1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
  24  */
  25 
  26 /*      Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
  27 /*      Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T   */
  28 /*              All Rights Reserved                             */
  29 /*                                                              */
  30 /*      Copyright (c) 1987, 1988 Microsoft Corporation          */
  31 /*              All Rights Reserved                             */
  32 /*                                                              */
  33 
  34 /*
  35  * Copyright 2012 Joyent, Inc. All rights reserved.
  36  */
  37 
  38 #include <sys/types.h>
  39 #include <sys/sysmacros.h>
  40 #include <sys/param.h>
  41 #include <sys/signal.h>
  42 #include <sys/systm.h>
  43 #include <sys/user.h>
  44 #include <sys/proc.h>
  45 #include <sys/disp.h>
  46 #include <sys/class.h>
  47 #include <sys/core.h>
  48 #include <sys/syscall.h>
  49 #include <sys/cpuvar.h>
  50 #include <sys/vm.h>
  51 #include <sys/sysinfo.h>
  52 #include <sys/fault.h>
  53 #include <sys/stack.h>
  54 #include <sys/psw.h>
  55 #include <sys/regset.h>
  56 #include <sys/fp.h>
  57 #include <sys/trap.h>
  58 #include <sys/kmem.h>
  59 #include <sys/vtrace.h>
  60 #include <sys/cmn_err.h>
  61 #include <sys/prsystm.h>
  62 #include <sys/mutex_impl.h>
  63 #include <sys/machsystm.h>
  64 #include <sys/archsystm.h>
  65 #include <sys/sdt.h>
  66 #include <sys/avintr.h>
  67 #include <sys/kobj.h>
  68 
  69 #include <vm/hat.h>
  70 
  71 #include <vm/seg_kmem.h>
  72 #include <vm/as.h>
  73 #include <vm/seg.h>
  74 #include <vm/hat_pte.h>
  75 #include <vm/hat_i86.h>
  76 
  77 #include <sys/procfs.h>
  78 
  79 #include <sys/reboot.h>
  80 #include <sys/debug.h>
  81 #include <sys/debugreg.h>
  82 #include <sys/modctl.h>
  83 #include <sys/aio_impl.h>
  84 #include <sys/tnf.h>
  85 #include <sys/tnf_probe.h>
  86 #include <sys/cred.h>
  87 #include <sys/mman.h>
  88 #include <sys/x86_archext.h>
  89 #include <sys/copyops.h>
  90 #include <c2/audit.h>
  91 #include <sys/ftrace.h>
  92 #include <sys/panic.h>
  93 #include <sys/traptrace.h>
  94 #include <sys/ontrap.h>
  95 #include <sys/cpc_impl.h>
  96 #include <sys/bootconf.h>
  97 #include <sys/bootinfo.h>
  98 #include <sys/promif.h>
  99 #include <sys/mach_mmu.h>
 100 #if defined(__xpv)
 101 #include <sys/hypervisor.h>
 102 #endif
 103 #include <sys/contract/process_impl.h>
 104 
 105 #define USER    0x10000         /* user-mode flag added to trap type */
 106 
 107 static const char *trap_type_mnemonic[] = {
 108         "de",   "db",   "2",    "bp",
 109         "of",   "br",   "ud",   "nm",
 110         "df",   "9",    "ts",   "np",
 111         "ss",   "gp",   "pf",   "15",
 112         "mf",   "ac",   "mc",   "xf"
 113 };
 114 
 115 static const char *trap_type[] = {
 116         "Divide error",                         /* trap id 0    */
 117         "Debug",                                /* trap id 1    */
 118         "NMI interrupt",                        /* trap id 2    */
 119         "Breakpoint",                           /* trap id 3    */
 120         "Overflow",                             /* trap id 4    */
 121         "BOUND range exceeded",                 /* trap id 5    */
 122         "Invalid opcode",                       /* trap id 6    */
 123         "Device not available",                 /* trap id 7    */
 124         "Double fault",                         /* trap id 8    */
 125         "Coprocessor segment overrun",          /* trap id 9    */
 126         "Invalid TSS",                          /* trap id 10   */
 127         "Segment not present",                  /* trap id 11   */
 128         "Stack segment fault",                  /* trap id 12   */
 129         "General protection",                   /* trap id 13   */
 130         "Page fault",                           /* trap id 14   */
 131         "Reserved",                             /* trap id 15   */
 132         "x87 floating point error",             /* trap id 16   */
 133         "Alignment check",                      /* trap id 17   */
 134         "Machine check",                        /* trap id 18   */
 135         "SIMD floating point exception",        /* trap id 19   */
 136 };
 137 
 138 #define TRAP_TYPES      (sizeof (trap_type) / sizeof (trap_type[0]))
 139 
 140 #define SLOW_SCALL_SIZE 2
 141 #define FAST_SCALL_SIZE 2
 142 
 143 int tudebug = 0;
 144 int tudebugbpt = 0;
 145 int tudebugfpe = 0;
 146 int tudebugsse = 0;
 147 
 148 #if defined(TRAPDEBUG) || defined(lint)
 149 int tdebug = 0;
 150 int lodebug = 0;
 151 int faultdebug = 0;
 152 #else
 153 #define tdebug  0
 154 #define lodebug 0
 155 #define faultdebug      0
 156 #endif /* defined(TRAPDEBUG) || defined(lint) */
 157 
 158 #if defined(TRAPTRACE)
 159 /*
 160  * trap trace record for cpu0 is allocated here.
 161  * trap trace records for non-boot cpus are allocated in mp_startup_init().
 162  */
 163 static trap_trace_rec_t trap_tr0[TRAPTR_NENT];
 164 trap_trace_ctl_t trap_trace_ctl[NCPU] = {
 165         {
 166             (uintptr_t)trap_tr0,                        /* next record */
 167             (uintptr_t)trap_tr0,                        /* first record */
 168             (uintptr_t)(trap_tr0 + TRAPTR_NENT),        /* limit */
 169             (uintptr_t)0                                /* current */
 170         },
 171 };
 172 
 173 /*
 174  * default trap buffer size
 175  */
 176 size_t trap_trace_bufsize = TRAPTR_NENT * sizeof (trap_trace_rec_t);
 177 int trap_trace_freeze = 0;
 178 int trap_trace_off = 0;
 179 
 180 /*
 181  * A dummy TRAPTRACE entry to use after death.
 182  */
 183 trap_trace_rec_t trap_trace_postmort;
 184 
 185 static void dump_ttrace(void);
 186 #endif  /* TRAPTRACE */
 187 static void dumpregs(struct regs *);
 188 static void showregs(uint_t, struct regs *, caddr_t);
 189 static int kern_gpfault(struct regs *);
 190 
 191 /*ARGSUSED*/
 192 static int
 193 die(uint_t type, struct regs *rp, caddr_t addr, processorid_t cpuid)
 194 {
 195         struct panic_trap_info ti;
 196         const char *trap_name, *trap_mnemonic;
 197 
 198         if (type < TRAP_TYPES) {
 199                 trap_name = trap_type[type];
 200                 trap_mnemonic = trap_type_mnemonic[type];
 201         } else {
 202                 trap_name = "trap";
 203                 trap_mnemonic = "-";
 204         }
 205 
 206 #ifdef TRAPTRACE
 207         TRAPTRACE_FREEZE;
 208 #endif
 209 
 210         ti.trap_regs = rp;
 211         ti.trap_type = type & ~USER;
 212         ti.trap_addr = addr;
 213 
 214         curthread->t_panic_trap = &ti;
 215 
 216         if (type == T_PGFLT && addr < (caddr_t)KERNELBASE) {
 217                 panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p "
 218                     "occurred in module \"%s\" due to %s",
 219                     type, trap_mnemonic, trap_name, (void *)rp, (void *)addr,
 220                     mod_containing_pc((caddr_t)rp->r_pc),
 221                     addr < (caddr_t)PAGESIZE ?
 222                     "a NULL pointer dereference" :
 223                     "an illegal access to a user address");
 224         } else
 225                 panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p",
 226                     type, trap_mnemonic, trap_name, (void *)rp, (void *)addr);
 227         return (0);
 228 }
 229 
 230 /*
 231  * Rewrite the instruction at pc to be an int $T_SYSCALLINT instruction.
 232  *
 233  * int <vector> is two bytes: 0xCD <vector>
 234  */
 235 
 236 static int
 237 rewrite_syscall(caddr_t pc)
 238 {
 239         uchar_t instr[SLOW_SCALL_SIZE] = { 0xCD, T_SYSCALLINT };
 240 
 241         if (uwrite(curthread->t_procp, instr, SLOW_SCALL_SIZE,
 242             (uintptr_t)pc) != 0)
 243                 return (1);
 244 
 245         return (0);
 246 }
 247 
 248 /*
 249  * Test to see if the instruction at pc is sysenter or syscall. The second
 250  * argument should be the x86 feature flag corresponding to the expected
 251  * instruction.
 252  *
 253  * sysenter is two bytes: 0x0F 0x34
 254  * syscall is two bytes:  0x0F 0x05
 255  * int $T_SYSCALLINT is two bytes: 0xCD 0x91
 256  */
 257 
 258 static int
 259 instr_is_other_syscall(caddr_t pc, int which)
 260 {
 261         uchar_t instr[FAST_SCALL_SIZE];
 262 
 263         ASSERT(which == X86FSET_SEP || which == X86FSET_ASYSC || which == 0xCD);
 264 
 265         if (copyin_nowatch(pc, (caddr_t)instr, FAST_SCALL_SIZE) != 0)
 266                 return (0);
 267 
 268         switch (which) {
 269         case X86FSET_SEP:
 270                 if (instr[0] == 0x0F && instr[1] == 0x34)
 271                         return (1);
 272                 break;
 273         case X86FSET_ASYSC:
 274                 if (instr[0] == 0x0F && instr[1] == 0x05)
 275                         return (1);
 276                 break;
 277         case 0xCD:
 278                 if (instr[0] == 0xCD && instr[1] == T_SYSCALLINT)
 279                         return (1);
 280                 break;
 281         }
 282 
 283         return (0);
 284 }
 285 
 286 static const char *
 287 syscall_insn_string(int syscall_insn)
 288 {
 289         switch (syscall_insn) {
 290         case X86FSET_SEP:
 291                 return ("sysenter");
 292         case X86FSET_ASYSC:
 293                 return ("syscall");
 294         case 0xCD:
 295                 return ("int");
 296         default:
 297                 return ("Unknown");
 298         }
 299 }
 300 
 301 static int
 302 ldt_rewrite_syscall(struct regs *rp, proc_t *p, int syscall_insn)
 303 {
 304         caddr_t linearpc;
 305         int return_code = 0;
 306 
 307         mutex_enter(&p->p_ldtlock);      /* Must be held across linear_pc() */
 308 
 309         if (linear_pc(rp, p, &linearpc) == 0) {
 310 
 311                 /*
 312                  * If another thread beat us here, it already changed
 313                  * this site to the slower (int) syscall instruction.
 314                  */
 315                 if (instr_is_other_syscall(linearpc, 0xCD)) {
 316                         return_code = 1;
 317                 } else if (instr_is_other_syscall(linearpc, syscall_insn)) {
 318 
 319                         if (rewrite_syscall(linearpc) == 0) {
 320                                 return_code = 1;
 321                         }
 322 #ifdef DEBUG
 323                         else
 324                                 cmn_err(CE_WARN, "failed to rewrite %s "
 325                                     "instruction in process %d",
 326                                     syscall_insn_string(syscall_insn),
 327                                     p->p_pid);
 328 #endif /* DEBUG */
 329                 }
 330         }
 331 
 332         mutex_exit(&p->p_ldtlock);       /* Must be held across linear_pc() */
 333 
 334         return (return_code);
 335 }
 336 
 337 /*
 338  * Test to see if the instruction at pc is a system call instruction.
 339  *
 340  * The bytes of an lcall instruction used for the syscall trap.
 341  * static uchar_t lcall[7] = { 0x9a, 0, 0, 0, 0, 0x7, 0 };
 342  * static uchar_t lcallalt[7] = { 0x9a, 0, 0, 0, 0, 0x27, 0 };
 343  */
 344 
 345 #define LCALLSIZE       7
 346 
 347 static int
 348 instr_is_lcall_syscall(caddr_t pc)
 349 {
 350         uchar_t instr[LCALLSIZE];
 351 
 352         if (copyin_nowatch(pc, (caddr_t)instr, LCALLSIZE) == 0 &&
 353             instr[0] == 0x9a &&
 354             instr[1] == 0 &&
 355             instr[2] == 0 &&
 356             instr[3] == 0 &&
 357             instr[4] == 0 &&
 358             (instr[5] == 0x7 || instr[5] == 0x27) &&
 359             instr[6] == 0)
 360                 return (1);
 361 
 362         return (0);
 363 }
 364 
 365 #ifdef __amd64
 366 
 367 /*
 368  * In the first revisions of amd64 CPUs produced by AMD, the LAHF and
 369  * SAHF instructions were not implemented in 64-bit mode. Later revisions
 370  * did implement these instructions. An extension to the cpuid instruction
 371  * was added to check for the capability of executing these instructions
 372  * in 64-bit mode.
 373  *
 374  * Intel originally did not implement these instructions in EM64T either,
 375  * but added them in later revisions.
 376  *
 377  * So, there are different chip revisions by both vendors out there that
 378  * may or may not implement these instructions. The easy solution is to
 379  * just always emulate these instructions on demand.
 380  *
 381  * SAHF == store %ah in the lower 8 bits of %rflags (opcode 0x9e)
 382  * LAHF == load the lower 8 bits of %rflags into %ah (opcode 0x9f)
 383  */
 384 
 385 #define LSAHFSIZE 1
 386 
 387 static int
 388 instr_is_lsahf(caddr_t pc, uchar_t *instr)
 389 {
 390         if (copyin_nowatch(pc, (caddr_t)instr, LSAHFSIZE) == 0 &&
 391             (*instr == 0x9e || *instr == 0x9f))
 392                 return (1);
 393         return (0);
 394 }
 395 
 396 /*
 397  * Emulate the LAHF and SAHF instructions. The reference manuals define
 398  * these instructions to always load/store bit 1 as a 1, and bits 3 and 5
 399  * as a 0. The other, defined, bits are copied (the PS_ICC bits and PS_P).
 400  *
 401  * Note that %ah is bits 8-15 of %rax.
 402  */
 403 static void
 404 emulate_lsahf(struct regs *rp, uchar_t instr)
 405 {
 406         if (instr == 0x9e) {
 407                 /* sahf. Copy bits from %ah to flags. */
 408                 rp->r_ps = (rp->r_ps & ~0xff) |
 409                     ((rp->r_rax >> 8) & PSL_LSAHFMASK) | PS_MB1;
 410         } else {
 411                 /* lahf. Copy bits from flags to %ah. */
 412                 rp->r_rax = (rp->r_rax & ~0xff00) |
 413                     (((rp->r_ps & PSL_LSAHFMASK) | PS_MB1) << 8);
 414         }
 415         rp->r_pc += LSAHFSIZE;
 416 }
 417 #endif /* __amd64 */
 418 
 419 #ifdef OPTERON_ERRATUM_91
 420 
 421 /*
 422  * Test to see if the instruction at pc is a prefetch instruction.
 423  *
 424  * The first byte of prefetch instructions is always 0x0F.
 425  * The second byte is 0x18 for regular prefetch or 0x0D for AMD 3dnow prefetch.
 426  * The third byte (ModRM) contains the register field bits (bits 3-5).
 427  * These bits must be between 0 and 3 inclusive for regular prefetch and
 428  * 0 and 1 inclusive for AMD 3dnow prefetch.
 429  *
 430  * In 64-bit mode, there may be a one-byte REX prefex (0x40-0x4F).
 431  */
 432 
 433 static int
 434 cmp_to_prefetch(uchar_t *p)
 435 {
 436 #ifdef _LP64
 437         if ((p[0] & 0xF0) == 0x40)  /* 64-bit REX prefix */
 438                 p++;
 439 #endif
 440         return ((p[0] == 0x0F && p[1] == 0x18 && ((p[2] >> 3) & 7) <= 3) ||
 441             (p[0] == 0x0F && p[1] == 0x0D && ((p[2] >> 3) & 7) <= 1));
 442 }
 443 
 444 static int
 445 instr_is_prefetch(caddr_t pc)
 446 {
 447         uchar_t instr[4];       /* optional REX prefix plus 3-byte opcode */
 448 
 449         return (copyin_nowatch(pc, instr, sizeof (instr)) == 0 &&
 450             cmp_to_prefetch(instr));
 451 }
 452 
 453 #endif /* OPTERON_ERRATUM_91 */
 454 
 455 /*
 456  * Called from the trap handler when a processor trap occurs.
 457  *
 458  * Note: All user-level traps that might call stop() must exit
 459  * trap() by 'goto out' or by falling through.
 460  * Note Also: trap() is usually called with interrupts enabled, (PS_IE == 1)
 461  * however, there are paths that arrive here with PS_IE == 0 so special care
 462  * must be taken in those cases.
 463  */
 464 void
 465 trap(struct regs *rp, caddr_t addr, processorid_t cpuid)
 466 {
 467         kthread_t *ct = curthread;
 468         enum seg_rw rw;
 469         unsigned type;
 470         proc_t *p = ttoproc(ct);
 471         klwp_t *lwp = ttolwp(ct);
 472         uintptr_t lofault;
 473         label_t *onfault;
 474         faultcode_t pagefault(), res, errcode;
 475         enum fault_type fault_type;
 476         k_siginfo_t siginfo;
 477         uint_t fault = 0;
 478         int mstate;
 479         int sicode = 0;
 480         int watchcode;
 481         int watchpage;
 482         caddr_t vaddr;
 483         int singlestep_twiddle;
 484         size_t sz;
 485         int ta;
 486 #ifdef __amd64
 487         uchar_t instr;
 488 #endif
 489 
 490         ASSERT_STACK_ALIGNED();
 491 
 492         type = rp->r_trapno;
 493         CPU_STATS_ADDQ(CPU, sys, trap, 1);
 494         ASSERT(ct->t_schedflag & TS_DONT_SWAP);
 495 
 496         if (type == T_PGFLT) {
 497 
 498                 errcode = rp->r_err;
 499                 if (errcode & PF_ERR_WRITE)
 500                         rw = S_WRITE;
 501                 else if ((caddr_t)rp->r_pc == addr ||
 502                     (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC)))
 503                         rw = S_EXEC;
 504                 else
 505                         rw = S_READ;
 506 
 507 #if defined(__i386)
 508                 /*
 509                  * Pentium Pro work-around
 510                  */
 511                 if ((errcode & PF_ERR_PROT) && pentiumpro_bug4046376) {
 512                         uint_t  attr;
 513                         uint_t  priv_violation;
 514                         uint_t  access_violation;
 515 
 516                         if (hat_getattr(addr < (caddr_t)kernelbase ?
 517                             curproc->p_as->a_hat : kas.a_hat, addr, &attr)
 518                             == -1) {
 519                                 errcode &= ~PF_ERR_PROT;
 520                         } else {
 521                                 priv_violation = (errcode & PF_ERR_USER) &&
 522                                     !(attr & PROT_USER);
 523                                 access_violation = (errcode & PF_ERR_WRITE) &&
 524                                     !(attr & PROT_WRITE);
 525                                 if (!priv_violation && !access_violation)
 526                                         goto cleanup;
 527                         }
 528                 }
 529 #endif /* __i386 */
 530 
 531         } else if (type == T_SGLSTP && lwp != NULL)
 532                 lwp->lwp_pcb.pcb_drstat = (uintptr_t)addr;
 533 
 534         if (tdebug)
 535                 showregs(type, rp, addr);
 536 
 537         if (USERMODE(rp->r_cs)) {
 538                 /*
 539                  * Set up the current cred to use during this trap. u_cred
 540                  * no longer exists.  t_cred is used instead.
 541                  * The current process credential applies to the thread for
 542                  * the entire trap.  If trapping from the kernel, this
 543                  * should already be set up.
 544                  */
 545                 if (ct->t_cred != p->p_cred) {
 546                         cred_t *oldcred = ct->t_cred;
 547                         /*
 548                          * DTrace accesses t_cred in probe context.  t_cred
 549                          * must always be either NULL, or point to a valid,
 550                          * allocated cred structure.
 551                          */
 552                         ct->t_cred = crgetcred();
 553                         crfree(oldcred);
 554                 }
 555                 ASSERT(lwp != NULL);
 556                 type |= USER;
 557                 ASSERT(lwptoregs(lwp) == rp);
 558                 lwp->lwp_state = LWP_SYS;
 559 
 560                 switch (type) {
 561                 case T_PGFLT + USER:
 562                         if ((caddr_t)rp->r_pc == addr)
 563                                 mstate = LMS_TFAULT;
 564                         else
 565                                 mstate = LMS_DFAULT;
 566                         break;
 567                 default:
 568                         mstate = LMS_TRAP;
 569                         break;
 570                 }
 571                 /* Kernel probe */
 572                 TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
 573                     tnf_microstate, state, mstate);
 574                 mstate = new_mstate(ct, mstate);
 575 
 576                 bzero(&siginfo, sizeof (siginfo));
 577         }
 578 
 579         switch (type) {
 580         case T_PGFLT + USER:
 581         case T_SGLSTP:
 582         case T_SGLSTP + USER:
 583         case T_BPTFLT + USER:
 584                 break;
 585 
 586         default:
 587                 FTRACE_2("trap(): type=0x%lx, regs=0x%lx",
 588                     (ulong_t)type, (ulong_t)rp);
 589                 break;
 590         }
 591 
 592         switch (type) {
 593         case T_SIMDFPE:
 594                 /* Make sure we enable interrupts before die()ing */
 595                 sti();  /* The SIMD exception comes in via cmninttrap */
 596                 /*FALLTHROUGH*/
 597         default:
 598                 if (type & USER) {
 599                         if (tudebug)
 600                                 showregs(type, rp, (caddr_t)0);
 601                         printf("trap: Unknown trap type %d in user mode\n",
 602                             type & ~USER);
 603                         siginfo.si_signo = SIGILL;
 604                         siginfo.si_code  = ILL_ILLTRP;
 605                         siginfo.si_addr  = (caddr_t)rp->r_pc;
 606                         siginfo.si_trapno = type & ~USER;
 607                         fault = FLTILL;
 608                         break;
 609                 } else {
 610                         (void) die(type, rp, addr, cpuid);
 611                         /*NOTREACHED*/
 612                 }
 613 
 614         case T_PGFLT:           /* system page fault */
 615                 /*
 616                  * If we're under on_trap() protection (see <sys/ontrap.h>),
 617                  * set ot_trap and bounce back to the on_trap() call site
 618                  * via the installed trampoline.
 619                  */
 620                 if ((ct->t_ontrap != NULL) &&
 621                     (ct->t_ontrap->ot_prot & OT_DATA_ACCESS)) {
 622                         ct->t_ontrap->ot_trap |= OT_DATA_ACCESS;
 623                         rp->r_pc = ct->t_ontrap->ot_trampoline;
 624                         goto cleanup;
 625                 }
 626 
 627                 /*
 628                  * See if we can handle as pagefault. Save lofault and onfault
 629                  * across this. Here we assume that an address less than
 630                  * KERNELBASE is a user fault.  We can do this as copy.s
 631                  * routines verify that the starting address is less than
 632                  * KERNELBASE before starting and because we know that we
 633                  * always have KERNELBASE mapped as invalid to serve as a
 634                  * "barrier".
 635                  */
 636                 lofault = ct->t_lofault;
 637                 onfault = ct->t_onfault;
 638                 ct->t_lofault = 0;
 639 
 640                 mstate = new_mstate(ct, LMS_KFAULT);
 641 
 642                 if (addr < (caddr_t)kernelbase) {
 643                         res = pagefault(addr,
 644                             (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 0);
 645                         if (res == FC_NOMAP &&
 646                             addr < p->p_usrstack &&
 647                             grow(addr))
 648                                 res = 0;
 649                 } else {
 650                         res = pagefault(addr,
 651                             (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 1);
 652                 }
 653                 (void) new_mstate(ct, mstate);
 654 
 655                 /*
 656                  * Restore lofault and onfault. If we resolved the fault, exit.
 657                  * If we didn't and lofault wasn't set, die.
 658                  */
 659                 ct->t_lofault = lofault;
 660                 ct->t_onfault = onfault;
 661                 if (res == 0)
 662                         goto cleanup;
 663 
 664 #if defined(OPTERON_ERRATUM_93) && defined(_LP64)
 665                 if (lofault == 0 && opteron_erratum_93) {
 666                         /*
 667                          * Workaround for Opteron Erratum 93. On return from
 668                          * a System Managment Interrupt at a HLT instruction
 669                          * the %rip might be truncated to a 32 bit value.
 670                          * BIOS is supposed to fix this, but some don't.
 671                          * If this occurs we simply restore the high order bits.
 672                          * The HLT instruction is 1 byte of 0xf4.
 673                          */
 674                         uintptr_t       rip = rp->r_pc;
 675 
 676                         if ((rip & 0xfffffffful) == rip) {
 677                                 rip |= 0xfffffffful << 32;
 678                                 if (hat_getpfnum(kas.a_hat, (caddr_t)rip) !=
 679                                     PFN_INVALID &&
 680                                     (*(uchar_t *)rip == 0xf4 ||
 681                                     *(uchar_t *)(rip - 1) == 0xf4)) {
 682                                         rp->r_pc = rip;
 683                                         goto cleanup;
 684                                 }
 685                         }
 686                 }
 687 #endif /* OPTERON_ERRATUM_93 && _LP64 */
 688 
 689 #ifdef OPTERON_ERRATUM_91
 690                 if (lofault == 0 && opteron_erratum_91) {
 691                         /*
 692                          * Workaround for Opteron Erratum 91. Prefetches may
 693                          * generate a page fault (they're not supposed to do
 694                          * that!). If this occurs we simply return back to the
 695                          * instruction.
 696                          */
 697                         caddr_t         pc = (caddr_t)rp->r_pc;
 698 
 699                         /*
 700                          * If the faulting PC is not mapped, this is a
 701                          * legitimate kernel page fault that must result in a
 702                          * panic. If the faulting PC is mapped, it could contain
 703                          * a prefetch instruction. Check for that here.
 704                          */
 705                         if (hat_getpfnum(kas.a_hat, pc) != PFN_INVALID) {
 706                                 if (cmp_to_prefetch((uchar_t *)pc)) {
 707 #ifdef DEBUG
 708                                         cmn_err(CE_WARN, "Opteron erratum 91 "
 709                                             "occurred: kernel prefetch"
 710                                             " at %p generated a page fault!",
 711                                             (void *)rp->r_pc);
 712 #endif /* DEBUG */
 713                                         goto cleanup;
 714                                 }
 715                         }
 716                         (void) die(type, rp, addr, cpuid);
 717                 }
 718 #endif /* OPTERON_ERRATUM_91 */
 719 
 720                 if (lofault == 0)
 721                         (void) die(type, rp, addr, cpuid);
 722 
 723                 /*
 724                  * Cannot resolve fault.  Return to lofault.
 725                  */
 726                 if (lodebug) {
 727                         showregs(type, rp, addr);
 728                         traceregs(rp);
 729                 }
 730                 if (FC_CODE(res) == FC_OBJERR)
 731                         res = FC_ERRNO(res);
 732                 else
 733                         res = EFAULT;
 734                 rp->r_r0 = res;
 735                 rp->r_pc = ct->t_lofault;
 736                 goto cleanup;
 737 
 738         case T_PGFLT + USER:    /* user page fault */
 739                 if (faultdebug) {
 740                         char *fault_str;
 741 
 742                         switch (rw) {
 743                         case S_READ:
 744                                 fault_str = "read";
 745                                 break;
 746                         case S_WRITE:
 747                                 fault_str = "write";
 748                                 break;
 749                         case S_EXEC:
 750                                 fault_str = "exec";
 751                                 break;
 752                         default:
 753                                 fault_str = "";
 754                                 break;
 755                         }
 756                         printf("user %s fault:  addr=0x%lx errcode=0x%x\n",
 757                             fault_str, (uintptr_t)addr, errcode);
 758                 }
 759 
 760 #if defined(OPTERON_ERRATUM_100) && defined(_LP64)
 761                 /*
 762                  * Workaround for AMD erratum 100
 763                  *
 764                  * A 32-bit process may receive a page fault on a non
 765                  * 32-bit address by mistake. The range of the faulting
 766                  * address will be
 767                  *
 768                  *      0xffffffff80000000 .. 0xffffffffffffffff or
 769                  *      0x0000000100000000 .. 0x000000017fffffff
 770                  *
 771                  * The fault is always due to an instruction fetch, however
 772                  * the value of r_pc should be correct (in 32 bit range),
 773                  * so we ignore the page fault on the bogus address.
 774                  */
 775                 if (p->p_model == DATAMODEL_ILP32 &&
 776                     (0xffffffff80000000 <= (uintptr_t)addr ||
 777                     (0x100000000 <= (uintptr_t)addr &&
 778                     (uintptr_t)addr <= 0x17fffffff))) {
 779                         if (!opteron_erratum_100)
 780                                 panic("unexpected erratum #100");
 781                         if (rp->r_pc <= 0xffffffff)
 782                                 goto out;
 783                 }
 784 #endif /* OPTERON_ERRATUM_100 && _LP64 */
 785 
 786                 ASSERT(!(curthread->t_flag & T_WATCHPT));
 787                 watchpage = (pr_watch_active(p) && pr_is_watchpage(addr, rw));
 788 #ifdef __i386
 789                 /*
 790                  * In 32-bit mode, the lcall (system call) instruction fetches
 791                  * one word from the stack, at the stack pointer, because of the
 792                  * way the call gate is constructed.  This is a bogus
 793                  * read and should not be counted as a read watchpoint.
 794                  * We work around the problem here by testing to see if
 795                  * this situation applies and, if so, simply jumping to
 796                  * the code in locore.s that fields the system call trap.
 797                  * The registers on the stack are already set up properly
 798                  * due to the match between the call gate sequence and the
 799                  * trap gate sequence.  We just have to adjust the pc.
 800                  */
 801                 if (watchpage && addr == (caddr_t)rp->r_sp &&
 802                     rw == S_READ && instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
 803                         extern void watch_syscall(void);
 804 
 805                         rp->r_pc += LCALLSIZE;
 806                         watch_syscall();        /* never returns */
 807                         /* NOTREACHED */
 808                 }
 809 #endif /* __i386 */
 810                 vaddr = addr;
 811                 if (!watchpage || (sz = instr_size(rp, &vaddr, rw)) <= 0)
 812                         fault_type = (errcode & PF_ERR_PROT)? F_PROT: F_INVAL;
 813                 else if ((watchcode = pr_is_watchpoint(&vaddr, &ta,
 814                     sz, NULL, rw)) != 0) {
 815                         if (ta) {
 816                                 do_watch_step(vaddr, sz, rw,
 817                                     watchcode, rp->r_pc);
 818                                 fault_type = F_INVAL;
 819                         } else {
 820                                 bzero(&siginfo, sizeof (siginfo));
 821                                 siginfo.si_signo = SIGTRAP;
 822                                 siginfo.si_code = watchcode;
 823                                 siginfo.si_addr = vaddr;
 824                                 siginfo.si_trapafter = 0;
 825                                 siginfo.si_pc = (caddr_t)rp->r_pc;
 826                                 fault = FLTWATCH;
 827                                 break;
 828                         }
 829                 } else {
 830                         /* XXX pr_watch_emul() never succeeds (for now) */
 831                         if (rw != S_EXEC && pr_watch_emul(rp, vaddr, rw))
 832                                 goto out;
 833                         do_watch_step(vaddr, sz, rw, 0, 0);
 834                         fault_type = F_INVAL;
 835                 }
 836 
 837                 res = pagefault(addr, fault_type, rw, 0);
 838 
 839                 /*
 840                  * If pagefault() succeeded, ok.
 841                  * Otherwise attempt to grow the stack.
 842                  */
 843                 if (res == 0 ||
 844                     (res == FC_NOMAP &&
 845                     addr < p->p_usrstack &&
 846                     grow(addr))) {
 847                         lwp->lwp_lastfault = FLTPAGE;
 848                         lwp->lwp_lastfaddr = addr;
 849                         if (prismember(&p->p_fltmask, FLTPAGE)) {
 850                                 bzero(&siginfo, sizeof (siginfo));
 851                                 siginfo.si_addr = addr;
 852                                 (void) stop_on_fault(FLTPAGE, &siginfo);
 853                         }
 854                         goto out;
 855                 } else if (res == FC_PROT && addr < p->p_usrstack &&
 856                     (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC))) {
 857                         report_stack_exec(p, addr);
 858                 }
 859 
 860 #ifdef OPTERON_ERRATUM_91
 861                 /*
 862                  * Workaround for Opteron Erratum 91. Prefetches may generate a
 863                  * page fault (they're not supposed to do that!). If this
 864                  * occurs we simply return back to the instruction.
 865                  *
 866                  * We rely on copyin to properly fault in the page with r_pc.
 867                  */
 868                 if (opteron_erratum_91 &&
 869                     addr != (caddr_t)rp->r_pc &&
 870                     instr_is_prefetch((caddr_t)rp->r_pc)) {
 871 #ifdef DEBUG
 872                         cmn_err(CE_WARN, "Opteron erratum 91 occurred: "
 873                             "prefetch at %p in pid %d generated a trap!",
 874                             (void *)rp->r_pc, p->p_pid);
 875 #endif /* DEBUG */
 876                         goto out;
 877                 }
 878 #endif /* OPTERON_ERRATUM_91 */
 879 
 880                 if (tudebug)
 881                         showregs(type, rp, addr);
 882                 /*
 883                  * In the case where both pagefault and grow fail,
 884                  * set the code to the value provided by pagefault.
 885                  * We map all errors returned from pagefault() to SIGSEGV.
 886                  */
 887                 bzero(&siginfo, sizeof (siginfo));
 888                 siginfo.si_addr = addr;
 889                 switch (FC_CODE(res)) {
 890                 case FC_HWERR:
 891                 case FC_NOSUPPORT:
 892                         siginfo.si_signo = SIGBUS;
 893                         siginfo.si_code = BUS_ADRERR;
 894                         fault = FLTACCESS;
 895                         break;
 896                 case FC_ALIGN:
 897                         siginfo.si_signo = SIGBUS;
 898                         siginfo.si_code = BUS_ADRALN;
 899                         fault = FLTACCESS;
 900                         break;
 901                 case FC_OBJERR:
 902                         if ((siginfo.si_errno = FC_ERRNO(res)) != EINTR) {
 903                                 siginfo.si_signo = SIGBUS;
 904                                 siginfo.si_code = BUS_OBJERR;
 905                                 fault = FLTACCESS;
 906                         }
 907                         break;
 908                 default:        /* FC_NOMAP or FC_PROT */
 909                         siginfo.si_signo = SIGSEGV;
 910                         siginfo.si_code =
 911                             (res == FC_NOMAP)? SEGV_MAPERR : SEGV_ACCERR;
 912                         fault = FLTBOUNDS;
 913                         break;
 914                 }
 915                 break;
 916 
 917         case T_ILLINST + USER:  /* invalid opcode fault */
 918                 /*
 919                  * If the syscall instruction is disabled due to LDT usage, a
 920                  * user program that attempts to execute it will trigger a #ud
 921                  * trap. Check for that case here. If this occurs on a CPU which
 922                  * doesn't even support syscall, the result of all of this will
 923                  * be to emulate that particular instruction.
 924                  */
 925                 if (p->p_ldt != NULL &&
 926                     ldt_rewrite_syscall(rp, p, X86FSET_ASYSC))
 927                         goto out;
 928 
 929 #ifdef __amd64
 930                 /*
 931                  * Emulate the LAHF and SAHF instructions if needed.
 932                  * See the instr_is_lsahf function for details.
 933                  */
 934                 if (p->p_model == DATAMODEL_LP64 &&
 935                     instr_is_lsahf((caddr_t)rp->r_pc, &instr)) {
 936                         emulate_lsahf(rp, instr);
 937                         goto out;
 938                 }
 939 #endif
 940 
 941                 /*FALLTHROUGH*/
 942 
 943                 if (tudebug)
 944                         showregs(type, rp, (caddr_t)0);
 945                 siginfo.si_signo = SIGILL;
 946                 siginfo.si_code  = ILL_ILLOPC;
 947                 siginfo.si_addr  = (caddr_t)rp->r_pc;
 948                 fault = FLTILL;
 949                 break;
 950 
 951         case T_ZERODIV + USER:          /* integer divide by zero */
 952                 if (tudebug && tudebugfpe)
 953                         showregs(type, rp, (caddr_t)0);
 954                 siginfo.si_signo = SIGFPE;
 955                 siginfo.si_code  = FPE_INTDIV;
 956                 siginfo.si_addr  = (caddr_t)rp->r_pc;
 957                 fault = FLTIZDIV;
 958                 break;
 959 
 960         case T_OVFLW + USER:    /* integer overflow */
 961                 if (tudebug && tudebugfpe)
 962                         showregs(type, rp, (caddr_t)0);
 963                 siginfo.si_signo = SIGFPE;
 964                 siginfo.si_code  = FPE_INTOVF;
 965                 siginfo.si_addr  = (caddr_t)rp->r_pc;
 966                 fault = FLTIOVF;
 967                 break;
 968 
 969         case T_NOEXTFLT + USER: /* math coprocessor not available */
 970                 if (tudebug && tudebugfpe)
 971                         showregs(type, rp, addr);
 972                 if (fpnoextflt(rp)) {
 973                         siginfo.si_signo = SIGILL;
 974                         siginfo.si_code  = ILL_ILLOPC;
 975                         siginfo.si_addr  = (caddr_t)rp->r_pc;
 976                         fault = FLTILL;
 977                 }
 978                 break;
 979 
 980         case T_EXTOVRFLT:       /* extension overrun fault */
 981                 /* check if we took a kernel trap on behalf of user */
 982                 {
 983                         extern  void ndptrap_frstor(void);
 984                         if (rp->r_pc != (uintptr_t)ndptrap_frstor) {
 985                                 sti(); /* T_EXTOVRFLT comes in via cmninttrap */
 986                                 (void) die(type, rp, addr, cpuid);
 987                         }
 988                         type |= USER;
 989                 }
 990                 /*FALLTHROUGH*/
 991         case T_EXTOVRFLT + USER:        /* extension overrun fault */
 992                 if (tudebug && tudebugfpe)
 993                         showregs(type, rp, addr);
 994                 if (fpextovrflt(rp)) {
 995                         siginfo.si_signo = SIGSEGV;
 996                         siginfo.si_code  = SEGV_MAPERR;
 997                         siginfo.si_addr  = (caddr_t)rp->r_pc;
 998                         fault = FLTBOUNDS;
 999                 }
1000                 break;
1001 
1002         case T_EXTERRFLT:       /* x87 floating point exception pending */
1003                 /* check if we took a kernel trap on behalf of user */
1004                 {
1005                         extern  void ndptrap_frstor(void);
1006                         if (rp->r_pc != (uintptr_t)ndptrap_frstor) {
1007                                 sti(); /* T_EXTERRFLT comes in via cmninttrap */
1008                                 (void) die(type, rp, addr, cpuid);
1009                         }
1010                         type |= USER;
1011                 }
1012                 /*FALLTHROUGH*/
1013 
1014         case T_EXTERRFLT + USER: /* x87 floating point exception pending */
1015                 if (tudebug && tudebugfpe)
1016                         showregs(type, rp, addr);
1017                 if (sicode = fpexterrflt(rp)) {
1018                         siginfo.si_signo = SIGFPE;
1019                         siginfo.si_code  = sicode;
1020                         siginfo.si_addr  = (caddr_t)rp->r_pc;
1021                         fault = FLTFPE;
1022                 }
1023                 break;
1024 
1025         case T_SIMDFPE + USER:          /* SSE and SSE2 exceptions */
1026                 if (tudebug && tudebugsse)
1027                         showregs(type, rp, addr);
1028                 if (!is_x86_feature(x86_featureset, X86FSET_SSE) &&
1029                     !is_x86_feature(x86_featureset, X86FSET_SSE2)) {
1030                         /*
1031                          * There are rumours that some user instructions
1032                          * on older CPUs can cause this trap to occur; in
1033                          * which case send a SIGILL instead of a SIGFPE.
1034                          */
1035                         siginfo.si_signo = SIGILL;
1036                         siginfo.si_code  = ILL_ILLTRP;
1037                         siginfo.si_addr  = (caddr_t)rp->r_pc;
1038                         siginfo.si_trapno = type & ~USER;
1039                         fault = FLTILL;
1040                 } else if ((sicode = fpsimderrflt(rp)) != 0) {
1041                         siginfo.si_signo = SIGFPE;
1042                         siginfo.si_code = sicode;
1043                         siginfo.si_addr = (caddr_t)rp->r_pc;
1044                         fault = FLTFPE;
1045                 }
1046 
1047                 sti();  /* The SIMD exception comes in via cmninttrap */
1048                 break;
1049 
1050         case T_BPTFLT:  /* breakpoint trap */
1051                 /*
1052                  * Kernel breakpoint traps should only happen when kmdb is
1053                  * active, and even then, it'll have interposed on the IDT, so
1054                  * control won't get here.  If it does, we've hit a breakpoint
1055                  * without the debugger, which is very strange, and very
1056                  * fatal.
1057                  */
1058                 if (tudebug && tudebugbpt)
1059                         showregs(type, rp, (caddr_t)0);
1060 
1061                 (void) die(type, rp, addr, cpuid);
1062                 break;
1063 
1064         case T_SGLSTP: /* single step/hw breakpoint exception */
1065 
1066                 /* Now evaluate how we got here */
1067                 if (lwp != NULL && (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP)) {
1068                         /*
1069                          * i386 single-steps even through lcalls which
1070                          * change the privilege level. So we take a trap at
1071                          * the first instruction in privileged mode.
1072                          *
1073                          * Set a flag to indicate that upon completion of
1074                          * the system call, deal with the single-step trap.
1075                          *
1076                          * The same thing happens for sysenter, too.
1077                          */
1078                         singlestep_twiddle = 0;
1079                         if (rp->r_pc == (uintptr_t)sys_sysenter ||
1080                             rp->r_pc == (uintptr_t)brand_sys_sysenter) {
1081                                 singlestep_twiddle = 1;
1082 #if defined(__amd64)
1083                                 /*
1084                                  * Since we are already on the kernel's
1085                                  * %gs, on 64-bit systems the sysenter case
1086                                  * needs to adjust the pc to avoid
1087                                  * executing the swapgs instruction at the
1088                                  * top of the handler.
1089                                  */
1090                                 if (rp->r_pc == (uintptr_t)sys_sysenter)
1091                                         rp->r_pc = (uintptr_t)
1092                                             _sys_sysenter_post_swapgs;
1093                                 else
1094                                         rp->r_pc = (uintptr_t)
1095                                             _brand_sys_sysenter_post_swapgs;
1096 #endif
1097                         }
1098 #if defined(__i386)
1099                         else if (rp->r_pc == (uintptr_t)sys_call ||
1100                             rp->r_pc == (uintptr_t)brand_sys_call) {
1101                                 singlestep_twiddle = 1;
1102                         }
1103 #endif
1104                         else {
1105                                 /* not on sysenter/syscall; uregs available */
1106                                 if (tudebug && tudebugbpt)
1107                                         showregs(type, rp, (caddr_t)0);
1108                         }
1109                         if (singlestep_twiddle) {
1110                                 rp->r_ps &= ~PS_T; /* turn off trace */
1111                                 lwp->lwp_pcb.pcb_flags |= DEBUG_PENDING;
1112                                 ct->t_post_sys = 1;
1113                                 aston(curthread);
1114                                 goto cleanup;
1115                         }
1116                 }
1117                 /* XXX - needs review on debugger interface? */
1118                 if (boothowto & RB_DEBUG)
1119                         debug_enter((char *)NULL);
1120                 else
1121                         (void) die(type, rp, addr, cpuid);
1122                 break;
1123 
1124         case T_NMIFLT:  /* NMI interrupt */
1125                 printf("Unexpected NMI in system mode\n");
1126                 goto cleanup;
1127 
1128         case T_NMIFLT + USER:   /* NMI interrupt */
1129                 printf("Unexpected NMI in user mode\n");
1130                 break;
1131 
1132         case T_GPFLT:   /* general protection violation */
1133                 /*
1134                  * Any #GP that occurs during an on_trap .. no_trap bracket
1135                  * with OT_DATA_ACCESS or OT_SEGMENT_ACCESS protection,
1136                  * or in a on_fault .. no_fault bracket, is forgiven
1137                  * and we trampoline.  This protection is given regardless
1138                  * of whether we are 32/64 bit etc - if a distinction is
1139                  * required then define new on_trap protection types.
1140                  *
1141                  * On amd64, we can get a #gp from referencing addresses
1142                  * in the virtual address hole e.g. from a copyin or in
1143                  * update_sregs while updating user segment registers.
1144                  *
1145                  * On the 32-bit hypervisor we could also generate one in
1146                  * mfn_to_pfn by reaching around or into where the hypervisor
1147                  * lives which is protected by segmentation.
1148                  */
1149 
1150                 /*
1151                  * If we're under on_trap() protection (see <sys/ontrap.h>),
1152                  * set ot_trap and trampoline back to the on_trap() call site
1153                  * for OT_DATA_ACCESS or OT_SEGMENT_ACCESS.
1154                  */
1155                 if (ct->t_ontrap != NULL) {
1156                         int ttype =  ct->t_ontrap->ot_prot &
1157                             (OT_DATA_ACCESS | OT_SEGMENT_ACCESS);
1158 
1159                         if (ttype != 0) {
1160                                 ct->t_ontrap->ot_trap |= ttype;
1161                                 if (tudebug)
1162                                         showregs(type, rp, (caddr_t)0);
1163                                 rp->r_pc = ct->t_ontrap->ot_trampoline;
1164                                 goto cleanup;
1165                         }
1166                 }
1167 
1168                 /*
1169                  * If we're under lofault protection (copyin etc.),
1170                  * longjmp back to lofault with an EFAULT.
1171                  */
1172                 if (ct->t_lofault) {
1173                         /*
1174                          * Fault is not resolvable, so just return to lofault
1175                          */
1176                         if (lodebug) {
1177                                 showregs(type, rp, addr);
1178                                 traceregs(rp);
1179                         }
1180                         rp->r_r0 = EFAULT;
1181                         rp->r_pc = ct->t_lofault;
1182                         goto cleanup;
1183                 }
1184 
1185                 /*
1186                  * We fall through to the next case, which repeats
1187                  * the OT_SEGMENT_ACCESS check which we've already
1188                  * done, so we'll always fall through to the
1189                  * T_STKFLT case.
1190                  */
1191                 /*FALLTHROUGH*/
1192         case T_SEGFLT:  /* segment not present fault */
1193                 /*
1194                  * One example of this is #NP in update_sregs while
1195                  * attempting to update a user segment register
1196                  * that points to a descriptor that is marked not
1197                  * present.
1198                  */
1199                 if (ct->t_ontrap != NULL &&
1200                     ct->t_ontrap->ot_prot & OT_SEGMENT_ACCESS) {
1201                         ct->t_ontrap->ot_trap |= OT_SEGMENT_ACCESS;
1202                         if (tudebug)
1203                                 showregs(type, rp, (caddr_t)0);
1204                         rp->r_pc = ct->t_ontrap->ot_trampoline;
1205                         goto cleanup;
1206                 }
1207                 /*FALLTHROUGH*/
1208         case T_STKFLT:  /* stack fault */
1209         case T_TSSFLT:  /* invalid TSS fault */
1210                 if (tudebug)
1211                         showregs(type, rp, (caddr_t)0);
1212                 if (kern_gpfault(rp))
1213                         (void) die(type, rp, addr, cpuid);
1214                 goto cleanup;
1215 
1216         /*
1217          * ONLY 32-bit PROCESSES can USE a PRIVATE LDT! 64-bit apps
1218          * should have no need for them, so we put a stop to it here.
1219          *
1220          * So: not-present fault is ONLY valid for 32-bit processes with
1221          * a private LDT trying to do a system call. Emulate it.
1222          *
1223          * #gp fault is ONLY valid for 32-bit processes also, which DO NOT
1224          * have a private LDT, and are trying to do a system call. Emulate it.
1225          */
1226 
1227         case T_SEGFLT + USER:   /* segment not present fault */
1228         case T_GPFLT + USER:    /* general protection violation */
1229 #ifdef _SYSCALL32_IMPL
1230                 if (p->p_model != DATAMODEL_NATIVE) {
1231 #endif /* _SYSCALL32_IMPL */
1232                 if (instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
1233                         if (type == T_SEGFLT + USER)
1234                                 ASSERT(p->p_ldt != NULL);
1235 
1236                         if ((p->p_ldt == NULL && type == T_GPFLT + USER) ||
1237                             type == T_SEGFLT + USER) {
1238 
1239                         /*
1240                          * The user attempted a system call via the obsolete
1241                          * call gate mechanism. Because the process doesn't have
1242                          * an LDT (i.e. the ldtr contains 0), a #gp results.
1243                          * Emulate the syscall here, just as we do above for a
1244                          * #np trap.
1245                          */
1246 
1247                         /*
1248                          * Since this is a not-present trap, rp->r_pc points to
1249                          * the trapping lcall instruction. We need to bump it
1250                          * to the next insn so the app can continue on.
1251                          */
1252                         rp->r_pc += LCALLSIZE;
1253                         lwp->lwp_regs = rp;
1254 
1255                         /*
1256                          * Normally the microstate of the LWP is forced back to
1257                          * LMS_USER by the syscall handlers. Emulate that
1258                          * behavior here.
1259                          */
1260                         mstate = LMS_USER;
1261 
1262                         dosyscall();
1263                         goto out;
1264                         }
1265                 }
1266 #ifdef _SYSCALL32_IMPL
1267                 }
1268 #endif /* _SYSCALL32_IMPL */
1269                 /*
1270                  * If the current process is using a private LDT and the
1271                  * trapping instruction is sysenter, the sysenter instruction
1272                  * has been disabled on the CPU because it destroys segment
1273                  * registers. If this is the case, rewrite the instruction to
1274                  * be a safe system call and retry it. If this occurs on a CPU
1275                  * which doesn't even support sysenter, the result of all of
1276                  * this will be to emulate that particular instruction.
1277                  */
1278                 if (p->p_ldt != NULL &&
1279                     ldt_rewrite_syscall(rp, p, X86FSET_SEP))
1280                         goto out;
1281 
1282                 /*FALLTHROUGH*/
1283 
1284         case T_BOUNDFLT + USER: /* bound fault */
1285         case T_STKFLT + USER:   /* stack fault */
1286         case T_TSSFLT + USER:   /* invalid TSS fault */
1287                 if (tudebug)
1288                         showregs(type, rp, (caddr_t)0);
1289                 siginfo.si_signo = SIGSEGV;
1290                 siginfo.si_code  = SEGV_MAPERR;
1291                 siginfo.si_addr  = (caddr_t)rp->r_pc;
1292                 fault = FLTBOUNDS;
1293                 break;
1294 
1295         case T_ALIGNMENT + USER:        /* user alignment error (486) */
1296                 if (tudebug)
1297                         showregs(type, rp, (caddr_t)0);
1298                 bzero(&siginfo, sizeof (siginfo));
1299                 siginfo.si_signo = SIGBUS;
1300                 siginfo.si_code = BUS_ADRALN;
1301                 siginfo.si_addr = (caddr_t)rp->r_pc;
1302                 fault = FLTACCESS;
1303                 break;
1304 
1305         case T_SGLSTP + USER: /* single step/hw breakpoint exception */
1306                 if (tudebug && tudebugbpt)
1307                         showregs(type, rp, (caddr_t)0);
1308 
1309                 /* Was it single-stepping? */
1310                 if (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP) {
1311                         pcb_t *pcb = &lwp->lwp_pcb;
1312 
1313                         rp->r_ps &= ~PS_T;
1314                         /*
1315                          * If both NORMAL_STEP and WATCH_STEP are in effect,
1316                          * give precedence to WATCH_STEP.  If neither is set,
1317                          * user must have set the PS_T bit in %efl; treat this
1318                          * as NORMAL_STEP.
1319                          */
1320                         if ((fault = undo_watch_step(&siginfo)) == 0 &&
1321                             ((pcb->pcb_flags & NORMAL_STEP) ||
1322                             !(pcb->pcb_flags & WATCH_STEP))) {
1323                                 siginfo.si_signo = SIGTRAP;
1324                                 siginfo.si_code = TRAP_TRACE;
1325                                 siginfo.si_addr = (caddr_t)rp->r_pc;
1326                                 fault = FLTTRACE;
1327                         }
1328                         pcb->pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
1329                 }
1330                 break;
1331 
1332         case T_BPTFLT + USER:   /* breakpoint trap */
1333                 if (tudebug && tudebugbpt)
1334                         showregs(type, rp, (caddr_t)0);
1335                 /*
1336                  * int 3 (the breakpoint instruction) leaves the pc referring
1337                  * to the address one byte after the breakpointed address.
1338                  * If the P_PR_BPTADJ flag has been set via /proc, We adjust
1339                  * it back so it refers to the breakpointed address.
1340                  */
1341                 if (p->p_proc_flag & P_PR_BPTADJ)
1342                         rp->r_pc--;
1343                 siginfo.si_signo = SIGTRAP;
1344                 siginfo.si_code  = TRAP_BRKPT;
1345                 siginfo.si_addr  = (caddr_t)rp->r_pc;
1346                 fault = FLTBPT;
1347                 break;
1348 
1349         case T_AST:
1350                 /*
1351                  * This occurs only after the cs register has been made to
1352                  * look like a kernel selector, either through debugging or
1353                  * possibly by functions like setcontext().  The thread is
1354                  * about to cause a general protection fault at common_iret()
1355                  * in locore.  We let that happen immediately instead of
1356                  * doing the T_AST processing.
1357                  */
1358                 goto cleanup;
1359 
1360         case T_AST + USER:      /* profiling, resched, h/w error pseudo trap */
1361                 if (lwp->lwp_pcb.pcb_flags & ASYNC_HWERR) {
1362                         proc_t *p = ttoproc(curthread);
1363                         extern void print_msg_hwerr(ctid_t ct_id, proc_t *p);
1364 
1365                         lwp->lwp_pcb.pcb_flags &= ~ASYNC_HWERR;
1366                         print_msg_hwerr(p->p_ct_process->conp_contract.ct_id,
1367                             p);
1368                         contract_process_hwerr(p->p_ct_process, p);
1369                         siginfo.si_signo = SIGKILL;
1370                         siginfo.si_code = SI_NOINFO;
1371                 } else if (lwp->lwp_pcb.pcb_flags & CPC_OVERFLOW) {
1372                         lwp->lwp_pcb.pcb_flags &= ~CPC_OVERFLOW;
1373                         if (kcpc_overflow_ast()) {
1374                                 /*
1375                                  * Signal performance counter overflow
1376                                  */
1377                                 if (tudebug)
1378                                         showregs(type, rp, (caddr_t)0);
1379                                 bzero(&siginfo, sizeof (siginfo));
1380                                 siginfo.si_signo = SIGEMT;
1381                                 siginfo.si_code = EMT_CPCOVF;
1382                                 siginfo.si_addr = (caddr_t)rp->r_pc;
1383                                 fault = FLTCPCOVF;
1384                         }
1385                 }
1386 
1387                 break;
1388         }
1389 
1390         /*
1391          * We can't get here from a system trap
1392          */
1393         ASSERT(type & USER);
1394 
1395         if (fault) {
1396                 /* We took a fault so abort single step. */
1397                 lwp->lwp_pcb.pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
1398                 /*
1399                  * Remember the fault and fault adddress
1400                  * for real-time (SIGPROF) profiling.
1401                  */
1402                 lwp->lwp_lastfault = fault;
1403                 lwp->lwp_lastfaddr = siginfo.si_addr;
1404 
1405                 DTRACE_PROC2(fault, int, fault, ksiginfo_t *, &siginfo);
1406 
1407                 /*
1408                  * If a debugger has declared this fault to be an
1409                  * event of interest, stop the lwp.  Otherwise just
1410                  * deliver the associated signal.
1411                  */
1412                 if (siginfo.si_signo != SIGKILL &&
1413                     prismember(&p->p_fltmask, fault) &&
1414                     stop_on_fault(fault, &siginfo) == 0)
1415                         siginfo.si_signo = 0;
1416         }
1417 
1418         if (siginfo.si_signo)
1419                 trapsig(&siginfo, (fault != FLTFPE && fault != FLTCPCOVF));
1420 
1421         if (lwp->lwp_oweupc)
1422                 profil_tick(rp->r_pc);
1423 
1424         if (ct->t_astflag | ct->t_sig_check) {
1425                 /*
1426                  * Turn off the AST flag before checking all the conditions that
1427                  * may have caused an AST.  This flag is on whenever a signal or
1428                  * unusual condition should be handled after the next trap or
1429                  * syscall.
1430                  */
1431                 astoff(ct);
1432                 /*
1433                  * If a single-step trap occurred on a syscall (see above)
1434                  * recognize it now.  Do this before checking for signals
1435                  * because deferred_singlestep_trap() may generate a SIGTRAP to
1436                  * the LWP or may otherwise mark the LWP to call issig(FORREAL).
1437                  */
1438                 if (lwp->lwp_pcb.pcb_flags & DEBUG_PENDING)
1439                         deferred_singlestep_trap((caddr_t)rp->r_pc);
1440 
1441                 ct->t_sig_check = 0;
1442 
1443                 mutex_enter(&p->p_lock);
1444                 if (curthread->t_proc_flag & TP_CHANGEBIND) {
1445                         timer_lwpbind();
1446                         curthread->t_proc_flag &= ~TP_CHANGEBIND;
1447                 }
1448                 mutex_exit(&p->p_lock);
1449 
1450                 /*
1451                  * for kaio requests that are on the per-process poll queue,
1452                  * aiop->aio_pollq, they're AIO_POLL bit is set, the kernel
1453                  * should copyout their result_t to user memory. by copying
1454                  * out the result_t, the user can poll on memory waiting
1455                  * for the kaio request to complete.
1456                  */
1457                 if (p->p_aio)
1458                         aio_cleanup(0);
1459                 /*
1460                  * If this LWP was asked to hold, call holdlwp(), which will
1461                  * stop.  holdlwps() sets this up and calls pokelwps() which
1462                  * sets the AST flag.
1463                  *
1464                  * Also check TP_EXITLWP, since this is used by fresh new LWPs
1465                  * through lwp_rtt().  That flag is set if the lwp_create(2)
1466                  * syscall failed after creating the LWP.
1467                  */
1468                 if (ISHOLD(p))
1469                         holdlwp();
1470 
1471                 /*
1472                  * All code that sets signals and makes ISSIG evaluate true must
1473                  * set t_astflag afterwards.
1474                  */
1475                 if (ISSIG_PENDING(ct, lwp, p)) {
1476                         if (issig(FORREAL))
1477                                 psig();
1478                         ct->t_sig_check = 1;
1479                 }
1480 
1481                 if (ct->t_rprof != NULL) {
1482                         realsigprof(0, 0, 0);
1483                         ct->t_sig_check = 1;
1484                 }
1485 
1486                 /*
1487                  * /proc can't enable/disable the trace bit itself
1488                  * because that could race with the call gate used by
1489                  * system calls via "lcall". If that happened, an
1490                  * invalid EFLAGS would result. prstep()/prnostep()
1491                  * therefore schedule an AST for the purpose.
1492                  */
1493                 if (lwp->lwp_pcb.pcb_flags & REQUEST_STEP) {
1494                         lwp->lwp_pcb.pcb_flags &= ~REQUEST_STEP;
1495                         rp->r_ps |= PS_T;
1496                 }
1497                 if (lwp->lwp_pcb.pcb_flags & REQUEST_NOSTEP) {
1498                         lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP;
1499                         rp->r_ps &= ~PS_T;
1500                 }
1501         }
1502 
1503 out:    /* We can't get here from a system trap */
1504         ASSERT(type & USER);
1505 
1506         if (ISHOLD(p))
1507                 holdlwp();
1508 
1509         /*
1510          * Set state to LWP_USER here so preempt won't give us a kernel
1511          * priority if it occurs after this point.  Call CL_TRAPRET() to
1512          * restore the user-level priority.
1513          *
1514          * It is important that no locks (other than spinlocks) be entered
1515          * after this point before returning to user mode (unless lwp_state
1516          * is set back to LWP_SYS).
1517          */
1518         lwp->lwp_state = LWP_USER;
1519 
1520         if (ct->t_trapret) {
1521                 ct->t_trapret = 0;
1522                 thread_lock(ct);
1523                 CL_TRAPRET(ct);
1524                 thread_unlock(ct);
1525         }
1526         if (CPU->cpu_runrun || curthread->t_schedflag & TS_ANYWAITQ)
1527                 preempt();
1528         prunstop();
1529         (void) new_mstate(ct, mstate);
1530 
1531         /* Kernel probe */
1532         TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
1533             tnf_microstate, state, LMS_USER);
1534 
1535         return;
1536 
1537 cleanup:        /* system traps end up here */
1538         ASSERT(!(type & USER));
1539 }
1540 
1541 /*
1542  * Patch non-zero to disable preemption of threads in the kernel.
1543  */
1544 int IGNORE_KERNEL_PREEMPTION = 0;       /* XXX - delete this someday */
1545 
1546 struct kpreempt_cnts {          /* kernel preemption statistics */
1547         int     kpc_idle;       /* executing idle thread */
1548         int     kpc_intr;       /* executing interrupt thread */
1549         int     kpc_clock;      /* executing clock thread */
1550         int     kpc_blocked;    /* thread has blocked preemption (t_preempt) */
1551         int     kpc_notonproc;  /* thread is surrendering processor */
1552         int     kpc_inswtch;    /* thread has ratified scheduling decision */
1553         int     kpc_prilevel;   /* processor interrupt level is too high */
1554         int     kpc_apreempt;   /* asynchronous preemption */
1555         int     kpc_spreempt;   /* synchronous preemption */
1556 } kpreempt_cnts;
1557 
1558 /*
1559  * kernel preemption: forced rescheduling, preempt the running kernel thread.
1560  *      the argument is old PIL for an interrupt,
1561  *      or the distingished value KPREEMPT_SYNC.
1562  */
1563 void
1564 kpreempt(int asyncspl)
1565 {
1566         kthread_t *ct = curthread;
1567 
1568         if (IGNORE_KERNEL_PREEMPTION) {
1569                 aston(CPU->cpu_dispthread);
1570                 return;
1571         }
1572 
1573         /*
1574          * Check that conditions are right for kernel preemption
1575          */
1576         do {
1577                 if (ct->t_preempt) {
1578                         /*
1579                          * either a privileged thread (idle, panic, interrupt)
1580                          * or will check when t_preempt is lowered
1581                          * We need to specifically handle the case where
1582                          * the thread is in the middle of swtch (resume has
1583                          * been called) and has its t_preempt set
1584                          * [idle thread and a thread which is in kpreempt
1585                          * already] and then a high priority thread is
1586                          * available in the local dispatch queue.
1587                          * In this case the resumed thread needs to take a
1588                          * trap so that it can call kpreempt. We achieve
1589                          * this by using siron().
1590                          * How do we detect this condition:
1591                          * idle thread is running and is in the midst of
1592                          * resume: curthread->t_pri == -1 && CPU->dispthread
1593                          * != CPU->thread
1594                          * Need to ensure that this happens only at high pil
1595                          * resume is called at high pil
1596                          * Only in resume_from_idle is the pil changed.
1597                          */
1598                         if (ct->t_pri < 0) {
1599                                 kpreempt_cnts.kpc_idle++;
1600                                 if (CPU->cpu_dispthread != CPU->cpu_thread)
1601                                         siron();
1602                         } else if (ct->t_flag & T_INTR_THREAD) {
1603                                 kpreempt_cnts.kpc_intr++;
1604                                 if (ct->t_pil == CLOCK_LEVEL)
1605                                         kpreempt_cnts.kpc_clock++;
1606                         } else {
1607                                 kpreempt_cnts.kpc_blocked++;
1608                                 if (CPU->cpu_dispthread != CPU->cpu_thread)
1609                                         siron();
1610                         }
1611                         aston(CPU->cpu_dispthread);
1612                         return;
1613                 }
1614                 if (ct->t_state != TS_ONPROC ||
1615                     ct->t_disp_queue != CPU->cpu_disp) {
1616                         /* this thread will be calling swtch() shortly */
1617                         kpreempt_cnts.kpc_notonproc++;
1618                         if (CPU->cpu_thread != CPU->cpu_dispthread) {
1619                                 /* already in swtch(), force another */
1620                                 kpreempt_cnts.kpc_inswtch++;
1621                                 siron();
1622                         }
1623                         return;
1624                 }
1625                 if (getpil() >= DISP_LEVEL) {
1626                         /*
1627                          * We can't preempt this thread if it is at
1628                          * a PIL >= DISP_LEVEL since it may be holding
1629                          * a spin lock (like sched_lock).
1630                          */
1631                         siron();        /* check back later */
1632                         kpreempt_cnts.kpc_prilevel++;
1633                         return;
1634                 }
1635                 if (!interrupts_enabled()) {
1636                         /*
1637                          * Can't preempt while running with ints disabled
1638                          */
1639                         kpreempt_cnts.kpc_prilevel++;
1640                         return;
1641                 }
1642                 if (asyncspl != KPREEMPT_SYNC)
1643                         kpreempt_cnts.kpc_apreempt++;
1644                 else
1645                         kpreempt_cnts.kpc_spreempt++;
1646 
1647                 ct->t_preempt++;
1648                 preempt();
1649                 ct->t_preempt--;
1650         } while (CPU->cpu_kprunrun);
1651 }
1652 
1653 /*
1654  * Print out debugging info.
1655  */
1656 static void
1657 showregs(uint_t type, struct regs *rp, caddr_t addr)
1658 {
1659         int s;
1660 
1661         s = spl7();
1662         type &= ~USER;
1663         if (PTOU(curproc)->u_comm[0])
1664                 printf("%s: ", PTOU(curproc)->u_comm);
1665         if (type < TRAP_TYPES)
1666                 printf("#%s %s\n", trap_type_mnemonic[type], trap_type[type]);
1667         else
1668                 switch (type) {
1669                 case T_SYSCALL:
1670                         printf("Syscall Trap:\n");
1671                         break;
1672                 case T_AST:
1673                         printf("AST\n");
1674                         break;
1675                 default:
1676                         printf("Bad Trap = %d\n", type);
1677                         break;
1678                 }
1679         if (type == T_PGFLT) {
1680                 printf("Bad %s fault at addr=0x%lx\n",
1681                     USERMODE(rp->r_cs) ? "user": "kernel", (uintptr_t)addr);
1682         } else if (addr) {
1683                 printf("addr=0x%lx\n", (uintptr_t)addr);
1684         }
1685 
1686         printf("pid=%d, pc=0x%lx, sp=0x%lx, eflags=0x%lx\n",
1687             (ttoproc(curthread) && ttoproc(curthread)->p_pidp) ?
1688             ttoproc(curthread)->p_pid : 0, rp->r_pc, rp->r_sp, rp->r_ps);
1689 
1690 #if defined(__lint)
1691         /*
1692          * this clause can be deleted when lint bug 4870403 is fixed
1693          * (lint thinks that bit 32 is illegal in a %b format string)
1694          */
1695         printf("cr0: %x cr4: %b\n",
1696             (uint_t)getcr0(), (uint_t)getcr4(), FMT_CR4);
1697 #else
1698         printf("cr0: %b cr4: %b\n",
1699             (uint_t)getcr0(), FMT_CR0, (uint_t)getcr4(), FMT_CR4);
1700 #endif  /* __lint */
1701 
1702         printf("cr2: %lx", getcr2());
1703 #if !defined(__xpv)
1704         printf("cr3: %lx", getcr3());
1705 #if defined(__amd64)
1706         printf("cr8: %lx\n", getcr8());
1707 #endif
1708 #endif
1709         printf("\n");
1710 
1711         dumpregs(rp);
1712         splx(s);
1713 }
1714 
1715 static void
1716 dumpregs(struct regs *rp)
1717 {
1718 #if defined(__amd64)
1719         const char fmt[] = "\t%3s: %16lx %3s: %16lx %3s: %16lx\n";
1720 
1721         printf(fmt, "rdi", rp->r_rdi, "rsi", rp->r_rsi, "rdx", rp->r_rdx);
1722         printf(fmt, "rcx", rp->r_rcx, " r8", rp->r_r8, " r9", rp->r_r9);
1723         printf(fmt, "rax", rp->r_rax, "rbx", rp->r_rbx, "rbp", rp->r_rbp);
1724         printf(fmt, "r10", rp->r_r10, "r11", rp->r_r11, "r12", rp->r_r12);
1725         printf(fmt, "r13", rp->r_r13, "r14", rp->r_r14, "r15", rp->r_r15);
1726 
1727         printf(fmt, "fsb", rdmsr(MSR_AMD_FSBASE), "gsb", rdmsr(MSR_AMD_GSBASE),
1728             " ds", rp->r_ds);
1729         printf(fmt, " es", rp->r_es, " fs", rp->r_fs, " gs", rp->r_gs);
1730 
1731         printf(fmt, "trp", rp->r_trapno, "err", rp->r_err, "rip", rp->r_rip);
1732         printf(fmt, " cs", rp->r_cs, "rfl", rp->r_rfl, "rsp", rp->r_rsp);
1733 
1734         printf("\t%3s: %16lx\n", " ss", rp->r_ss);
1735 
1736 #elif defined(__i386)
1737         const char fmt[] = "\t%3s: %8lx %3s: %8lx %3s: %8lx %3s: %8lx\n";
1738 
1739         printf(fmt, " gs", rp->r_gs, " fs", rp->r_fs,
1740             " es", rp->r_es, " ds", rp->r_ds);
1741         printf(fmt, "edi", rp->r_edi, "esi", rp->r_esi,
1742             "ebp", rp->r_ebp, "esp", rp->r_esp);
1743         printf(fmt, "ebx", rp->r_ebx, "edx", rp->r_edx,
1744             "ecx", rp->r_ecx, "eax", rp->r_eax);
1745         printf(fmt, "trp", rp->r_trapno, "err", rp->r_err,
1746             "eip", rp->r_eip, " cs", rp->r_cs);
1747         printf("\t%3s: %8lx %3s: %8lx %3s: %8lx\n",
1748             "efl", rp->r_efl, "usp", rp->r_uesp, " ss", rp->r_ss);
1749 
1750 #endif  /* __i386 */
1751 }
1752 
1753 /*
1754  * Test to see if the instruction is iret on i386 or iretq on amd64.
1755  *
1756  * On the hypervisor we can only test for nopop_sys_rtt_syscall. If true
1757  * then we are in the context of hypervisor's failsafe handler because it
1758  * tried to iret and failed due to a bad selector. See xen_failsafe_callback.
1759  */
1760 static int
1761 instr_is_iret(caddr_t pc)
1762 {
1763 
1764 #if defined(__xpv)
1765         extern void nopop_sys_rtt_syscall(void);
1766         return ((pc == (caddr_t)nopop_sys_rtt_syscall) ? 1 : 0);
1767 
1768 #else
1769 
1770 #if defined(__amd64)
1771         static const uint8_t iret_insn[2] = { 0x48, 0xcf };     /* iretq */
1772 
1773 #elif defined(__i386)
1774         static const uint8_t iret_insn[1] = { 0xcf };           /* iret */
1775 #endif  /* __i386 */
1776         return (bcmp(pc, iret_insn, sizeof (iret_insn)) == 0);
1777 
1778 #endif  /* __xpv */
1779 }
1780 
1781 #if defined(__i386)
1782 
1783 /*
1784  * Test to see if the instruction is part of __SEGREGS_POP
1785  *
1786  * Note carefully the appallingly awful dependency between
1787  * the instruction sequence used in __SEGREGS_POP and these
1788  * instructions encoded here.
1789  */
1790 static int
1791 instr_is_segregs_pop(caddr_t pc)
1792 {
1793         static const uint8_t movw_0_esp_gs[4] = { 0x8e, 0x6c, 0x24, 0x0 };
1794         static const uint8_t movw_4_esp_fs[4] = { 0x8e, 0x64, 0x24, 0x4 };
1795         static const uint8_t movw_8_esp_es[4] = { 0x8e, 0x44, 0x24, 0x8 };
1796         static const uint8_t movw_c_esp_ds[4] = { 0x8e, 0x5c, 0x24, 0xc };
1797 
1798         if (bcmp(pc, movw_0_esp_gs, sizeof (movw_0_esp_gs)) == 0 ||
1799             bcmp(pc, movw_4_esp_fs, sizeof (movw_4_esp_fs)) == 0 ||
1800             bcmp(pc, movw_8_esp_es, sizeof (movw_8_esp_es)) == 0 ||
1801             bcmp(pc, movw_c_esp_ds, sizeof (movw_c_esp_ds)) == 0)
1802                 return (1);
1803 
1804         return (0);
1805 }
1806 
1807 #endif  /* __i386 */
1808 
1809 /*
1810  * Test to see if the instruction is part of _sys_rtt.
1811  *
1812  * Again on the hypervisor if we try to IRET to user land with a bad code
1813  * or stack selector we will get vectored through xen_failsafe_callback.
1814  * In which case we assume we got here via _sys_rtt since we only allow
1815  * IRET to user land to take place in _sys_rtt.
1816  */
1817 static int
1818 instr_is_sys_rtt(caddr_t pc)
1819 {
1820         extern void _sys_rtt(), _sys_rtt_end();
1821 
1822         if ((uintptr_t)pc < (uintptr_t)_sys_rtt ||
1823             (uintptr_t)pc > (uintptr_t)_sys_rtt_end)
1824                 return (0);
1825 
1826         return (1);
1827 }
1828 
1829 /*
1830  * Handle #gp faults in kernel mode.
1831  *
1832  * One legitimate way this can happen is if we attempt to update segment
1833  * registers to naughty values on the way out of the kernel.
1834  *
1835  * This can happen in a couple of ways: someone - either accidentally or
1836  * on purpose - creates (setcontext(2), lwp_create(2)) or modifies
1837  * (signal(2)) a ucontext that contains silly segment register values.
1838  * Or someone - either accidentally or on purpose - modifies the prgregset_t
1839  * of a subject process via /proc to contain silly segment register values.
1840  *
1841  * (The unfortunate part is that we can end up discovering the bad segment
1842  * register value in the middle of an 'iret' after we've popped most of the
1843  * stack.  So it becomes quite difficult to associate an accurate ucontext
1844  * with the lwp, because the act of taking the #gp trap overwrites most of
1845  * what we were going to send the lwp.)
1846  *
1847  * OTOH if it turns out that's -not- the problem, and we're -not- an lwp
1848  * trying to return to user mode and we get a #gp fault, then we need
1849  * to die() -- which will happen if we return non-zero from this routine.
1850  */
1851 static int
1852 kern_gpfault(struct regs *rp)
1853 {
1854         kthread_t *t = curthread;
1855         proc_t *p = ttoproc(t);
1856         klwp_t *lwp = ttolwp(t);
1857         struct regs tmpregs, *trp = NULL;
1858         caddr_t pc = (caddr_t)rp->r_pc;
1859         int v;
1860         uint32_t auditing = AU_AUDITING();
1861 
1862         /*
1863          * if we're not an lwp, or in the case of running native the
1864          * pc range is outside _sys_rtt, then we should immediately
1865          * be die()ing horribly.
1866          */
1867         if (lwp == NULL || !instr_is_sys_rtt(pc))
1868                 return (1);
1869 
1870         /*
1871          * So at least we're in the right part of the kernel.
1872          *
1873          * Disassemble the instruction at the faulting pc.
1874          * Once we know what it is, we carefully reconstruct the stack
1875          * based on the order in which the stack is deconstructed in
1876          * _sys_rtt. Ew.
1877          */
1878         if (instr_is_iret(pc)) {
1879                 /*
1880                  * We took the #gp while trying to perform the IRET.
1881                  * This means that either %cs or %ss are bad.
1882                  * All we know for sure is that most of the general
1883                  * registers have been restored, including the
1884                  * segment registers, and all we have left on the
1885                  * topmost part of the lwp's stack are the
1886                  * registers that the iretq was unable to consume.
1887                  *
1888                  * All the rest of the state was crushed by the #gp
1889                  * which pushed -its- registers atop our old save area
1890                  * (because we had to decrement the stack pointer, sigh) so
1891                  * all that we can try and do is to reconstruct the
1892                  * crushed frame from the #gp trap frame itself.
1893                  */
1894                 trp = &tmpregs;
1895                 trp->r_ss = lwptoregs(lwp)->r_ss;
1896                 trp->r_sp = lwptoregs(lwp)->r_sp;
1897                 trp->r_ps = lwptoregs(lwp)->r_ps;
1898                 trp->r_cs = lwptoregs(lwp)->r_cs;
1899                 trp->r_pc = lwptoregs(lwp)->r_pc;
1900                 bcopy(rp, trp, offsetof(struct regs, r_pc));
1901 
1902                 /*
1903                  * Validate simple math
1904                  */
1905                 ASSERT(trp->r_pc == lwptoregs(lwp)->r_pc);
1906                 ASSERT(trp->r_err == rp->r_err);
1907 
1908 
1909 
1910         }
1911 
1912 #if defined(__amd64)
1913         if (trp == NULL && lwp->lwp_pcb.pcb_rupdate != 0) {
1914 
1915                 /*
1916                  * This is the common case -- we're trying to load
1917                  * a bad segment register value in the only section
1918                  * of kernel code that ever loads segment registers.
1919                  *
1920                  * We don't need to do anything at this point because
1921                  * the pcb contains all the pending segment register
1922                  * state, and the regs are still intact because we
1923                  * didn't adjust the stack pointer yet.  Given the fidelity
1924                  * of all this, we could conceivably send a signal
1925                  * to the lwp, rather than core-ing.
1926                  */
1927                 trp = lwptoregs(lwp);
1928                 ASSERT((caddr_t)trp == (caddr_t)rp->r_sp);
1929         }
1930 
1931 #elif defined(__i386)
1932 
1933         if (trp == NULL && instr_is_segregs_pop(pc))
1934                 trp = lwptoregs(lwp);
1935 
1936 #endif  /* __i386 */
1937 
1938         if (trp == NULL)
1939                 return (1);
1940 
1941         /*
1942          * If we get to here, we're reasonably confident that we've
1943          * correctly decoded what happened on the way out of the kernel.
1944          * Rewrite the lwp's registers so that we can create a core dump
1945          * the (at least vaguely) represents the mcontext we were
1946          * being asked to restore when things went so terribly wrong.
1947          */
1948 
1949         /*
1950          * Make sure that we have a meaningful %trapno and %err.
1951          */
1952         trp->r_trapno = rp->r_trapno;
1953         trp->r_err = rp->r_err;
1954 
1955         if ((caddr_t)trp != (caddr_t)lwptoregs(lwp))
1956                 bcopy(trp, lwptoregs(lwp), sizeof (*trp));
1957 
1958 
1959         mutex_enter(&p->p_lock);
1960         lwp->lwp_cursig = SIGSEGV;
1961         mutex_exit(&p->p_lock);
1962 
1963         /*
1964          * Terminate all LWPs but don't discard them.  If another lwp beat
1965          * us to the punch by calling exit(), evaporate now.
1966          */
1967         proc_is_exiting(p);
1968         if (exitlwps(1) != 0) {
1969                 mutex_enter(&p->p_lock);
1970                 lwp_exit();
1971         }
1972 
1973         if (auditing)           /* audit core dump */
1974                 audit_core_start(SIGSEGV);
1975         v = core(SIGSEGV, B_FALSE);
1976         if (auditing)           /* audit core dump */
1977                 audit_core_finish(v ? CLD_KILLED : CLD_DUMPED);
1978         exit(v ? CLD_KILLED : CLD_DUMPED, SIGSEGV);
1979         return (0);
1980 }
1981 
1982 /*
1983  * dump_tss() - Display the TSS structure
1984  */
1985 
1986 #if !defined(__xpv)
1987 #if defined(__amd64)
1988 
1989 static void
1990 dump_tss(void)
1991 {
1992         const char tss_fmt[] = "tss.%s:\t0x%p\n";  /* Format string */
1993         tss_t *tss = CPU->cpu_tss;
1994 
1995         printf(tss_fmt, "tss_rsp0", (void *)tss->tss_rsp0);
1996         printf(tss_fmt, "tss_rsp1", (void *)tss->tss_rsp1);
1997         printf(tss_fmt, "tss_rsp2", (void *)tss->tss_rsp2);
1998 
1999         printf(tss_fmt, "tss_ist1", (void *)tss->tss_ist1);
2000         printf(tss_fmt, "tss_ist2", (void *)tss->tss_ist2);
2001         printf(tss_fmt, "tss_ist3", (void *)tss->tss_ist3);
2002         printf(tss_fmt, "tss_ist4", (void *)tss->tss_ist4);
2003         printf(tss_fmt, "tss_ist5", (void *)tss->tss_ist5);
2004         printf(tss_fmt, "tss_ist6", (void *)tss->tss_ist6);
2005         printf(tss_fmt, "tss_ist7", (void *)tss->tss_ist7);
2006 }
2007 
2008 #elif defined(__i386)
2009 
2010 static void
2011 dump_tss(void)
2012 {
2013         const char tss_fmt[] = "tss.%s:\t0x%p\n";  /* Format string */
2014         tss_t *tss = CPU->cpu_tss;
2015 
2016         printf(tss_fmt, "tss_link", (void *)(uintptr_t)tss->tss_link);
2017         printf(tss_fmt, "tss_esp0", (void *)(uintptr_t)tss->tss_esp0);
2018         printf(tss_fmt, "tss_ss0", (void *)(uintptr_t)tss->tss_ss0);
2019         printf(tss_fmt, "tss_esp1", (void *)(uintptr_t)tss->tss_esp1);
2020         printf(tss_fmt, "tss_ss1", (void *)(uintptr_t)tss->tss_ss1);
2021         printf(tss_fmt, "tss_esp2", (void *)(uintptr_t)tss->tss_esp2);
2022         printf(tss_fmt, "tss_ss2", (void *)(uintptr_t)tss->tss_ss2);
2023         printf(tss_fmt, "tss_cr3", (void *)(uintptr_t)tss->tss_cr3);
2024         printf(tss_fmt, "tss_eip", (void *)(uintptr_t)tss->tss_eip);
2025         printf(tss_fmt, "tss_eflags", (void *)(uintptr_t)tss->tss_eflags);
2026         printf(tss_fmt, "tss_eax", (void *)(uintptr_t)tss->tss_eax);
2027         printf(tss_fmt, "tss_ebx", (void *)(uintptr_t)tss->tss_ebx);
2028         printf(tss_fmt, "tss_ecx", (void *)(uintptr_t)tss->tss_ecx);
2029         printf(tss_fmt, "tss_edx", (void *)(uintptr_t)tss->tss_edx);
2030         printf(tss_fmt, "tss_esp", (void *)(uintptr_t)tss->tss_esp);
2031 }
2032 
2033 #endif  /* __amd64 */
2034 #endif  /* !__xpv */
2035 
2036 #if defined(TRAPTRACE)
2037 
2038 int ttrace_nrec = 10;           /* number of records to dump out */
2039 int ttrace_dump_nregs = 0;      /* dump out this many records with regs too */
2040 
2041 /*
2042  * Dump out the last ttrace_nrec traptrace records on each CPU
2043  */
2044 static void
2045 dump_ttrace(void)
2046 {
2047         trap_trace_ctl_t *ttc;
2048         trap_trace_rec_t *rec;
2049         uintptr_t current;
2050         int i, j, k;
2051         int n = NCPU;
2052 #if defined(__amd64)
2053         const char banner[] =
2054             "\ncpu          address    timestamp "
2055             "type  vc  handler   pc\n";
2056         const char fmt1[] = "%3d %016lx %12llx ";
2057 #elif defined(__i386)
2058         const char banner[] =
2059             "\ncpu  address     timestamp type  vc  handler   pc\n";
2060         const char fmt1[] = "%3d %08lx %12llx ";
2061 #endif
2062         const char fmt2[] = "%4s %3x ";
2063         const char fmt3[] = "%8s ";
2064 
2065         if (ttrace_nrec == 0)
2066                 return;
2067 
2068         printf(banner);
2069 
2070         for (i = 0; i < n; i++) {
2071                 ttc = &trap_trace_ctl[i];
2072                 if (ttc->ttc_first == NULL)
2073                         continue;
2074 
2075                 current = ttc->ttc_next - sizeof (trap_trace_rec_t);
2076                 for (j = 0; j < ttrace_nrec; j++) {
2077                         struct sysent   *sys;
2078                         struct autovec  *vec;
2079                         extern struct av_head autovect[];
2080                         int type;
2081                         ulong_t off;
2082                         char *sym, *stype;
2083 
2084                         if (current < ttc->ttc_first)
2085                                 current =
2086                                     ttc->ttc_limit - sizeof (trap_trace_rec_t);
2087 
2088                         if (current == NULL)
2089                                 continue;
2090 
2091                         rec = (trap_trace_rec_t *)current;
2092 
2093                         if (rec->ttr_stamp == 0)
2094                                 break;
2095 
2096                         printf(fmt1, i, (uintptr_t)rec, rec->ttr_stamp);
2097 
2098                         switch (rec->ttr_marker) {
2099                         case TT_SYSCALL:
2100                         case TT_SYSENTER:
2101                         case TT_SYSC:
2102                         case TT_SYSC64:
2103 #if defined(__amd64)
2104                                 sys = &sysent32[rec->ttr_sysnum];
2105                                 switch (rec->ttr_marker) {
2106                                 case TT_SYSC64:
2107                                         sys = &sysent[rec->ttr_sysnum];
2108                                         /*FALLTHROUGH*/
2109 #elif defined(__i386)
2110                                 sys = &sysent[rec->ttr_sysnum];
2111                                 switch (rec->ttr_marker) {
2112                                 case TT_SYSC64:
2113 #endif
2114                                 case TT_SYSC:
2115                                         stype = "sysc"; /* syscall */
2116                                         break;
2117                                 case TT_SYSCALL:
2118                                         stype = "lcal"; /* lcall */
2119                                         break;
2120                                 case TT_SYSENTER:
2121                                         stype = "syse"; /* sysenter */
2122                                         break;
2123                                 default:
2124                                         break;
2125                                 }
2126                                 printf(fmt2, "sysc", rec->ttr_sysnum);
2127                                 if (sys != NULL) {
2128                                         sym = kobj_getsymname(
2129                                             (uintptr_t)sys->sy_callc,
2130                                             &off);
2131                                         if (sym != NULL)
2132                                                 printf(fmt3, sym);
2133                                         else
2134                                                 printf("%p ", sys->sy_callc);
2135                                 } else {
2136                                         printf(fmt3, "unknown");
2137                                 }
2138                                 break;
2139 
2140                         case TT_INTERRUPT:
2141                                 printf(fmt2, "intr", rec->ttr_vector);
2142                                 if (get_intr_handler != NULL)
2143                                         vec = (struct autovec *)
2144                                             (*get_intr_handler)
2145                                             (rec->ttr_cpuid, rec->ttr_vector);
2146                                 else
2147                                         vec =
2148                                             autovect[rec->ttr_vector].avh_link;
2149 
2150                                 if (vec != NULL) {
2151                                         sym = kobj_getsymname(
2152                                             (uintptr_t)vec->av_vector, &off);
2153                                         if (sym != NULL)
2154                                                 printf(fmt3, sym);
2155                                         else
2156                                                 printf("%p ", vec->av_vector);
2157                                 } else {
2158                                         printf(fmt3, "unknown ");
2159                                 }
2160                                 break;
2161 
2162                         case TT_TRAP:
2163                         case TT_EVENT:
2164                                 type = rec->ttr_regs.r_trapno;
2165                                 printf(fmt2, "trap", type);
2166                                 if (type < TRAP_TYPES)
2167                                         printf("     #%s ",
2168                                             trap_type_mnemonic[type]);
2169                                 else
2170                                         switch (type) {
2171                                         case T_AST:
2172                                                 printf(fmt3, "ast");
2173                                                 break;
2174                                         default:
2175                                                 printf(fmt3, "");
2176                                                 break;
2177                                         }
2178                                 break;
2179 
2180                         default:
2181                                 break;
2182                         }
2183 
2184                         sym = kobj_getsymname(rec->ttr_regs.r_pc, &off);
2185                         if (sym != NULL)
2186                                 printf("%s+%lx\n", sym, off);
2187                         else
2188                                 printf("%lx\n", rec->ttr_regs.r_pc);
2189 
2190                         if (ttrace_dump_nregs-- > 0) {
2191                                 int s;
2192 
2193                                 if (rec->ttr_marker == TT_INTERRUPT)
2194                                         printf(
2195                                             "\t\tipl %x spl %x pri %x\n",
2196                                             rec->ttr_ipl,
2197                                             rec->ttr_spl,
2198                                             rec->ttr_pri);
2199 
2200                                 dumpregs(&rec->ttr_regs);
2201 
2202                                 printf("\t%3s: %p\n\n", " ct",
2203                                     (void *)rec->ttr_curthread);
2204 
2205                                 /*
2206                                  * print out the pc stack that we recorded
2207                                  * at trap time (if any)
2208                                  */
2209                                 for (s = 0; s < rec->ttr_sdepth; s++) {
2210                                         uintptr_t fullpc;
2211 
2212                                         if (s >= TTR_STACK_DEPTH) {
2213                                                 printf("ttr_sdepth corrupt\n");
2214                                                 break;
2215                                         }
2216 
2217                                         fullpc = (uintptr_t)rec->ttr_stack[s];
2218 
2219                                         sym = kobj_getsymname(fullpc, &off);
2220                                         if (sym != NULL)
2221                                                 printf("-> %s+0x%lx()\n",
2222                                                     sym, off);
2223                                         else
2224                                                 printf("-> 0x%lx()\n", fullpc);
2225                                 }
2226                                 printf("\n");
2227                         }
2228                         current -= sizeof (trap_trace_rec_t);
2229                 }
2230         }
2231 }
2232 
2233 #endif  /* TRAPTRACE */
2234 
2235 void
2236 panic_showtrap(struct panic_trap_info *tip)
2237 {
2238         showregs(tip->trap_type, tip->trap_regs, tip->trap_addr);
2239 
2240 #if defined(TRAPTRACE)
2241         dump_ttrace();
2242 #endif
2243 
2244 #if !defined(__xpv)
2245         if (tip->trap_type == T_DBLFLT)
2246                 dump_tss();
2247 #endif
2248 }
2249 
2250 void
2251 panic_savetrap(panic_data_t *pdp, struct panic_trap_info *tip)
2252 {
2253         panic_saveregs(pdp, tip->trap_regs);
2254 }