this physical device */
1468                 if (add_lookup_entry(di_arg->table, di_arg->pathbuf, node)) {
1469                         dprintf((stderr, "add_lookup_entry: %s\n",
1470                             strerror(errno)));
1471                         di_arg->err = 1;
1472                         return (DI_WALK_TERMINATE);
1473                 }
1474 
1475                 /* Check if this node has minors */
1476                 if ((di_minor_next(node, DI_MINOR_NIL)) != DI_MINOR_NIL) {
1477                         /* Walk this node's minors */
1478                         di_arg->node = node;
1479                         if (di_walk_minor(node, NULL, DI_CHECK_ALIAS, arg,
1480                             devinfo_minor_walk) != 0) {
1481                                 dprintf((stderr, "di_walk_minor: %s\n",
1482                                     strerror(errno)));
1483                                 di_arg->err = 1;
1484                                 return (DI_WALK_TERMINATE);
1485                         }
1486                 }
1487         }
1488 
1489         return (DI_WALK_CONTINUE);
1490 }
1491 
1492 /*
1493  * Use di_devlink_walk to find the /dev link from /devices path for this minor
1494  */
1495 static int
1496 devinfo_minor_walk(di_node_t node, di_minor_t minor, void *arg)
1497 {
1498         char            *name;
1499         char            *devfs_path;
1500         devinfo_arg_t   *di_arg = (devinfo_arg_t *)arg;
1501         char            pathbuf[MAXPATHLEN];
1502 
1503 #ifdef DEBUG
1504         dprintf((stderr, "devinfo_minor_walk(%d) %s\n", minor,
1505             di_arg->pathbuf));
1506 
1507         if ((name = di_minor_name(minor)) != NULL) {
1508                 dprintf((stderr, "  minor name %s\n", name));
1509         }
1510 #endif /* DEBUG */
1511 
1512         /* Terminate the walk when the device node changes */
1513         if (node != di_arg->node) {
1514                 return (DI_WALK_TERMINATE);
1515         }
1516 
1517         /* Construct full /devices path for this minor */
1518         if ((name = di_minor_name(minor)) == NULL) {
1519                 return (DI_WALK_CONTINUE);
1520         }
1521         (void) snprintf(pathbuf, MAXPATHLEN, "%s:%s", di_arg->pathbuf, name);
1522 
1523         /* Add lookup entry for this minor node */
1524         if (add_lookup_entry(di_arg->table, pathbuf, node)) {
1525                 dprintf((stderr, "add_lookup_entry: %s\n", strerror(errno)));
1526                 di_arg->err = 1;
1527                 return (DI_WALK_TERMINATE);
1528         }
1529 
1530         /*
1531          * Walk the associated device links.
1532          * Note that di_devlink_walk() doesn't want "/devices" in its paths.
1533          * Also note that di_devlink_walk() will fail if there are no device
1534          * links, which is fine; so ignore if it fails.  Only check for
1535          * internal failures during such a walk.
1536          */
1537         devfs_path = &pathbuf[strlen("/devices")];
1538         (void) di_devlink_walk(di_arg->linkhd, NULL, devfs_path, 0, arg,
1539             devinfo_devlink_walk);
1540         if (di_arg->err != 0) {
1541                 return (DI_WALK_TERMINATE);
1542         }
1543 
1544         return (DI_WALK_CONTINUE);
1545 }
1546 
1547 static int
1548 devinfo_devlink_walk(di_devlink_t devlink, void *arg)
1549 {
1550         const char      *linkpath;
1551         devinfo_arg_t   *di_arg = (devinfo_arg_t *)arg;
1552 
1553         /* Get the devlink's path */
1554         if ((linkpath = di_devlink_path(devlink)) == NULL) {
1555                 dprintf((stderr, "di_devlink_path: %s\n", strerror(errno)));
1556                 di_arg->err = 1;
1557                 return (DI_WALK_TERMINATE);
1558         }
1559         dprintf((stderr, "devinfo_devlink_walk: %s\n", linkpath));
1560 
1561         /* Add lookup entry for this devlink */
1562         if (add_lookup_entry(di_arg->table, linkpath, di_arg->node)) {
1563                 dprintf((stderr, "add_lookup_entry: %s\n", strerror(errno)));
1564                 di_arg->err = 1;
1565                 return (DI_WALK_TERMINATE);
1566         }
1567 
1568         return (DI_WALK_CONTINUE);
1569 }
1570 
1571 /*
1572  * Map rcm_info_t's to ri_client_t's, filtering out "uninteresting" (hack)
1573  * RCM clients. The number of "interesting" ri_client_t's is returned
1574  * in cnt if passed non-NULL.
1575  */
1576 static int
1577 add_rcm_clients(ri_client_t **client_list, rcmd_t *rcm, rcm_info_t *info,
1578     int flags, int *cnt)
1579 {
1580         rcm_info_tuple_t        *tuple;
1581         char                    *rsrc, *usage;
1582         ri_client_t             *client, *tmp;
1583 
1584         assert(client_list != NULL && rcm != NULL);
1585 
1586         if (info == NULL)
1587                 return (0);
1588 
1589         if (cnt != NULL)
1590                 *cnt = 0;
1591 
1592         tuple = NULL;
1593         while ((tuple = rcm_info_next(info, tuple)) != NULL) {
1594                 if ((rsrc = (char *)rcm_info_rsrc(tuple)) == NULL ||
1595                     (usage = (char *)rcm_info_info(tuple)) == NULL) {
1596                         continue;
1597                 }
1598 
1599                 if (rcm_ignore(rsrc, usage) == 0)
1600                         continue;
1601 
1602                 if ((client = ri_client_alloc(rsrc, usage)) == NULL)
1603                         return (-1);
1604 
1605                 if ((flags & RI_INCLUDE_QUERY) && add_query_state(rcm, client,
1606                     rsrc, usage) != 0) {
1607                         ri_client_free(client);
1608                         return (-1);
1609                 }
1610 
1611                 if (cnt != NULL)
1612                         ++*cnt;
1613 
1614                 /*
1615                  * Link in
1616                  */
1617                 if ((tmp = *client_list) == NULL) {
1618                         *client_list = client;
1619                         continue;
1620                 }
1621                 while (tmp->next != NULL) {
1622                         tmp = tmp->next;
1623                 }
1624                 tmp->next = client;
1625         }
1626 
1627         return (0);
1628 }
1629 
1630 /*
1631  * Currently only filtering out based on known info string prefixes.
1632  */
1633 /* ARGSUSED */
1634 static int
1635 rcm_ignore(char *rsrc, char *infostr)
1636 {
1637         char    **cpp;
1638 
1639         for (cpp = rcm_info_filter; *cpp != NULL; cpp++) {
1640                 if (strncmp(infostr, *cpp, strlen(*cpp)) == 0) {
1641                         return (0);
1642                 }
1643         }
1644         return (-1);
1645 }
1646 
1647 /*
1648  * If this tuple was cached in the offline query pass, add the
1649  * query state and error string to the ri_client_t.
1650  */
1651 static int
1652 add_query_state(rcmd_t *rcm, ri_client_t *client, const char *rsrc,
1653     const char *info)
1654 {
1655         int                     qstate = RI_QUERY_UNKNOWN;
1656         char                    *errstr = NULL;
1657         rcm_info_tuple_t        *cached_tuple;
1658 
1659         if ((cached_tuple = tuple_lookup(rcm, rsrc, info)) != NULL) {
1660                 qstate = state2query(rcm_info_state(cached_tuple));
1661                 errstr = (char *)rcm_info_error(cached_tuple);
1662         }
1663 
1664         if (nvlist_add_int32(client->usg_props, RI_QUERY_STATE, qstate) != 0 ||
1665             (errstr != NULL && nvlist_add_string(client->usg_props,
1666             RI_QUERY_ERR, errstr) != 0)) {
1667                 dprintf((stderr, "nvlist_add fail\n"));
1668                 return (-1);
1669         }
1670 
1671         return (0);
1672 }
1673 
1674 static int
1675 state2query(int rcm_state)
1676 {
1677         int     query;
1678 
1679         switch (rcm_state) {
1680         case RCM_STATE_OFFLINE_QUERY:
1681         case RCM_STATE_SUSPEND_QUERY:
1682                 query = RI_QUERY_OK;
1683                 break;
1684         case RCM_STATE_OFFLINE_QUERY_FAIL:
1685         case RCM_STATE_SUSPEND_QUERY_FAIL:
1686                 query = RI_QUERY_FAIL;
1687                 break;
1688         default:
1689                 query = RI_QUERY_UNKNOWN;
1690                 break;
1691         }
1692 
1693         return (query);
1694 }
1695 
1696 static void
1697 dev_list_append(ri_dev_t **head, ri_dev_t *dev)
1698 {
1699         ri_dev_t        *tmp;
1700 
1701         if ((tmp = *head) == NULL) {
1702                 *head = dev;
1703                 return;
1704         }
1705         while (tmp->next != NULL) {
1706                 tmp = tmp->next;
1707         }
1708         tmp->next = dev;
1709 }
1710 
1711 /*
1712  * The cpu list is ordered on cpuid since CMP cpuids will not necessarily
1713  * be discovered in sequence.
1714  */
1715 static void
1716 dev_list_cpu_insert(ri_dev_t **listp, ri_dev_t *dev, processorid_t newid)
1717 {
1718         ri_dev_t        *tmp;
1719         int32_t         cpuid;
1720 
1721         while ((tmp = *listp) != NULL &&
1722             nvlist_lookup_int32(tmp->conf_props, RI_CPU_ID, &cpuid) == 0 &&
1723             cpuid < newid) {
1724                 listp = &tmp->next;
1725         }
1726 
1727         dev->next = tmp;
1728         *listp = dev;
1729 }
1730 
1731 /*
1732  * Linear lookup. Should convert to hash tab.
1733  */
1734 static rcm_info_tuple_t *
1735 tuple_lookup(rcmd_t *rcm, const char *krsrc, const char *kinfo)
1736 {
1737         rcm_info_tuple_t        *tuple = NULL;
1738         const char              *rsrc, *info;
1739 
1740         if ((rcm == NULL) || (krsrc == NULL) || (kinfo == NULL)) {
1741                 return (NULL);
1742         }
1743 
1744         while ((tuple = rcm_info_next(rcm->offline_query_info,
1745             tuple)) != NULL) {
1746                 if ((rsrc = rcm_info_rsrc(tuple)) == NULL ||
1747                     (info = rcm_info_info(tuple)) == NULL) {
1748                         continue;
1749                 }
1750 
1751                 if (strcmp(rsrc, krsrc) == 0 && strcmp(info, kinfo) == 0) {
1752                         return (tuple);
1753                 }
1754         }
1755         return (NULL);
1756 }
1757 
1758 /*
1759  * Create and link attachment point handle.
1760  */
1761 static ri_ap_t *
1762 ri_ap_alloc(char *ap_id, ri_hdl_t *hdl)
1763 {
1764         ri_ap_t         *ap, *tmp;
1765 
1766         if ((ap = calloc(1, sizeof (*ap))) == NULL) {
1767                 dprintf((stderr, "calloc: %s\n", strerror(errno)));
1768                 return (NULL);
1769         }
1770 
1771         if (nvlist_alloc(&ap->conf_props, NV_UNIQUE_NAME, 0) != 0 ||
1772             nvlist_add_string(ap->conf_props, RI_AP_REQ_ID, ap_id) != 0) {
1773                 nvlist_free(ap->conf_props);
1774                 free(ap);
1775                 return (NULL);
1776         }
1777 
1778         if ((tmp = hdl->aps) == NULL) {
1779                 hdl->aps = ap;
1780         } else {
1781                 while (tmp->next != NULL) {
1782                         tmp = tmp->next;
1783                 }
1784                 tmp->next = ap;
1785         }
1786 
1787         return (ap);
1788 }
1789 
1790 static ri_dev_t *
1791 ri_dev_alloc(void)
1792 {
1793         ri_dev_t        *dev;
1794 
1795         if ((dev = calloc(1, sizeof (*dev))) == NULL ||
1796             nvlist_alloc(&dev->conf_props, NV_UNIQUE_NAME, 0) != 0) {
1797                 s_free(dev);
1798         }
1799         return (dev);
1800 }
1801 
1802 static ri_dev_t *
1803 io_dev_alloc(char *drv_inst)
1804 {
1805         ri_dev_t        *io;
1806 
1807         assert(drv_inst != NULL);
1808 
1809         if ((io = ri_dev_alloc()) == NULL)
1810                 return (NULL);
1811 
1812         if (nvlist_add_string(io->conf_props, RI_IO_DRV_INST,
1813             drv_inst) != 0) {
1814                 dprintf((stderr, "nvlist_add_string fail\n"));
1815                 ri_dev_free(io);
1816                 return (NULL);
1817         }
1818 
1819         return (io);
1820 }
1821 
1822 static ri_client_t *
1823 ri_client_alloc(char *rsrc, char *usage)
1824 {
1825         ri_client_t     *client;
1826 
1827         assert(rsrc != NULL && usage != NULL);
1828 
1829         if ((client = calloc(1, sizeof (*client))) == NULL) {
1830                 dprintf((stderr, "calloc: %s\n", strerror(errno)));
1831                 return (NULL);
1832         }
1833 
1834         if (nvlist_alloc(&client->usg_props, NV_UNIQUE_NAME, 0) != 0) {
1835                 dprintf((stderr, "nvlist_alloc fail\n"));
1836                 free(client);
1837                 return (NULL);
1838         }
1839 
1840         if (nvlist_add_string(client->usg_props, RI_CLIENT_RSRC, rsrc) != 0 ||
1841             nvlist_add_string(client->usg_props, RI_CLIENT_USAGE, usage) != 0) {
1842                 dprintf((stderr, "nvlist_add_string fail\n"));
1843                 ri_client_free(client);
1844                 return (NULL);
1845         }
1846 
1847         return (client);
1848 }
1849 
1850 static void
1851 apd_tbl_free(apd_t apd_tbl[], int napds)
1852 {
1853         int     i;
1854         apd_t   *apd;
1855 
1856         for (i = 0, apd = apd_tbl; i < napds; i++, apd++)
1857                 s_free(apd->cfga_list_data);
1858 
1859         free(apd_tbl);
1860 }
1861 
1862 static char *
1863 pstate2str(int pi_state)
1864 {
1865         char    *state;
1866 
1867         switch (pi_state) {
1868         case P_OFFLINE:
1869                 state = PS_OFFLINE;
1870                 break;
1871         case P_ONLINE:
1872                 state = PS_ONLINE;
1873                 break;
1874         case P_FAULTED:
1875                 state = PS_FAULTED;
1876                 break;
1877         case P_POWEROFF:
1878                 state = PS_POWEROFF;
1879                 break;
1880         case P_NOINTR:
1881                 state = PS_NOINTR;
1882                 break;
1883         case P_SPARE:
1884                 state = PS_SPARE;
1885                 break;
1886         default:
1887                 state = "unknown";
1888                 break;
1889         }
1890 
1891         return (state);
1892 }
1893 
1894 #ifdef DEBUG
1895 static void
1896 dump_apd_tbl(FILE *fp, apd_t *apds, int n_apds)
1897 {
1898         int                     i, j;
1899         cfga_list_data_t        *cfga_ldata;
1900 
1901         for (i = 0; i < n_apds; i++, apds++) {
1902                 dprintf((stderr, "apd_tbl[%d].nlist=%d\n", i, apds->nlist));
1903                 for (j = 0, cfga_ldata = apds->cfga_list_data; j < apds->nlist;
1904                     j++, cfga_ldata++) {
1905                         dprintf((fp,
1906                             "apd_tbl[%d].cfga_list_data[%d].ap_log_id=%s\n",
1907                             i, j, cfga_ldata->ap_log_id));
1908                 }
1909         }
1910 }
1911 #endif /* DEBUG */
1912 
1913 /*
1914  * The lookup table is a simple array that is grown in chunks
1915  * to optimize memory allocation.
1916  * Indices are assigned to each array entry in-order so that
1917  * the original device tree ordering can be discerned at a later time.
1918  *
1919  * add_lookup_entry is called from the libdevinfo tree traversal callbacks:
1920  * 1) devinfo_node_walk - physical device path for each node in
1921  *    the devinfo tree via di_walk_node(), lookup entry name is
1922  *    /devices/[di_devfs_path]
1923  * 2) devinfo_minor_walk - physical device path plus minor name for
1924  *    each minor associated with a node via di_walk_minor(), lookup entry
1925  *    name is /devices/[di_devfs_path:di_minor_name]
1926  * 3) devinfo_devlink_walk - for each minor's /dev link from its /devices
1927  *    path via di_devlink_walk(), lookup entry name is di_devlink_path()
1928  */
1929 static int
1930 add_lookup_entry(lookup_table_t *table, const char *name, di_node_t node)
1931 {
1932         size_t          size;
1933         lookup_entry_t  *new_table;
1934 
1935 
1936         /* Grow the lookup table by USAGE_ALLOC_SIZE slots if necessary */
1937         if (table->n_entries == table->n_slots) {
1938                 size = (table->n_slots + USAGE_ALLOC_SIZE) *
1939                     sizeof (lookup_entry_t);
1940                 new_table = (lookup_entry_t *)realloc(table->table, size);
1941                 if (new_table == NULL) {
1942                         dprintf((stderr, "add_lookup_entry: alloc failed: %s\n",
1943                             strerror(errno)));
1944                         errno = ENOMEM;
1945                         return (-1);
1946                 }
1947                 table->table = new_table;
1948                 table->n_slots += USAGE_ALLOC_SIZE;
1949         }
1950 
1951         dprintf((stderr, "add_lookup_entry[%d]:%s\n", table->n_entries, name));
1952 
1953         /* Add this name to the next slot */
1954         if ((table->table[table->n_entries].name = strdup(name)) == NULL) {
1955                 dprintf((stderr, "add_lookup_entry: strdup failed: %s\n",
1956                     strerror(errno)));
1957                 errno = ENOMEM;
1958                 return (-1);
1959         }
1960         table->table[table->n_entries].index = table->n_entries;
1961         table->table[table->n_entries].node = node;
1962         table->table[table->n_entries].n_usage = 0;
1963         table->table[table->n_entries].usage = NULL;
1964         table->n_entries += 1;
1965 
1966         return (0);
1967 }
1968 
1969 /*
1970  * lookup table entry names are full pathname strings, all start with /
1971  */
1972 static int
1973 table_compare_names(const void *a, const void *b)
1974 {
1975         lookup_entry_t *entry1 = (lookup_entry_t *)a;
1976         lookup_entry_t *entry2 = (lookup_entry_t *)b;
1977 
1978         return (strcmp(entry1->name, entry2->name));
1979 }
1980 
1981 
1982 /*
1983  * Compare two indices and return -1 for less, 1 for greater, 0 for equal
1984  */
1985 static int
1986 table_compare_indices(const void *a, const void *b)
1987 {
1988         lookup_entry_t *entry1 = (lookup_entry_t *)a;
1989         lookup_entry_t *entry2 = (lookup_entry_t *)b;
1990 
1991         if (entry1->index < entry2->index)
1992                 return (-1);
1993         if (entry1->index > entry2->index)
1994                 return (1);
1995         return (0);
1996 }
1997 
1998 /*
1999  * Given a RCM resource name, find the matching entry in the IO device table
2000  */
2001 static lookup_entry_t *
2002 lookup(lookup_table_t *table, const char *rcm_rsrc)
2003 {
2004         lookup_entry_t  *entry;
2005         lookup_entry_t  lookup_arg;
2006 
2007         dprintf((stderr, "lookup:%s\n", rcm_rsrc));
2008         lookup_arg.name = (char *)rcm_rsrc;
2009         entry = bsearch(&lookup_arg, table->table, table->n_entries,
2010             sizeof (lookup_entry_t), table_compare_names);
2011 
2012 #ifdef DEBUG
2013         if (entry != NULL) {
2014                 dprintf((stderr, " found entry:%d\n", entry->index));
2015         }
2016 #endif /* DEBUG */
2017         return (entry);
2018 }
2019 
2020 /*
2021  * Add RCM usage to the given device table entry.
2022  * Returns -1 on realloc failure.
2023  */
2024 static int
2025 add_usage(lookup_entry_t *entry, const char *rcm_rsrc, rcm_info_tuple_t *tuple)
2026 {
2027         size_t          size;
2028         const char      *info;
2029         usage_t         *new_usage;
2030 
2031         if ((entry == NULL) ||
2032             ((info = rcm_info_info(tuple)) == NULL))
2033                 return (0);
2034 
2035         if (rcm_ignore((char *)rcm_rsrc, (char *)info) == 0)
2036                 return (0);
2037 
2038         size = (entry->n_usage + 1) * sizeof (usage_t);
2039         new_usage = (usage_t *)realloc(entry->usage, size);
2040         if (new_usage == NULL) {
2041                 dprintf((stderr, "add_usage: alloc failed: %s\n",
2042                     strerror(errno)));
2043                 return (-1);
2044         }
2045         dprintf((stderr, "add_usage: entry %d rsrc: %s info: %s\n",
2046             entry->index, rcm_rsrc, info));
2047 
2048         entry->usage = new_usage;
2049         entry->usage[entry->n_usage].rsrc = rcm_rsrc;
2050         entry->usage[entry->n_usage].info = info;
2051         entry->n_usage += 1;
2052         return (0);
2053 }
2054 
2055 static void
2056 empty_table(lookup_table_t *table)
2057 {
2058         int i;
2059 
2060         if (table) {
2061                 for (i = 0; i < table->n_entries; i++) {
2062                         if (table->table[i].name)
2063                                 free(table->table[i].name);
2064                         /*
2065                          * Note: the strings pointed to from within
2066                          * usage were freed already by rcm_free_info
2067                          */
2068                         if (table->table[i].usage)
2069                                 free(table->table[i].usage);
2070                 }
2071                 if (table->table)
2072                         free(table->table);
2073                 table->table = NULL;
2074                 table->n_entries = 0;
2075                 table->n_slots = 0;
2076         }
2077 }