1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 /*
  25  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  26  */
  27 
  28 /*
  29  * VM - Hardware Address Translation management for Spitfire MMU.
  30  *
  31  * This file implements the machine specific hardware translation
  32  * needed by the VM system.  The machine independent interface is
  33  * described in <vm/hat.h> while the machine dependent interface
  34  * and data structures are described in <vm/hat_sfmmu.h>.
  35  *
  36  * The hat layer manages the address translation hardware as a cache
  37  * driven by calls from the higher levels in the VM system.
  38  */
  39 
  40 #include <sys/types.h>
  41 #include <sys/kstat.h>
  42 #include <vm/hat.h>
  43 #include <vm/hat_sfmmu.h>
  44 #include <vm/page.h>
  45 #include <sys/pte.h>
  46 #include <sys/systm.h>
  47 #include <sys/mman.h>
  48 #include <sys/sysmacros.h>
  49 #include <sys/machparam.h>
  50 #include <sys/vtrace.h>
  51 #include <sys/kmem.h>
  52 #include <sys/mmu.h>
  53 #include <sys/cmn_err.h>
  54 #include <sys/cpu.h>
  55 #include <sys/cpuvar.h>
  56 #include <sys/debug.h>
  57 #include <sys/lgrp.h>
  58 #include <sys/archsystm.h>
  59 #include <sys/machsystm.h>
  60 #include <sys/vmsystm.h>
  61 #include <vm/as.h>
  62 #include <vm/seg.h>
  63 #include <vm/seg_kp.h>
  64 #include <vm/seg_kmem.h>
  65 #include <vm/seg_kpm.h>
  66 #include <vm/rm.h>
  67 #include <sys/t_lock.h>
  68 #include <sys/obpdefs.h>
  69 #include <sys/vm_machparam.h>
  70 #include <sys/var.h>
  71 #include <sys/trap.h>
  72 #include <sys/machtrap.h>
  73 #include <sys/scb.h>
  74 #include <sys/bitmap.h>
  75 #include <sys/machlock.h>
  76 #include <sys/membar.h>
  77 #include <sys/atomic.h>
  78 #include <sys/cpu_module.h>
  79 #include <sys/prom_debug.h>
  80 #include <sys/ksynch.h>
  81 #include <sys/mem_config.h>
  82 #include <sys/mem_cage.h>
  83 #include <vm/vm_dep.h>
  84 #include <vm/xhat_sfmmu.h>
  85 #include <sys/fpu/fpusystm.h>
  86 #include <vm/mach_kpm.h>
  87 #include <sys/callb.h>
  88 
  89 #ifdef  DEBUG
  90 #define SFMMU_VALIDATE_HMERID(hat, rid, saddr, len)                     \
  91         if (SFMMU_IS_SHMERID_VALID(rid)) {                              \
  92                 caddr_t _eaddr = (saddr) + (len);                       \
  93                 sf_srd_t *_srdp;                                        \
  94                 sf_region_t *_rgnp;                                     \
  95                 ASSERT((rid) < SFMMU_MAX_HME_REGIONS);                       \
  96                 ASSERT(SF_RGNMAP_TEST(hat->sfmmu_hmeregion_map, rid));       \
  97                 ASSERT((hat) != ksfmmup);                               \
  98                 _srdp = (hat)->sfmmu_srdp;                           \
  99                 ASSERT(_srdp != NULL);                                  \
 100                 ASSERT(_srdp->srd_refcnt != 0);                              \
 101                 _rgnp = _srdp->srd_hmergnp[(rid)];                   \
 102                 ASSERT(_rgnp != NULL && _rgnp->rgn_id == rid);               \
 103                 ASSERT(_rgnp->rgn_refcnt != 0);                              \
 104                 ASSERT(!(_rgnp->rgn_flags & SFMMU_REGION_FREE)); \
 105                 ASSERT((_rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) ==    \
 106                     SFMMU_REGION_HME);                                  \
 107                 ASSERT((saddr) >= _rgnp->rgn_saddr);                      \
 108                 ASSERT((saddr) < _rgnp->rgn_saddr + _rgnp->rgn_size);  \
 109                 ASSERT(_eaddr > _rgnp->rgn_saddr);                        \
 110                 ASSERT(_eaddr <= _rgnp->rgn_saddr + _rgnp->rgn_size);  \
 111         }
 112 
 113 #define SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid)              \
 114 {                                                                        \
 115                 caddr_t _hsva;                                           \
 116                 caddr_t _heva;                                           \
 117                 caddr_t _rsva;                                           \
 118                 caddr_t _reva;                                           \
 119                 int     _ttesz = get_hblk_ttesz(hmeblkp);                \
 120                 int     _flagtte;                                        \
 121                 ASSERT((srdp)->srd_refcnt != 0);                      \
 122                 ASSERT((rid) < SFMMU_MAX_HME_REGIONS);                        \
 123                 ASSERT((rgnp)->rgn_id == rid);                                \
 124                 ASSERT(!((rgnp)->rgn_flags & SFMMU_REGION_FREE));         \
 125                 ASSERT(((rgnp)->rgn_flags & SFMMU_REGION_TYPE_MASK) ==    \
 126                     SFMMU_REGION_HME);                                   \
 127                 ASSERT(_ttesz <= (rgnp)->rgn_pgszc);                       \
 128                 _hsva = (caddr_t)get_hblk_base(hmeblkp);                 \
 129                 _heva = get_hblk_endaddr(hmeblkp);                       \
 130                 _rsva = (caddr_t)P2ALIGN(                                \
 131                     (uintptr_t)(rgnp)->rgn_saddr, HBLK_MIN_BYTES);    \
 132                 _reva = (caddr_t)P2ROUNDUP(                              \
 133                     (uintptr_t)((rgnp)->rgn_saddr + (rgnp)->rgn_size),     \
 134                     HBLK_MIN_BYTES);                                     \
 135                 ASSERT(_hsva >= _rsva);                                       \
 136                 ASSERT(_hsva < _reva);                                        \
 137                 ASSERT(_heva > _rsva);                                        \
 138                 ASSERT(_heva <= _reva);                                       \
 139                 _flagtte = (_ttesz < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ :  \
 140                         _ttesz;                                          \
 141                 ASSERT(rgnp->rgn_hmeflags & (0x1 << _flagtte));             \
 142 }
 143 
 144 #else /* DEBUG */
 145 #define SFMMU_VALIDATE_HMERID(hat, rid, addr, len)
 146 #define SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid)
 147 #endif /* DEBUG */
 148 
 149 #if defined(SF_ERRATA_57)
 150 extern caddr_t errata57_limit;
 151 #endif
 152 
 153 #define HME8BLK_SZ_RND          ((roundup(HME8BLK_SZ, sizeof (int64_t))) /  \
 154                                 (sizeof (int64_t)))
 155 #define HBLK_RESERVE            ((struct hme_blk *)hblk_reserve)
 156 
 157 #define HBLK_RESERVE_CNT        128
 158 #define HBLK_RESERVE_MIN        20
 159 
 160 static struct hme_blk           *freehblkp;
 161 static kmutex_t                 freehblkp_lock;
 162 static int                      freehblkcnt;
 163 
 164 static int64_t                  hblk_reserve[HME8BLK_SZ_RND];
 165 static kmutex_t                 hblk_reserve_lock;
 166 static kthread_t                *hblk_reserve_thread;
 167 
 168 static nucleus_hblk8_info_t     nucleus_hblk8;
 169 static nucleus_hblk1_info_t     nucleus_hblk1;
 170 
 171 /*
 172  * Data to manage per-cpu hmeblk pending queues, hmeblks are queued here
 173  * after the initial phase of removing an hmeblk from the hash chain, see
 174  * the detailed comment in sfmmu_hblk_hash_rm() for further details.
 175  */
 176 static cpu_hme_pend_t           *cpu_hme_pend;
 177 static uint_t                   cpu_hme_pend_thresh;
 178 /*
 179  * SFMMU specific hat functions
 180  */
 181 void    hat_pagecachectl(struct page *, int);
 182 
 183 /* flags for hat_pagecachectl */
 184 #define HAT_CACHE       0x1
 185 #define HAT_UNCACHE     0x2
 186 #define HAT_TMPNC       0x4
 187 
 188 /*
 189  * Flag to allow the creation of non-cacheable translations
 190  * to system memory. It is off by default. At the moment this
 191  * flag is used by the ecache error injector. The error injector
 192  * will turn it on when creating such a translation then shut it
 193  * off when it's finished.
 194  */
 195 
 196 int     sfmmu_allow_nc_trans = 0;
 197 
 198 /*
 199  * Flag to disable large page support.
 200  *      value of 1 => disable all large pages.
 201  *      bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
 202  *
 203  * For example, use the value 0x4 to disable 512K pages.
 204  *
 205  */
 206 #define LARGE_PAGES_OFF         0x1
 207 
 208 /*
 209  * The disable_large_pages and disable_ism_large_pages variables control
 210  * hat_memload_array and the page sizes to be used by ISM and the kernel.
 211  *
 212  * The disable_auto_data_large_pages and disable_auto_text_large_pages variables
 213  * are only used to control which OOB pages to use at upper VM segment creation
 214  * time, and are set in hat_init_pagesizes and used in the map_pgsz* routines.
 215  * Their values may come from platform or CPU specific code to disable page
 216  * sizes that should not be used.
 217  *
 218  * WARNING: 512K pages are currently not supported for ISM/DISM.
 219  */
 220 uint_t  disable_large_pages = 0;
 221 uint_t  disable_ism_large_pages = (1 << TTE512K);
 222 uint_t  disable_auto_data_large_pages = 0;
 223 uint_t  disable_auto_text_large_pages = 0;
 224 
 225 /*
 226  * Private sfmmu data structures for hat management
 227  */
 228 static struct kmem_cache *sfmmuid_cache;
 229 static struct kmem_cache *mmuctxdom_cache;
 230 
 231 /*
 232  * Private sfmmu data structures for tsb management
 233  */
 234 static struct kmem_cache *sfmmu_tsbinfo_cache;
 235 static struct kmem_cache *sfmmu_tsb8k_cache;
 236 static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
 237 static vmem_t *kmem_bigtsb_arena;
 238 static vmem_t *kmem_tsb_arena;
 239 
 240 /*
 241  * sfmmu static variables for hmeblk resource management.
 242  */
 243 static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
 244 static struct kmem_cache *sfmmu8_cache;
 245 static struct kmem_cache *sfmmu1_cache;
 246 static struct kmem_cache *pa_hment_cache;
 247 
 248 static kmutex_t         ism_mlist_lock; /* mutex for ism mapping list */
 249 /*
 250  * private data for ism
 251  */
 252 static struct kmem_cache *ism_blk_cache;
 253 static struct kmem_cache *ism_ment_cache;
 254 #define ISMID_STARTADDR NULL
 255 
 256 /*
 257  * Region management data structures and function declarations.
 258  */
 259 
 260 static void     sfmmu_leave_srd(sfmmu_t *);
 261 static int      sfmmu_srdcache_constructor(void *, void *, int);
 262 static void     sfmmu_srdcache_destructor(void *, void *);
 263 static int      sfmmu_rgncache_constructor(void *, void *, int);
 264 static void     sfmmu_rgncache_destructor(void *, void *);
 265 static int      sfrgnmap_isnull(sf_region_map_t *);
 266 static int      sfhmergnmap_isnull(sf_hmeregion_map_t *);
 267 static int      sfmmu_scdcache_constructor(void *, void *, int);
 268 static void     sfmmu_scdcache_destructor(void *, void *);
 269 static void     sfmmu_rgn_cb_noop(caddr_t, caddr_t, caddr_t,
 270     size_t, void *, u_offset_t);
 271 
 272 static uint_t srd_hashmask = SFMMU_MAX_SRD_BUCKETS - 1;
 273 static sf_srd_bucket_t *srd_buckets;
 274 static struct kmem_cache *srd_cache;
 275 static uint_t srd_rgn_hashmask = SFMMU_MAX_REGION_BUCKETS - 1;
 276 static struct kmem_cache *region_cache;
 277 static struct kmem_cache *scd_cache;
 278 
 279 #ifdef sun4v
 280 int use_bigtsb_arena = 1;
 281 #else
 282 int use_bigtsb_arena = 0;
 283 #endif
 284 
 285 /* External /etc/system tunable, for turning on&off the shctx support */
 286 int disable_shctx = 0;
 287 /* Internal variable, set by MD if the HW supports shctx feature */
 288 int shctx_on = 0;
 289 
 290 #ifdef DEBUG
 291 static void check_scd_sfmmu_list(sfmmu_t **, sfmmu_t *, int);
 292 #endif
 293 static void sfmmu_to_scd_list(sfmmu_t **, sfmmu_t *);
 294 static void sfmmu_from_scd_list(sfmmu_t **, sfmmu_t *);
 295 
 296 static sf_scd_t *sfmmu_alloc_scd(sf_srd_t *, sf_region_map_t *);
 297 static void sfmmu_find_scd(sfmmu_t *);
 298 static void sfmmu_join_scd(sf_scd_t *, sfmmu_t *);
 299 static void sfmmu_finish_join_scd(sfmmu_t *);
 300 static void sfmmu_leave_scd(sfmmu_t *, uchar_t);
 301 static void sfmmu_destroy_scd(sf_srd_t *, sf_scd_t *, sf_region_map_t *);
 302 static int sfmmu_alloc_scd_tsbs(sf_srd_t *, sf_scd_t *);
 303 static void sfmmu_free_scd_tsbs(sfmmu_t *);
 304 static void sfmmu_tsb_inv_ctx(sfmmu_t *);
 305 static int find_ism_rid(sfmmu_t *, sfmmu_t *, caddr_t, uint_t *);
 306 static void sfmmu_ism_hatflags(sfmmu_t *, int);
 307 static int sfmmu_srd_lock_held(sf_srd_t *);
 308 static void sfmmu_remove_scd(sf_scd_t **, sf_scd_t *);
 309 static void sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *);
 310 static void sfmmu_link_scd_to_regions(sf_srd_t *, sf_scd_t *);
 311 static void sfmmu_unlink_scd_from_regions(sf_srd_t *, sf_scd_t *);
 312 static void sfmmu_link_to_hmeregion(sfmmu_t *, sf_region_t *);
 313 static void sfmmu_unlink_from_hmeregion(sfmmu_t *, sf_region_t *);
 314 
 315 /*
 316  * ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
 317  * HAT flags, synchronizing TLB/TSB coherency, and context management.
 318  * The lock is hashed on the sfmmup since the case where we need to lock
 319  * all processes is rare but does occur (e.g. we need to unload a shared
 320  * mapping from all processes using the mapping).  We have a lot of buckets,
 321  * and each slab of sfmmu_t's can use about a quarter of them, giving us
 322  * a fairly good distribution without wasting too much space and overhead
 323  * when we have to grab them all.
 324  */
 325 #define SFMMU_NUM_LOCK  128             /* must be power of two */
 326 hatlock_t       hat_lock[SFMMU_NUM_LOCK];
 327 
 328 /*
 329  * Hash algorithm optimized for a small number of slabs.
 330  *  7 is (highbit((sizeof sfmmu_t)) - 1)
 331  * This hash algorithm is based upon the knowledge that sfmmu_t's come from a
 332  * kmem_cache, and thus they will be sequential within that cache.  In
 333  * addition, each new slab will have a different "color" up to cache_maxcolor
 334  * which will skew the hashing for each successive slab which is allocated.
 335  * If the size of sfmmu_t changed to a larger size, this algorithm may need
 336  * to be revisited.
 337  */
 338 #define TSB_HASH_SHIFT_BITS (7)
 339 #define PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
 340 
 341 #ifdef DEBUG
 342 int tsb_hash_debug = 0;
 343 #define TSB_HASH(sfmmup)        \
 344         (tsb_hash_debug ? &hat_lock[0] : \
 345         &hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
 346 #else   /* DEBUG */
 347 #define TSB_HASH(sfmmup)        &hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
 348 #endif  /* DEBUG */
 349 
 350 
 351 /* sfmmu_replace_tsb() return codes. */
 352 typedef enum tsb_replace_rc {
 353         TSB_SUCCESS,
 354         TSB_ALLOCFAIL,
 355         TSB_LOSTRACE,
 356         TSB_ALREADY_SWAPPED,
 357         TSB_CANTGROW
 358 } tsb_replace_rc_t;
 359 
 360 /*
 361  * Flags for TSB allocation routines.
 362  */
 363 #define TSB_ALLOC       0x01
 364 #define TSB_FORCEALLOC  0x02
 365 #define TSB_GROW        0x04
 366 #define TSB_SHRINK      0x08
 367 #define TSB_SWAPIN      0x10
 368 
 369 /*
 370  * Support for HAT callbacks.
 371  */
 372 #define SFMMU_MAX_RELOC_CALLBACKS       10
 373 int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
 374 static id_t sfmmu_cb_nextid = 0;
 375 static id_t sfmmu_tsb_cb_id;
 376 struct sfmmu_callback *sfmmu_cb_table;
 377 
 378 kmutex_t        kpr_mutex;
 379 kmutex_t        kpr_suspendlock;
 380 kthread_t       *kreloc_thread;
 381 
 382 /*
 383  * Enable VA->PA translation sanity checking on DEBUG kernels.
 384  * Disabled by default.  This is incompatible with some
 385  * drivers (error injector, RSM) so if it breaks you get
 386  * to keep both pieces.
 387  */
 388 int hat_check_vtop = 0;
 389 
 390 /*
 391  * Private sfmmu routines (prototypes)
 392  */
 393 static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
 394 static struct   hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
 395                         struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t,
 396                         uint_t);
 397 static caddr_t  sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
 398                         caddr_t, demap_range_t *, uint_t);
 399 static caddr_t  sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
 400                         caddr_t, int);
 401 static void     sfmmu_hblk_free(struct hme_blk **);
 402 static void     sfmmu_hblks_list_purge(struct hme_blk **, int);
 403 static uint_t   sfmmu_get_free_hblk(struct hme_blk **, uint_t);
 404 static uint_t   sfmmu_put_free_hblk(struct hme_blk *, uint_t);
 405 static struct hme_blk *sfmmu_hblk_steal(int);
 406 static int      sfmmu_steal_this_hblk(struct hmehash_bucket *,
 407                         struct hme_blk *, uint64_t, struct hme_blk *);
 408 static caddr_t  sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
 409 
 410 static void     hat_do_memload_array(struct hat *, caddr_t, size_t,
 411                     struct page **, uint_t, uint_t, uint_t);
 412 static void     hat_do_memload(struct hat *, caddr_t, struct page *,
 413                     uint_t, uint_t, uint_t);
 414 static void     sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
 415                     uint_t, uint_t, pgcnt_t, uint_t);
 416 void            sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
 417                         uint_t);
 418 static int      sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
 419                         uint_t, uint_t);
 420 static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
 421                                         caddr_t, int, uint_t);
 422 static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
 423                         struct hmehash_bucket *, caddr_t, uint_t, uint_t,
 424                         uint_t);
 425 static int      sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
 426                         caddr_t, page_t **, uint_t, uint_t);
 427 static void     sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
 428 
 429 static int      sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
 430 static pfn_t    sfmmu_uvatopfn(caddr_t, sfmmu_t *, tte_t *);
 431 void            sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
 432 #ifdef VAC
 433 static void     sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
 434 static int      sfmmu_vacconflict_array(caddr_t, page_t *, int *);
 435 int     tst_tnc(page_t *pp, pgcnt_t);
 436 void    conv_tnc(page_t *pp, int);
 437 #endif
 438 
 439 static void     sfmmu_get_ctx(sfmmu_t *);
 440 static void     sfmmu_free_sfmmu(sfmmu_t *);
 441 
 442 static void     sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
 443 static void     sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
 444 
 445 cpuset_t        sfmmu_pageunload(page_t *, struct sf_hment *, int);
 446 static void     hat_pagereload(struct page *, struct page *);
 447 static cpuset_t sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
 448 #ifdef VAC
 449 void    sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
 450 static void     sfmmu_page_cache(page_t *, int, int, int);
 451 #endif
 452 
 453 cpuset_t        sfmmu_rgntlb_demap(caddr_t, sf_region_t *,
 454     struct hme_blk *, int);
 455 static void     sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
 456                         pfn_t, int, int, int, int);
 457 static void     sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
 458                         pfn_t, int);
 459 static void     sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
 460 static void     sfmmu_tlb_range_demap(demap_range_t *);
 461 static void     sfmmu_invalidate_ctx(sfmmu_t *);
 462 static void     sfmmu_sync_mmustate(sfmmu_t *);
 463 
 464 static void     sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
 465 static int      sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
 466                         sfmmu_t *);
 467 static void     sfmmu_tsb_free(struct tsb_info *);
 468 static void     sfmmu_tsbinfo_free(struct tsb_info *);
 469 static int      sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
 470                         sfmmu_t *);
 471 static void     sfmmu_tsb_chk_reloc(sfmmu_t *, hatlock_t *);
 472 static void     sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
 473 static int      sfmmu_select_tsb_szc(pgcnt_t);
 474 static void     sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
 475 #define         sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
 476         sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
 477 #define         sfmmu_unload_tsb(sfmmup, vaddr, szc)    \
 478         sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
 479 static void     sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
 480 static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
 481     hatlock_t *, uint_t);
 482 static void     sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
 483 
 484 #ifdef VAC
 485 void    sfmmu_cache_flush(pfn_t, int);
 486 void    sfmmu_cache_flushcolor(int, pfn_t);
 487 #endif
 488 static caddr_t  sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
 489                         caddr_t, demap_range_t *, uint_t, int);
 490 
 491 static uint64_t sfmmu_vtop_attr(uint_t, int mode, tte_t *);
 492 static uint_t   sfmmu_ptov_attr(tte_t *);
 493 static caddr_t  sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
 494                         caddr_t, demap_range_t *, uint_t);
 495 static uint_t   sfmmu_vtop_prot(uint_t, uint_t *);
 496 static int      sfmmu_idcache_constructor(void *, void *, int);
 497 static void     sfmmu_idcache_destructor(void *, void *);
 498 static int      sfmmu_hblkcache_constructor(void *, void *, int);
 499 static void     sfmmu_hblkcache_destructor(void *, void *);
 500 static void     sfmmu_hblkcache_reclaim(void *);
 501 static void     sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
 502                         struct hmehash_bucket *);
 503 static void     sfmmu_hblk_hash_rm(struct hmehash_bucket *, struct hme_blk *,
 504                         struct hme_blk *, struct hme_blk **, int);
 505 static void     sfmmu_hblk_hash_add(struct hmehash_bucket *, struct hme_blk *,
 506                         uint64_t);
 507 static struct hme_blk *sfmmu_check_pending_hblks(int);
 508 static void     sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
 509 static void     sfmmu_cleanup_rhblk(sf_srd_t *, caddr_t, uint_t, int);
 510 static void     sfmmu_unload_hmeregion_va(sf_srd_t *, uint_t, caddr_t, caddr_t,
 511                         int, caddr_t *);
 512 static void     sfmmu_unload_hmeregion(sf_srd_t *, sf_region_t *);
 513 
 514 static void     sfmmu_rm_large_mappings(page_t *, int);
 515 
 516 static void     hat_lock_init(void);
 517 static void     hat_kstat_init(void);
 518 static int      sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
 519 static void     sfmmu_set_scd_rttecnt(sf_srd_t *, sf_scd_t *);
 520 static  int     sfmmu_is_rgnva(sf_srd_t *, caddr_t, ulong_t, ulong_t);
 521 static void     sfmmu_check_page_sizes(sfmmu_t *, int);
 522 int     fnd_mapping_sz(page_t *);
 523 static void     iment_add(struct ism_ment *,  struct hat *);
 524 static void     iment_sub(struct ism_ment *, struct hat *);
 525 static pgcnt_t  ism_tsb_entries(sfmmu_t *, int szc);
 526 extern void     sfmmu_setup_tsbinfo(sfmmu_t *);
 527 extern void     sfmmu_clear_utsbinfo(void);
 528 
 529 static void             sfmmu_ctx_wrap_around(mmu_ctx_t *, boolean_t);
 530 
 531 extern int vpm_enable;
 532 
 533 /* kpm globals */
 534 #ifdef  DEBUG
 535 /*
 536  * Enable trap level tsbmiss handling
 537  */
 538 int     kpm_tsbmtl = 1;
 539 
 540 /*
 541  * Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
 542  * required TLB shootdowns in this case, so handle w/ care. Off by default.
 543  */
 544 int     kpm_tlb_flush;
 545 #endif  /* DEBUG */
 546 
 547 static void     *sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
 548 
 549 #ifdef DEBUG
 550 static void     sfmmu_check_hblk_flist();
 551 #endif
 552 
 553 /*
 554  * Semi-private sfmmu data structures.  Some of them are initialize in
 555  * startup or in hat_init. Some of them are private but accessed by
 556  * assembly code or mach_sfmmu.c
 557  */
 558 struct hmehash_bucket *uhme_hash;       /* user hmeblk hash table */
 559 struct hmehash_bucket *khme_hash;       /* kernel hmeblk hash table */
 560 uint64_t        uhme_hash_pa;           /* PA of uhme_hash */
 561 uint64_t        khme_hash_pa;           /* PA of khme_hash */
 562 int             uhmehash_num;           /* # of buckets in user hash table */
 563 int             khmehash_num;           /* # of buckets in kernel hash table */
 564 
 565 uint_t          max_mmu_ctxdoms = 0;    /* max context domains in the system */
 566 mmu_ctx_t       **mmu_ctxs_tbl;         /* global array of context domains */
 567 uint64_t        mmu_saved_gnum = 0;     /* to init incoming MMUs' gnums */
 568 
 569 #define DEFAULT_NUM_CTXS_PER_MMU 8192
 570 static uint_t   nctxs = DEFAULT_NUM_CTXS_PER_MMU;
 571 
 572 int             cache;                  /* describes system cache */
 573 
 574 caddr_t         ktsb_base;              /* kernel 8k-indexed tsb base address */
 575 uint64_t        ktsb_pbase;             /* kernel 8k-indexed tsb phys address */
 576 int             ktsb_szcode;            /* kernel 8k-indexed tsb size code */
 577 int             ktsb_sz;                /* kernel 8k-indexed tsb size */
 578 
 579 caddr_t         ktsb4m_base;            /* kernel 4m-indexed tsb base address */
 580 uint64_t        ktsb4m_pbase;           /* kernel 4m-indexed tsb phys address */
 581 int             ktsb4m_szcode;          /* kernel 4m-indexed tsb size code */
 582 int             ktsb4m_sz;              /* kernel 4m-indexed tsb size */
 583 
 584 uint64_t        kpm_tsbbase;            /* kernel seg_kpm 4M TSB base address */
 585 int             kpm_tsbsz;              /* kernel seg_kpm 4M TSB size code */
 586 uint64_t        kpmsm_tsbbase;          /* kernel seg_kpm 8K TSB base address */
 587 int             kpmsm_tsbsz;            /* kernel seg_kpm 8K TSB size code */
 588 
 589 #ifndef sun4v
 590 int             utsb_dtlb_ttenum = -1;  /* index in TLB for utsb locked TTE */
 591 int             utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
 592 int             dtlb_resv_ttenum;       /* index in TLB of first reserved TTE */
 593 caddr_t         utsb_vabase;            /* reserved kernel virtual memory */
 594 caddr_t         utsb4m_vabase;          /* for trap handler TSB accesses */
 595 #endif /* sun4v */
 596 uint64_t        tsb_alloc_bytes = 0;    /* bytes allocated to TSBs */
 597 vmem_t          *kmem_tsb_default_arena[NLGRPS_MAX];    /* For dynamic TSBs */
 598 vmem_t          *kmem_bigtsb_default_arena[NLGRPS_MAX]; /* dynamic 256M TSBs */
 599 
 600 /*
 601  * Size to use for TSB slabs.  Future platforms that support page sizes
 602  * larger than 4M may wish to change these values, and provide their own
 603  * assembly macros for building and decoding the TSB base register contents.
 604  * Note disable_large_pages will override the value set here.
 605  */
 606 static  uint_t tsb_slab_ttesz = TTE4M;
 607 size_t  tsb_slab_size = MMU_PAGESIZE4M;
 608 uint_t  tsb_slab_shift = MMU_PAGESHIFT4M;
 609 /* PFN mask for TTE */
 610 size_t  tsb_slab_mask = MMU_PAGEOFFSET4M >> MMU_PAGESHIFT;
 611 
 612 /*
 613  * Size to use for TSB slabs.  These are used only when 256M tsb arenas
 614  * exist.
 615  */
 616 static uint_t   bigtsb_slab_ttesz = TTE256M;
 617 static size_t   bigtsb_slab_size = MMU_PAGESIZE256M;
 618 static uint_t   bigtsb_slab_shift = MMU_PAGESHIFT256M;
 619 /* 256M page alignment for 8K pfn */
 620 static size_t   bigtsb_slab_mask = MMU_PAGEOFFSET256M >> MMU_PAGESHIFT;
 621 
 622 /* largest TSB size to grow to, will be smaller on smaller memory systems */
 623 static int      tsb_max_growsize = 0;
 624 
 625 /*
 626  * Tunable parameters dealing with TSB policies.
 627  */
 628 
 629 /*
 630  * This undocumented tunable forces all 8K TSBs to be allocated from
 631  * the kernel heap rather than from the kmem_tsb_default_arena arenas.
 632  */
 633 #ifdef  DEBUG
 634 int     tsb_forceheap = 0;
 635 #endif  /* DEBUG */
 636 
 637 /*
 638  * Decide whether to use per-lgroup arenas, or one global set of
 639  * TSB arenas.  The default is not to break up per-lgroup, since
 640  * most platforms don't recognize any tangible benefit from it.
 641  */
 642 int     tsb_lgrp_affinity = 0;
 643 
 644 /*
 645  * Used for growing the TSB based on the process RSS.
 646  * tsb_rss_factor is based on the smallest TSB, and is
 647  * shifted by the TSB size to determine if we need to grow.
 648  * The default will grow the TSB if the number of TTEs for
 649  * this page size exceeds 75% of the number of TSB entries,
 650  * which should _almost_ eliminate all conflict misses
 651  * (at the expense of using up lots and lots of memory).
 652  */
 653 #define TSB_RSS_FACTOR          (TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
 654 #define SFMMU_RSS_TSBSIZE(tsbszc)       (tsb_rss_factor << tsbszc)
 655 #define SELECT_TSB_SIZECODE(pgcnt) ( \
 656         (enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
 657         default_tsb_size)
 658 #define TSB_OK_SHRINK() \
 659         (tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
 660 #define TSB_OK_GROW()   \
 661         (tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
 662 
 663 int     enable_tsb_rss_sizing = 1;
 664 int     tsb_rss_factor  = (int)TSB_RSS_FACTOR;
 665 
 666 /* which TSB size code to use for new address spaces or if rss sizing off */
 667 int default_tsb_size = TSB_8K_SZCODE;
 668 
 669 static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
 670 uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
 671 #define TSB_ALLOC_HIWATER_FACTOR_DEFAULT        32
 672 
 673 #ifdef DEBUG
 674 static int tsb_random_size = 0; /* set to 1 to test random tsb sizes on alloc */
 675 static int tsb_grow_stress = 0; /* if set to 1, keep replacing TSB w/ random */
 676 static int tsb_alloc_mtbf = 0;  /* fail allocation every n attempts */
 677 static int tsb_alloc_fail_mtbf = 0;
 678 static int tsb_alloc_count = 0;
 679 #endif /* DEBUG */
 680 
 681 /* if set to 1, will remap valid TTEs when growing TSB. */
 682 int tsb_remap_ttes = 1;
 683 
 684 /*
 685  * If we have more than this many mappings, allocate a second TSB.
 686  * This default is chosen because the I/D fully associative TLBs are
 687  * assumed to have at least 8 available entries. Platforms with a
 688  * larger fully-associative TLB could probably override the default.
 689  */
 690 
 691 #ifdef sun4v
 692 int tsb_sectsb_threshold = 0;
 693 #else
 694 int tsb_sectsb_threshold = 8;
 695 #endif
 696 
 697 /*
 698  * kstat data
 699  */
 700 struct sfmmu_global_stat sfmmu_global_stat;
 701 struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
 702 
 703 /*
 704  * Global data
 705  */
 706 sfmmu_t         *ksfmmup;               /* kernel's hat id */
 707 
 708 #ifdef DEBUG
 709 static void     chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
 710 #endif
 711 
 712 /* sfmmu locking operations */
 713 static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
 714 static int      sfmmu_mlspl_held(struct page *, int);
 715 
 716 kmutex_t *sfmmu_page_enter(page_t *);
 717 void    sfmmu_page_exit(kmutex_t *);
 718 int     sfmmu_page_spl_held(struct page *);
 719 
 720 /* sfmmu internal locking operations - accessed directly */
 721 static void     sfmmu_mlist_reloc_enter(page_t *, page_t *,
 722                                 kmutex_t **, kmutex_t **);
 723 static void     sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
 724 static hatlock_t *
 725                 sfmmu_hat_enter(sfmmu_t *);
 726 static hatlock_t *
 727                 sfmmu_hat_tryenter(sfmmu_t *);
 728 static void     sfmmu_hat_exit(hatlock_t *);
 729 static void     sfmmu_hat_lock_all(void);
 730 static void     sfmmu_hat_unlock_all(void);
 731 static void     sfmmu_ismhat_enter(sfmmu_t *, int);
 732 static void     sfmmu_ismhat_exit(sfmmu_t *, int);
 733 
 734 kpm_hlk_t       *kpmp_table;
 735 uint_t          kpmp_table_sz;  /* must be a power of 2 */
 736 uchar_t         kpmp_shift;
 737 
 738 kpm_shlk_t      *kpmp_stable;
 739 uint_t          kpmp_stable_sz; /* must be a power of 2 */
 740 
 741 /*
 742  * SPL_TABLE_SIZE is 2 * NCPU, but no smaller than 128.
 743  * SPL_SHIFT is log2(SPL_TABLE_SIZE).
 744  */
 745 #if ((2*NCPU_P2) > 128)
 746 #define SPL_SHIFT       ((unsigned)(NCPU_LOG2 + 1))
 747 #else
 748 #define SPL_SHIFT       7U
 749 #endif
 750 #define SPL_TABLE_SIZE  (1U << SPL_SHIFT)
 751 #define SPL_MASK        (SPL_TABLE_SIZE - 1)
 752 
 753 /*
 754  * We shift by PP_SHIFT to take care of the low-order 0 bits of a page_t
 755  * and by multiples of SPL_SHIFT to get as many varied bits as we can.
 756  */
 757 #define SPL_INDEX(pp) \
 758         ((((uintptr_t)(pp) >> PP_SHIFT) ^ \
 759         ((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT)) ^ \
 760         ((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT * 2)) ^ \
 761         ((uintptr_t)(pp) >> (PP_SHIFT + SPL_SHIFT * 3))) & \
 762         SPL_MASK)
 763 
 764 #define SPL_HASH(pp)    \
 765         (&sfmmu_page_lock[SPL_INDEX(pp)].pad_mutex)
 766 
 767 static  pad_mutex_t     sfmmu_page_lock[SPL_TABLE_SIZE];
 768 
 769 /* Array of mutexes protecting a page's mapping list and p_nrm field. */
 770 
 771 #define MML_TABLE_SIZE  SPL_TABLE_SIZE
 772 #define MLIST_HASH(pp)  (&mml_table[SPL_INDEX(pp)].pad_mutex)
 773 
 774 static pad_mutex_t      mml_table[MML_TABLE_SIZE];
 775 
 776 /*
 777  * hat_unload_callback() will group together callbacks in order
 778  * to avoid xt_sync() calls.  This is the maximum size of the group.
 779  */
 780 #define MAX_CB_ADDR     32
 781 
 782 tte_t   hw_tte;
 783 static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
 784 
 785 static char     *mmu_ctx_kstat_names[] = {
 786         "mmu_ctx_tsb_exceptions",
 787         "mmu_ctx_tsb_raise_exception",
 788         "mmu_ctx_wrap_around",
 789 };
 790 
 791 /*
 792  * Wrapper for vmem_xalloc since vmem_create only allows limited
 793  * parameters for vm_source_alloc functions.  This function allows us
 794  * to specify alignment consistent with the size of the object being
 795  * allocated.
 796  */
 797 static void *
 798 sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
 799 {
 800         return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
 801 }
 802 
 803 /* Common code for setting tsb_alloc_hiwater. */
 804 #define SFMMU_SET_TSB_ALLOC_HIWATER(pages)      tsb_alloc_hiwater = \
 805                 ptob(pages) / tsb_alloc_hiwater_factor
 806 
 807 /*
 808  * Set tsb_max_growsize to allow at most all of physical memory to be mapped by
 809  * a single TSB.  physmem is the number of physical pages so we need physmem 8K
 810  * TTEs to represent all those physical pages.  We round this up by using
 811  * 1<<highbit().  To figure out which size code to use, remember that the size
 812  * code is just an amount to shift the smallest TSB size to get the size of
 813  * this TSB.  So we subtract that size, TSB_START_SIZE, from highbit() (or
 814  * highbit() - 1) to get the size code for the smallest TSB that can represent
 815  * all of physical memory, while erring on the side of too much.
 816  *
 817  * Restrict tsb_max_growsize to make sure that:
 818  *      1) TSBs can't grow larger than the TSB slab size
 819  *      2) TSBs can't grow larger than UTSB_MAX_SZCODE.
 820  */
 821 #define SFMMU_SET_TSB_MAX_GROWSIZE(pages) {                             \
 822         int     _i, _szc, _slabszc, _tsbszc;                            \
 823                                                                         \
 824         _i = highbit(pages);                                            \
 825         if ((1 << (_i - 1)) == (pages))                                   \
 826                 _i--;           /* 2^n case, round down */              \
 827         _szc = _i - TSB_START_SIZE;                                     \
 828         _slabszc = bigtsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT); \
 829         _tsbszc = MIN(_szc, _slabszc);                                  \
 830         tsb_max_growsize = MIN(_tsbszc, UTSB_MAX_SZCODE);               \
 831 }
 832 
 833 /*
 834  * Given a pointer to an sfmmu and a TTE size code, return a pointer to the
 835  * tsb_info which handles that TTE size.
 836  */
 837 #define SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc) {                  \
 838         (tsbinfop) = (sfmmup)->sfmmu_tsb;                            \
 839         ASSERT(((tsbinfop)->tsb_flags & TSB_SHAREDCTX) ||                \
 840             sfmmu_hat_lock_held(sfmmup));                               \
 841         if ((tte_szc) >= TTE4M)      {                                       \
 842                 ASSERT((tsbinfop) != NULL);                             \
 843                 (tsbinfop) = (tsbinfop)->tsb_next;                   \
 844         }                                                               \
 845 }
 846 
 847 /*
 848  * Macro to use to unload entries from the TSB.
 849  * It has knowledge of which page sizes get replicated in the TSB
 850  * and will call the appropriate unload routine for the appropriate size.
 851  */
 852 #define SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, ismhat)         \
 853 {                                                                       \
 854         int ttesz = get_hblk_ttesz(hmeblkp);                            \
 855         if (ttesz == TTE8K || ttesz == TTE4M) {                         \
 856                 sfmmu_unload_tsb(sfmmup, addr, ttesz);                  \
 857         } else {                                                        \
 858                 caddr_t sva = ismhat ? addr :                           \
 859                     (caddr_t)get_hblk_base(hmeblkp);                    \
 860                 caddr_t eva = sva + get_hblk_span(hmeblkp);             \
 861                 ASSERT(addr >= sva && addr < eva);                        \
 862                 sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);        \
 863         }                                                               \
 864 }
 865 
 866 
 867 /* Update tsb_alloc_hiwater after memory is configured. */
 868 /*ARGSUSED*/
 869 static void
 870 sfmmu_update_post_add(void *arg, pgcnt_t delta_pages)
 871 {
 872         /* Assumes physmem has already been updated. */
 873         SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
 874         SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
 875 }
 876 
 877 /*
 878  * Update tsb_alloc_hiwater before memory is deleted.  We'll do nothing here
 879  * and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
 880  * deleted.
 881  */
 882 /*ARGSUSED*/
 883 static int
 884 sfmmu_update_pre_del(void *arg, pgcnt_t delta_pages)
 885 {
 886         return (0);
 887 }
 888 
 889 /* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
 890 /*ARGSUSED*/
 891 static void
 892 sfmmu_update_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
 893 {
 894         /*
 895          * Whether the delete was cancelled or not, just go ahead and update
 896          * tsb_alloc_hiwater and tsb_max_growsize.
 897          */
 898         SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
 899         SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
 900 }
 901 
 902 static kphysm_setup_vector_t sfmmu_update_vec = {
 903         KPHYSM_SETUP_VECTOR_VERSION,    /* version */
 904         sfmmu_update_post_add,          /* post_add */
 905         sfmmu_update_pre_del,           /* pre_del */
 906         sfmmu_update_post_del           /* post_del */
 907 };
 908 
 909 
 910 /*
 911  * HME_BLK HASH PRIMITIVES
 912  */
 913 
 914 /*
 915  * Enter a hme on the mapping list for page pp.
 916  * When large pages are more prevalent in the system we might want to
 917  * keep the mapping list in ascending order by the hment size. For now,
 918  * small pages are more frequent, so don't slow it down.
 919  */
 920 #define HME_ADD(hme, pp)                                        \
 921 {                                                               \
 922         ASSERT(sfmmu_mlist_held(pp));                           \
 923                                                                 \
 924         hme->hme_prev = NULL;                                        \
 925         hme->hme_next = pp->p_mapping;                            \
 926         hme->hme_page = pp;                                  \
 927         if (pp->p_mapping) {                                 \
 928                 ((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
 929                 ASSERT(pp->p_share > 0);                  \
 930         } else  {                                               \
 931                 /* EMPTY */                                     \
 932                 ASSERT(pp->p_share == 0);                    \
 933         }                                                       \
 934         pp->p_mapping = hme;                                 \
 935         pp->p_share++;                                               \
 936 }
 937 
 938 /*
 939  * Enter a hme on the mapping list for page pp.
 940  * If we are unmapping a large translation, we need to make sure that the
 941  * change is reflect in the corresponding bit of the p_index field.
 942  */
 943 #define HME_SUB(hme, pp)                                        \
 944 {                                                               \
 945         ASSERT(sfmmu_mlist_held(pp));                           \
 946         ASSERT(hme->hme_page == pp || IS_PAHME(hme));                \
 947                                                                 \
 948         if (pp->p_mapping == NULL) {                         \
 949                 panic("hme_remove - no mappings");              \
 950         }                                                       \
 951                                                                 \
 952         membar_stst();  /* ensure previous stores finish */     \
 953                                                                 \
 954         ASSERT(pp->p_share > 0);                          \
 955         pp->p_share--;                                               \
 956                                                                 \
 957         if (hme->hme_prev) {                                 \
 958                 ASSERT(pp->p_mapping != hme);                        \
 959                 ASSERT(hme->hme_prev->hme_page == pp ||           \
 960                         IS_PAHME(hme->hme_prev));            \
 961                 hme->hme_prev->hme_next = hme->hme_next;       \
 962         } else {                                                \
 963                 ASSERT(pp->p_mapping == hme);                        \
 964                 pp->p_mapping = hme->hme_next;                    \
 965                 ASSERT((pp->p_mapping == NULL) ?             \
 966                         (pp->p_share == 0) : 1);             \
 967         }                                                       \
 968                                                                 \
 969         if (hme->hme_next) {                                 \
 970                 ASSERT(hme->hme_next->hme_page == pp ||           \
 971                         IS_PAHME(hme->hme_next));            \
 972                 hme->hme_next->hme_prev = hme->hme_prev;       \
 973         }                                                       \
 974                                                                 \
 975         /* zero out the entry */                                \
 976         hme->hme_next = NULL;                                        \
 977         hme->hme_prev = NULL;                                        \
 978         hme->hme_page = NULL;                                        \
 979                                                                 \
 980         if (hme_size(hme) > TTE8K) {                         \
 981                 /* remove mappings for remainder of large pg */ \
 982                 sfmmu_rm_large_mappings(pp, hme_size(hme));     \
 983         }                                                       \
 984 }
 985 
 986 /*
 987  * This function returns the hment given the hme_blk and a vaddr.
 988  * It assumes addr has already been checked to belong to hme_blk's
 989  * range.
 990  */
 991 #define HBLKTOHME(hment, hmeblkp, addr)                                 \
 992 {                                                                       \
 993         int index;                                                      \
 994         HBLKTOHME_IDX(hment, hmeblkp, addr, index)                      \
 995 }
 996 
 997 /*
 998  * Version of HBLKTOHME that also returns the index in hmeblkp
 999  * of the hment.
1000  */
1001 #define HBLKTOHME_IDX(hment, hmeblkp, addr, idx)                        \
1002 {                                                                       \
1003         ASSERT(in_hblk_range((hmeblkp), (addr)));                       \
1004                                                                         \
1005         if (get_hblk_ttesz(hmeblkp) == TTE8K) {                         \
1006                 idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
1007         } else                                                          \
1008                 idx = 0;                                                \
1009                                                                         \
1010         (hment) = &(hmeblkp)->hblk_hme[idx];                             \
1011 }
1012 
1013 /*
1014  * Disable any page sizes not supported by the CPU
1015  */
1016 void
1017 hat_init_pagesizes()
1018 {
1019         int             i;
1020 
1021         mmu_exported_page_sizes = 0;
1022         for (i = TTE8K; i < max_mmu_page_sizes; i++) {
1023 
1024                 szc_2_userszc[i] = (uint_t)-1;
1025                 userszc_2_szc[i] = (uint_t)-1;
1026 
1027                 if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
1028                         disable_large_pages |= (1 << i);
1029                 } else {
1030                         szc_2_userszc[i] = mmu_exported_page_sizes;
1031                         userszc_2_szc[mmu_exported_page_sizes] = i;
1032                         mmu_exported_page_sizes++;
1033                 }
1034         }
1035 
1036         disable_ism_large_pages |= disable_large_pages;
1037         disable_auto_data_large_pages = disable_large_pages;
1038         disable_auto_text_large_pages = disable_large_pages;
1039 
1040         /*
1041          * Initialize mmu-specific large page sizes.
1042          */
1043         if (&mmu_large_pages_disabled) {
1044                 disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
1045                 disable_ism_large_pages |=
1046                     mmu_large_pages_disabled(HAT_LOAD_SHARE);
1047                 disable_auto_data_large_pages |=
1048                     mmu_large_pages_disabled(HAT_AUTO_DATA);
1049                 disable_auto_text_large_pages |=
1050                     mmu_large_pages_disabled(HAT_AUTO_TEXT);
1051         }
1052 }
1053 
1054 /*
1055  * Initialize the hardware address translation structures.
1056  */
1057 void
1058 hat_init(void)
1059 {
1060         int             i;
1061         uint_t          sz;
1062         size_t          size;
1063 
1064         hat_lock_init();
1065         hat_kstat_init();
1066 
1067         /*
1068          * Hardware-only bits in a TTE
1069          */
1070         MAKE_TTE_MASK(&hw_tte);
1071 
1072         hat_init_pagesizes();
1073 
1074         /* Initialize the hash locks */
1075         for (i = 0; i < khmehash_num; i++) {
1076                 mutex_init(&khme_hash[i].hmehash_mutex, NULL,
1077                     MUTEX_DEFAULT, NULL);
1078                 khme_hash[i].hmeh_nextpa = HMEBLK_ENDPA;
1079         }
1080         for (i = 0; i < uhmehash_num; i++) {
1081                 mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
1082                     MUTEX_DEFAULT, NULL);
1083                 uhme_hash[i].hmeh_nextpa = HMEBLK_ENDPA;
1084         }
1085         khmehash_num--;         /* make sure counter starts from 0 */
1086         uhmehash_num--;         /* make sure counter starts from 0 */
1087 
1088         /*
1089          * Allocate context domain structures.
1090          *
1091          * A platform may choose to modify max_mmu_ctxdoms in
1092          * set_platform_defaults(). If a platform does not define
1093          * a set_platform_defaults() or does not choose to modify
1094          * max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
1095          *
1096          * For all platforms that have CPUs sharing MMUs, this
1097          * value must be defined.
1098          */
1099         if (max_mmu_ctxdoms == 0)
1100                 max_mmu_ctxdoms = max_ncpus;
1101 
1102         size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
1103         mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
1104 
1105         /* mmu_ctx_t is 64 bytes aligned */
1106         mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
1107             sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
1108         /*
1109          * MMU context domain initialization for the Boot CPU.
1110          * This needs the context domains array allocated above.
1111          */
1112         mutex_enter(&cpu_lock);
1113         sfmmu_cpu_init(CPU);
1114         mutex_exit(&cpu_lock);
1115 
1116         /*
1117          * Intialize ism mapping list lock.
1118          */
1119 
1120         mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
1121 
1122         /*
1123          * Each sfmmu structure carries an array of MMU context info
1124          * structures, one per context domain. The size of this array depends
1125          * on the maximum number of context domains. So, the size of the
1126          * sfmmu structure varies per platform.
1127          *
1128          * sfmmu is allocated from static arena, because trap
1129          * handler at TL > 0 is not allowed to touch kernel relocatable
1130          * memory. sfmmu's alignment is changed to 64 bytes from
1131          * default 8 bytes, as the lower 6 bits will be used to pass
1132          * pgcnt to vtag_flush_pgcnt_tl1.
1133          */
1134         size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
1135 
1136         sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
1137             64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
1138             NULL, NULL, static_arena, 0);
1139 
1140         sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
1141             sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
1142 
1143         /*
1144          * Since we only use the tsb8k cache to "borrow" pages for TSBs
1145          * from the heap when low on memory or when TSB_FORCEALLOC is
1146          * specified, don't use magazines to cache them--we want to return
1147          * them to the system as quickly as possible.
1148          */
1149         sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
1150             MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
1151             static_arena, KMC_NOMAGAZINE);
1152 
1153         /*
1154          * Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
1155          * memory, which corresponds to the old static reserve for TSBs.
1156          * tsb_alloc_hiwater_factor defaults to 32.  This caps the amount of
1157          * memory we'll allocate for TSB slabs; beyond this point TSB
1158          * allocations will be taken from the kernel heap (via
1159          * sfmmu_tsb8k_cache) and will be throttled as would any other kmem
1160          * consumer.
1161          */
1162         if (tsb_alloc_hiwater_factor == 0) {
1163                 tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
1164         }
1165         SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
1166 
1167         for (sz = tsb_slab_ttesz; sz > 0; sz--) {
1168                 if (!(disable_large_pages & (1 << sz)))
1169                         break;
1170         }
1171 
1172         if (sz < tsb_slab_ttesz) {
1173                 tsb_slab_ttesz = sz;
1174                 tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
1175                 tsb_slab_size = 1 << tsb_slab_shift;
1176                 tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
1177                 use_bigtsb_arena = 0;
1178         } else if (use_bigtsb_arena &&
1179             (disable_large_pages & (1 << bigtsb_slab_ttesz))) {
1180                 use_bigtsb_arena = 0;
1181         }
1182 
1183         if (!use_bigtsb_arena) {
1184                 bigtsb_slab_shift = tsb_slab_shift;
1185         }
1186         SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
1187 
1188         /*
1189          * On smaller memory systems, allocate TSB memory in smaller chunks
1190          * than the default 4M slab size. We also honor disable_large_pages
1191          * here.
1192          *
1193          * The trap handlers need to be patched with the final slab shift,
1194          * since they need to be able to construct the TSB pointer at runtime.
1195          */
1196         if ((tsb_max_growsize <= TSB_512K_SZCODE) &&
1197             !(disable_large_pages & (1 << TTE512K))) {
1198                 tsb_slab_ttesz = TTE512K;
1199                 tsb_slab_shift = MMU_PAGESHIFT512K;
1200                 tsb_slab_size = MMU_PAGESIZE512K;
1201                 tsb_slab_mask = MMU_PAGEOFFSET512K >> MMU_PAGESHIFT;
1202                 use_bigtsb_arena = 0;
1203         }
1204 
1205         if (!use_bigtsb_arena) {
1206                 bigtsb_slab_ttesz = tsb_slab_ttesz;
1207                 bigtsb_slab_shift = tsb_slab_shift;
1208                 bigtsb_slab_size = tsb_slab_size;
1209                 bigtsb_slab_mask = tsb_slab_mask;
1210         }
1211 
1212 
1213         /*
1214          * Set up memory callback to update tsb_alloc_hiwater and
1215          * tsb_max_growsize.
1216          */
1217         i = kphysm_setup_func_register(&sfmmu_update_vec, (void *) 0);
1218         ASSERT(i == 0);
1219 
1220         /*
1221          * kmem_tsb_arena is the source from which large TSB slabs are
1222          * drawn.  The quantum of this arena corresponds to the largest
1223          * TSB size we can dynamically allocate for user processes.
1224          * Currently it must also be a supported page size since we
1225          * use exactly one translation entry to map each slab page.
1226          *
1227          * The per-lgroup kmem_tsb_default_arena arenas are the arenas from
1228          * which most TSBs are allocated.  Since most TSB allocations are
1229          * typically 8K we have a kmem cache we stack on top of each
1230          * kmem_tsb_default_arena to speed up those allocations.
1231          *
1232          * Note the two-level scheme of arenas is required only
1233          * because vmem_create doesn't allow us to specify alignment
1234          * requirements.  If this ever changes the code could be
1235          * simplified to use only one level of arenas.
1236          *
1237          * If 256M page support exists on sun4v, 256MB kmem_bigtsb_arena
1238          * will be provided in addition to the 4M kmem_tsb_arena.
1239          */
1240         if (use_bigtsb_arena) {
1241                 kmem_bigtsb_arena = vmem_create("kmem_bigtsb", NULL, 0,
1242                     bigtsb_slab_size, sfmmu_vmem_xalloc_aligned_wrapper,
1243                     vmem_xfree, heap_arena, 0, VM_SLEEP);
1244         }
1245 
1246         kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
1247             sfmmu_vmem_xalloc_aligned_wrapper,
1248             vmem_xfree, heap_arena, 0, VM_SLEEP);
1249 
1250         if (tsb_lgrp_affinity) {
1251                 char s[50];
1252                 for (i = 0; i < NLGRPS_MAX; i++) {
1253                         if (use_bigtsb_arena) {
1254                                 (void) sprintf(s, "kmem_bigtsb_lgrp%d", i);
1255                                 kmem_bigtsb_default_arena[i] = vmem_create(s,
1256                                     NULL, 0, 2 * tsb_slab_size,
1257                                     sfmmu_tsb_segkmem_alloc,
1258                                     sfmmu_tsb_segkmem_free, kmem_bigtsb_arena,
1259                                     0, VM_SLEEP | VM_BESTFIT);
1260                         }
1261 
1262                         (void) sprintf(s, "kmem_tsb_lgrp%d", i);
1263                         kmem_tsb_default_arena[i] = vmem_create(s,
1264                             NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1265                             sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1266                             VM_SLEEP | VM_BESTFIT);
1267 
1268                         (void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
1269                         sfmmu_tsb_cache[i] = kmem_cache_create(s,
1270                             PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1271                             kmem_tsb_default_arena[i], 0);
1272                 }
1273         } else {
1274                 if (use_bigtsb_arena) {
1275                         kmem_bigtsb_default_arena[0] =
1276                             vmem_create("kmem_bigtsb_default", NULL, 0,
1277                             2 * tsb_slab_size, sfmmu_tsb_segkmem_alloc,
1278                             sfmmu_tsb_segkmem_free, kmem_bigtsb_arena, 0,
1279                             VM_SLEEP | VM_BESTFIT);
1280                 }
1281 
1282                 kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
1283                     NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
1284                     sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
1285                     VM_SLEEP | VM_BESTFIT);
1286                 sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
1287                     PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
1288                     kmem_tsb_default_arena[0], 0);
1289         }
1290 
1291         sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
1292             HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1293             sfmmu_hblkcache_destructor,
1294             sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
1295             hat_memload_arena, KMC_NOHASH);
1296 
1297         hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
1298             segkmem_alloc_permanent, segkmem_free, heap_arena, 0,
1299             VMC_DUMPSAFE | VM_SLEEP);
1300 
1301         sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
1302             HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
1303             sfmmu_hblkcache_destructor,
1304             NULL, (void *)HME1BLK_SZ,
1305             hat_memload1_arena, KMC_NOHASH);
1306 
1307         pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
1308             0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
1309 
1310         ism_blk_cache = kmem_cache_create("ism_blk_cache",
1311             sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
1312             NULL, NULL, static_arena, KMC_NOHASH);
1313 
1314         ism_ment_cache = kmem_cache_create("ism_ment_cache",
1315             sizeof (ism_ment_t), 0, NULL, NULL,
1316             NULL, NULL, NULL, 0);
1317 
1318         /*
1319          * We grab the first hat for the kernel,
1320          */
1321         AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
1322         kas.a_hat = hat_alloc(&kas);
1323         AS_LOCK_EXIT(&kas, &kas.a_lock);
1324 
1325         /*
1326          * Initialize hblk_reserve.
1327          */
1328         ((struct hme_blk *)hblk_reserve)->hblk_nextpa =
1329             va_to_pa((caddr_t)hblk_reserve);
1330 
1331 #ifndef UTSB_PHYS
1332         /*
1333          * Reserve some kernel virtual address space for the locked TTEs
1334          * that allow us to probe the TSB from TL>0.
1335          */
1336         utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1337             0, 0, NULL, NULL, VM_SLEEP);
1338         utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
1339             0, 0, NULL, NULL, VM_SLEEP);
1340 #endif
1341 
1342 #ifdef VAC
1343         /*
1344          * The big page VAC handling code assumes VAC
1345          * will not be bigger than the smallest big
1346          * page- which is 64K.
1347          */
1348         if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
1349                 cmn_err(CE_PANIC, "VAC too big!");
1350         }
1351 #endif
1352 
1353         (void) xhat_init();
1354 
1355         uhme_hash_pa = va_to_pa(uhme_hash);
1356         khme_hash_pa = va_to_pa(khme_hash);
1357 
1358         /*
1359          * Initialize relocation locks. kpr_suspendlock is held
1360          * at PIL_MAX to prevent interrupts from pinning the holder
1361          * of a suspended TTE which may access it leading to a
1362          * deadlock condition.
1363          */
1364         mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
1365         mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
1366 
1367         /*
1368          * If Shared context support is disabled via /etc/system
1369          * set shctx_on to 0 here if it was set to 1 earlier in boot
1370          * sequence by cpu module initialization code.
1371          */
1372         if (shctx_on && disable_shctx) {
1373                 shctx_on = 0;
1374         }
1375 
1376         if (shctx_on) {
1377                 srd_buckets = kmem_zalloc(SFMMU_MAX_SRD_BUCKETS *
1378                     sizeof (srd_buckets[0]), KM_SLEEP);
1379                 for (i = 0; i < SFMMU_MAX_SRD_BUCKETS; i++) {
1380                         mutex_init(&srd_buckets[i].srdb_lock, NULL,
1381                             MUTEX_DEFAULT, NULL);
1382                 }
1383 
1384                 srd_cache = kmem_cache_create("srd_cache", sizeof (sf_srd_t),
1385                     0, sfmmu_srdcache_constructor, sfmmu_srdcache_destructor,
1386                     NULL, NULL, NULL, 0);
1387                 region_cache = kmem_cache_create("region_cache",
1388                     sizeof (sf_region_t), 0, sfmmu_rgncache_constructor,
1389                     sfmmu_rgncache_destructor, NULL, NULL, NULL, 0);
1390                 scd_cache = kmem_cache_create("scd_cache", sizeof (sf_scd_t),
1391                     0, sfmmu_scdcache_constructor,  sfmmu_scdcache_destructor,
1392                     NULL, NULL, NULL, 0);
1393         }
1394 
1395         /*
1396          * Pre-allocate hrm_hashtab before enabling the collection of
1397          * refmod statistics.  Allocating on the fly would mean us
1398          * running the risk of suffering recursive mutex enters or
1399          * deadlocks.
1400          */
1401         hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
1402             KM_SLEEP);
1403 
1404         /* Allocate per-cpu pending freelist of hmeblks */
1405         cpu_hme_pend = kmem_zalloc((NCPU * sizeof (cpu_hme_pend_t)) + 64,
1406             KM_SLEEP);
1407         cpu_hme_pend = (cpu_hme_pend_t *)P2ROUNDUP(
1408             (uintptr_t)cpu_hme_pend, 64);
1409 
1410         for (i = 0; i < NCPU; i++) {
1411                 mutex_init(&cpu_hme_pend[i].chp_mutex, NULL, MUTEX_DEFAULT,
1412                     NULL);
1413         }
1414 
1415         if (cpu_hme_pend_thresh == 0) {
1416                 cpu_hme_pend_thresh = CPU_HME_PEND_THRESH;
1417         }
1418 }
1419 
1420 /*
1421  * Initialize locking for the hat layer, called early during boot.
1422  */
1423 static void
1424 hat_lock_init()
1425 {
1426         int i;
1427 
1428         /*
1429          * initialize the array of mutexes protecting a page's mapping
1430          * list and p_nrm field.
1431          */
1432         for (i = 0; i < MML_TABLE_SIZE; i++)
1433                 mutex_init(&mml_table[i].pad_mutex, NULL, MUTEX_DEFAULT, NULL);
1434 
1435         if (kpm_enable) {
1436                 for (i = 0; i < kpmp_table_sz; i++) {
1437                         mutex_init(&kpmp_table[i].khl_mutex, NULL,
1438                             MUTEX_DEFAULT, NULL);
1439                 }
1440         }
1441 
1442         /*
1443          * Initialize array of mutex locks that protects sfmmu fields and
1444          * TSB lists.
1445          */
1446         for (i = 0; i < SFMMU_NUM_LOCK; i++)
1447                 mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
1448                     NULL);
1449 }
1450 
1451 #define SFMMU_KERNEL_MAXVA \
1452         (kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
1453 
1454 /*
1455  * Allocate a hat structure.
1456  * Called when an address space first uses a hat.
1457  */
1458 struct hat *
1459 hat_alloc(struct as *as)
1460 {
1461         sfmmu_t *sfmmup;
1462         int i;
1463         uint64_t cnum;
1464         extern uint_t get_color_start(struct as *);
1465 
1466         ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1467         sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
1468         sfmmup->sfmmu_as = as;
1469         sfmmup->sfmmu_flags = 0;
1470         sfmmup->sfmmu_tteflags = 0;
1471         sfmmup->sfmmu_rtteflags = 0;
1472         LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
1473 
1474         if (as == &kas) {
1475                 ksfmmup = sfmmup;
1476                 sfmmup->sfmmu_cext = 0;
1477                 cnum = KCONTEXT;
1478 
1479                 sfmmup->sfmmu_clrstart = 0;
1480                 sfmmup->sfmmu_tsb = NULL;
1481                 /*
1482                  * hat_kern_setup() will call sfmmu_init_ktsbinfo()
1483                  * to setup tsb_info for ksfmmup.
1484                  */
1485         } else {
1486 
1487                 /*
1488                  * Just set to invalid ctx. When it faults, it will
1489                  * get a valid ctx. This would avoid the situation
1490                  * where we get a ctx, but it gets stolen and then
1491                  * we fault when we try to run and so have to get
1492                  * another ctx.
1493                  */
1494                 sfmmup->sfmmu_cext = 0;
1495                 cnum = INVALID_CONTEXT;
1496 
1497                 /* initialize original physical page coloring bin */
1498                 sfmmup->sfmmu_clrstart = get_color_start(as);
1499 #ifdef DEBUG
1500                 if (tsb_random_size) {
1501                         uint32_t randval = (uint32_t)gettick() >> 4;
1502                         int size = randval % (tsb_max_growsize + 1);
1503 
1504                         /* chose a random tsb size for stress testing */
1505                         (void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
1506                             TSB8K|TSB64K|TSB512K, 0, sfmmup);
1507                 } else
1508 #endif /* DEBUG */
1509                         (void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
1510                             default_tsb_size,
1511                             TSB8K|TSB64K|TSB512K, 0, sfmmup);
1512                 sfmmup->sfmmu_flags = HAT_SWAPPED | HAT_ALLCTX_INVALID;
1513                 ASSERT(sfmmup->sfmmu_tsb != NULL);
1514         }
1515 
1516         ASSERT(max_mmu_ctxdoms > 0);
1517         for (i = 0; i < max_mmu_ctxdoms; i++) {
1518                 sfmmup->sfmmu_ctxs[i].cnum = cnum;
1519                 sfmmup->sfmmu_ctxs[i].gnum = 0;
1520         }
1521 
1522         for (i = 0; i < max_mmu_page_sizes; i++) {
1523                 sfmmup->sfmmu_ttecnt[i] = 0;
1524                 sfmmup->sfmmu_scdrttecnt[i] = 0;
1525                 sfmmup->sfmmu_ismttecnt[i] = 0;
1526                 sfmmup->sfmmu_scdismttecnt[i] = 0;
1527                 sfmmup->sfmmu_pgsz[i] = TTE8K;
1528         }
1529         sfmmup->sfmmu_tsb0_4minflcnt = 0;
1530         sfmmup->sfmmu_iblk = NULL;
1531         sfmmup->sfmmu_ismhat = 0;
1532         sfmmup->sfmmu_scdhat = 0;
1533         sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
1534         if (sfmmup == ksfmmup) {
1535                 CPUSET_ALL(sfmmup->sfmmu_cpusran);
1536         } else {
1537                 CPUSET_ZERO(sfmmup->sfmmu_cpusran);
1538         }
1539         sfmmup->sfmmu_free = 0;
1540         sfmmup->sfmmu_rmstat = 0;
1541         sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
1542         sfmmup->sfmmu_xhat_provider = NULL;
1543         cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
1544         sfmmup->sfmmu_srdp = NULL;
1545         SF_RGNMAP_ZERO(sfmmup->sfmmu_region_map);
1546         bzero(sfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
1547         sfmmup->sfmmu_scdp = NULL;
1548         sfmmup->sfmmu_scd_link.next = NULL;
1549         sfmmup->sfmmu_scd_link.prev = NULL;
1550         return (sfmmup);
1551 }
1552 
1553 /*
1554  * Create per-MMU context domain kstats for a given MMU ctx.
1555  */
1556 static void
1557 sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
1558 {
1559         mmu_ctx_stat_t  stat;
1560         kstat_t         *mmu_kstat;
1561 
1562         ASSERT(MUTEX_HELD(&cpu_lock));
1563         ASSERT(mmu_ctxp->mmu_kstat == NULL);
1564 
1565         mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
1566             "hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
1567 
1568         if (mmu_kstat == NULL) {
1569                 cmn_err(CE_WARN, "kstat_create for MMU %d failed",
1570                     mmu_ctxp->mmu_idx);
1571         } else {
1572                 mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
1573                 for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
1574                         kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
1575                             mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
1576                 mmu_ctxp->mmu_kstat = mmu_kstat;
1577                 kstat_install(mmu_kstat);
1578         }
1579 }
1580 
1581 /*
1582  * plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
1583  * context domain information for a given CPU. If a platform does not
1584  * specify that interface, then the function below is used instead to return
1585  * default information. The defaults are as follows:
1586  *
1587  *      - The number of MMU context IDs supported on any CPU in the
1588  *        system is 8K.
1589  *      - There is one MMU context domain per CPU.
1590  */
1591 /*ARGSUSED*/
1592 static void
1593 sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
1594 {
1595         infop->mmu_nctxs = nctxs;
1596         infop->mmu_idx = cpu[cpuid]->cpu_seqid;
1597 }
1598 
1599 /*
1600  * Called during CPU initialization to set the MMU context-related information
1601  * for a CPU.
1602  *
1603  * cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
1604  */
1605 void
1606 sfmmu_cpu_init(cpu_t *cp)
1607 {
1608         mmu_ctx_info_t  info;
1609         mmu_ctx_t       *mmu_ctxp;
1610 
1611         ASSERT(MUTEX_HELD(&cpu_lock));
1612 
1613         if (&plat_cpuid_to_mmu_ctx_info == NULL)
1614                 sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1615         else
1616                 plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
1617 
1618         ASSERT(info.mmu_idx < max_mmu_ctxdoms);
1619 
1620         if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
1621                 /* Each mmu_ctx is cacheline aligned. */
1622                 mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
1623                 bzero(mmu_ctxp, sizeof (mmu_ctx_t));
1624 
1625                 mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
1626                     (void *)ipltospl(DISP_LEVEL));
1627                 mmu_ctxp->mmu_idx = info.mmu_idx;
1628                 mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
1629                 /*
1630                  * Globally for lifetime of a system,
1631                  * gnum must always increase.
1632                  * mmu_saved_gnum is protected by the cpu_lock.
1633                  */
1634                 mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
1635                 mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
1636 
1637                 sfmmu_mmu_kstat_create(mmu_ctxp);
1638 
1639                 mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
1640         } else {
1641                 ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
1642                 ASSERT(mmu_ctxp->mmu_nctxs <= info.mmu_nctxs);
1643         }
1644 
1645         /*
1646          * The mmu_lock is acquired here to prevent races with
1647          * the wrap-around code.
1648          */
1649         mutex_enter(&mmu_ctxp->mmu_lock);
1650 
1651 
1652         mmu_ctxp->mmu_ncpus++;
1653         CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1654         CPU_MMU_IDX(cp) = info.mmu_idx;
1655         CPU_MMU_CTXP(cp) = mmu_ctxp;
1656 
1657         mutex_exit(&mmu_ctxp->mmu_lock);
1658 }
1659 
1660 static void
1661 sfmmu_ctxdom_free(mmu_ctx_t *mmu_ctxp)
1662 {
1663         ASSERT(MUTEX_HELD(&cpu_lock));
1664         ASSERT(!MUTEX_HELD(&mmu_ctxp->mmu_lock));
1665 
1666         mutex_destroy(&mmu_ctxp->mmu_lock);
1667 
1668         if (mmu_ctxp->mmu_kstat)
1669                 kstat_delete(mmu_ctxp->mmu_kstat);
1670 
1671         /* mmu_saved_gnum is protected by the cpu_lock. */
1672         if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
1673                 mmu_saved_gnum = mmu_ctxp->mmu_gnum;
1674 
1675         kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
1676 }
1677 
1678 /*
1679  * Called to perform MMU context-related cleanup for a CPU.
1680  */
1681 void
1682 sfmmu_cpu_cleanup(cpu_t *cp)
1683 {
1684         mmu_ctx_t       *mmu_ctxp;
1685 
1686         ASSERT(MUTEX_HELD(&cpu_lock));
1687 
1688         mmu_ctxp = CPU_MMU_CTXP(cp);
1689         ASSERT(mmu_ctxp != NULL);
1690 
1691         /*
1692          * The mmu_lock is acquired here to prevent races with
1693          * the wrap-around code.
1694          */
1695         mutex_enter(&mmu_ctxp->mmu_lock);
1696 
1697         CPU_MMU_CTXP(cp) = NULL;
1698 
1699         CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
1700         if (--mmu_ctxp->mmu_ncpus == 0) {
1701                 mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
1702                 mutex_exit(&mmu_ctxp->mmu_lock);
1703                 sfmmu_ctxdom_free(mmu_ctxp);
1704                 return;
1705         }
1706 
1707         mutex_exit(&mmu_ctxp->mmu_lock);
1708 }
1709 
1710 uint_t
1711 sfmmu_ctxdom_nctxs(int idx)
1712 {
1713         return (mmu_ctxs_tbl[idx]->mmu_nctxs);
1714 }
1715 
1716 #ifdef sun4v
1717 /*
1718  * sfmmu_ctxdoms_* is an interface provided to help keep context domains
1719  * consistant after suspend/resume on system that can resume on a different
1720  * hardware than it was suspended.
1721  *
1722  * sfmmu_ctxdom_lock(void) locks all context domains and prevents new contexts
1723  * from being allocated.  It acquires all hat_locks, which blocks most access to
1724  * context data, except for a few cases that are handled separately or are
1725  * harmless.  It wraps each domain to increment gnum and invalidate on-CPU
1726  * contexts, and forces cnum to its max.  As a result of this call all user
1727  * threads that are running on CPUs trap and try to perform wrap around but
1728  * can't because hat_locks are taken.  Threads that were not on CPUs but started
1729  * by scheduler go to sfmmu_alloc_ctx() to aquire context without checking
1730  * hat_lock, but fail, because cnum == nctxs, and therefore also trap and block
1731  * on hat_lock trying to wrap.  sfmmu_ctxdom_lock() must be called before CPUs
1732  * are paused, else it could deadlock acquiring locks held by paused CPUs.
1733  *
1734  * sfmmu_ctxdoms_remove() removes context domains from every CPUs and records
1735  * the CPUs that had them.  It must be called after CPUs have been paused. This
1736  * ensures that no threads are in sfmmu_alloc_ctx() accessing domain data,
1737  * because pause_cpus sends a mondo interrupt to every CPU, and sfmmu_alloc_ctx
1738  * runs with interrupts disabled.  When CPUs are later resumed, they may enter
1739  * sfmmu_alloc_ctx, but it will check for CPU_MMU_CTXP = NULL and immediately
1740  * return failure.  Or, they will be blocked trying to acquire hat_lock. Thus
1741  * after sfmmu_ctxdoms_remove returns, we are guaranteed that no one is
1742  * accessing the old context domains.
1743  *
1744  * sfmmu_ctxdoms_update(void) frees space used by old context domains and
1745  * allocates new context domains based on hardware layout.  It initializes
1746  * every CPU that had context domain before migration to have one again.
1747  * sfmmu_ctxdoms_update must be called after CPUs are resumed, else it
1748  * could deadlock acquiring locks held by paused CPUs.
1749  *
1750  * sfmmu_ctxdoms_unlock(void) releases all hat_locks after which user threads
1751  * acquire new context ids and continue execution.
1752  *
1753  * Therefore functions should be called in the following order:
1754  *       suspend_routine()
1755  *              sfmmu_ctxdom_lock()
1756  *              pause_cpus()
1757  *              suspend()
1758  *                      if (suspend failed)
1759  *                              sfmmu_ctxdom_unlock()
1760  *              ...
1761  *              sfmmu_ctxdom_remove()
1762  *              resume_cpus()
1763  *              sfmmu_ctxdom_update()
1764  *              sfmmu_ctxdom_unlock()
1765  */
1766 static cpuset_t sfmmu_ctxdoms_pset;
1767 
1768 void
1769 sfmmu_ctxdoms_remove()
1770 {
1771         processorid_t   id;
1772         cpu_t           *cp;
1773 
1774         /*
1775          * Record the CPUs that have domains in sfmmu_ctxdoms_pset, so they can
1776          * be restored post-migration. A CPU may be powered off and not have a
1777          * domain, for example.
1778          */
1779         CPUSET_ZERO(sfmmu_ctxdoms_pset);
1780 
1781         for (id = 0; id < NCPU; id++) {
1782                 if ((cp = cpu[id]) != NULL && CPU_MMU_CTXP(cp) != NULL) {
1783                         CPUSET_ADD(sfmmu_ctxdoms_pset, id);
1784                         CPU_MMU_CTXP(cp) = NULL;
1785                 }
1786         }
1787 }
1788 
1789 void
1790 sfmmu_ctxdoms_lock(void)
1791 {
1792         int             idx;
1793         mmu_ctx_t       *mmu_ctxp;
1794 
1795         sfmmu_hat_lock_all();
1796 
1797         /*
1798          * At this point, no thread can be in sfmmu_ctx_wrap_around, because
1799          * hat_lock is always taken before calling it.
1800          *
1801          * For each domain, set mmu_cnum to max so no more contexts can be
1802          * allocated, and wrap to flush on-CPU contexts and force threads to
1803          * acquire a new context when we later drop hat_lock after migration.
1804          * Setting mmu_cnum may race with sfmmu_alloc_ctx which also sets cnum,
1805          * but the latter uses CAS and will miscompare and not overwrite it.
1806          */
1807         kpreempt_disable(); /* required by sfmmu_ctx_wrap_around */
1808         for (idx = 0; idx < max_mmu_ctxdoms; idx++) {
1809                 if ((mmu_ctxp = mmu_ctxs_tbl[idx]) != NULL) {
1810                         mutex_enter(&mmu_ctxp->mmu_lock);
1811                         mmu_ctxp->mmu_cnum = mmu_ctxp->mmu_nctxs;
1812                         /* make sure updated cnum visible */
1813                         membar_enter();
1814                         mutex_exit(&mmu_ctxp->mmu_lock);
1815                         sfmmu_ctx_wrap_around(mmu_ctxp, B_FALSE);
1816                 }
1817         }
1818         kpreempt_enable();
1819 }
1820 
1821 void
1822 sfmmu_ctxdoms_unlock(void)
1823 {
1824         sfmmu_hat_unlock_all();
1825 }
1826 
1827 void
1828 sfmmu_ctxdoms_update(void)
1829 {
1830         processorid_t   id;
1831         cpu_t           *cp;
1832         uint_t          idx;
1833         mmu_ctx_t       *mmu_ctxp;
1834 
1835         /*
1836          * Free all context domains.  As side effect, this increases
1837          * mmu_saved_gnum to the maximum gnum over all domains, which is used to
1838          * init gnum in the new domains, which therefore will be larger than the
1839          * sfmmu gnum for any process, guaranteeing that every process will see
1840          * a new generation and allocate a new context regardless of what new
1841          * domain it runs in.
1842          */
1843         mutex_enter(&cpu_lock);
1844 
1845         for (idx = 0; idx < max_mmu_ctxdoms; idx++) {
1846                 if (mmu_ctxs_tbl[idx] != NULL) {
1847                         mmu_ctxp = mmu_ctxs_tbl[idx];
1848                         mmu_ctxs_tbl[idx] = NULL;
1849                         sfmmu_ctxdom_free(mmu_ctxp);
1850                 }
1851         }
1852 
1853         for (id = 0; id < NCPU; id++) {
1854                 if (CPU_IN_SET(sfmmu_ctxdoms_pset, id) &&
1855                     (cp = cpu[id]) != NULL)
1856                         sfmmu_cpu_init(cp);
1857         }
1858         mutex_exit(&cpu_lock);
1859 }
1860 #endif
1861 
1862 /*
1863  * Hat_setup, makes an address space context the current active one.
1864  * In sfmmu this translates to setting the secondary context with the
1865  * corresponding context.
1866  */
1867 void
1868 hat_setup(struct hat *sfmmup, int allocflag)
1869 {
1870         hatlock_t *hatlockp;
1871 
1872         /* Init needs some special treatment. */
1873         if (allocflag == HAT_INIT) {
1874                 /*
1875                  * Make sure that we have
1876                  * 1. a TSB
1877                  * 2. a valid ctx that doesn't get stolen after this point.
1878                  */
1879                 hatlockp = sfmmu_hat_enter(sfmmup);
1880 
1881                 /*
1882                  * Swap in the TSB.  hat_init() allocates tsbinfos without
1883                  * TSBs, but we need one for init, since the kernel does some
1884                  * special things to set up its stack and needs the TSB to
1885                  * resolve page faults.
1886                  */
1887                 sfmmu_tsb_swapin(sfmmup, hatlockp);
1888 
1889                 sfmmu_get_ctx(sfmmup);
1890 
1891                 sfmmu_hat_exit(hatlockp);
1892         } else {
1893                 ASSERT(allocflag == HAT_ALLOC);
1894 
1895                 hatlockp = sfmmu_hat_enter(sfmmup);
1896                 kpreempt_disable();
1897 
1898                 CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
1899                 /*
1900                  * sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
1901                  * pagesize bits don't matter in this case since we are passing
1902                  * INVALID_CONTEXT to it.
1903                  * Compatibility Note: hw takes care of MMU_SCONTEXT1
1904                  */
1905                 sfmmu_setctx_sec(INVALID_CONTEXT);
1906                 sfmmu_clear_utsbinfo();
1907 
1908                 kpreempt_enable();
1909                 sfmmu_hat_exit(hatlockp);
1910         }
1911 }
1912 
1913 /*
1914  * Free all the translation resources for the specified address space.
1915  * Called from as_free when an address space is being destroyed.
1916  */
1917 void
1918 hat_free_start(struct hat *sfmmup)
1919 {
1920         ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
1921         ASSERT(sfmmup != ksfmmup);
1922         ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1923 
1924         sfmmup->sfmmu_free = 1;
1925         if (sfmmup->sfmmu_scdp != NULL) {
1926                 sfmmu_leave_scd(sfmmup, 0);
1927         }
1928 
1929         ASSERT(sfmmup->sfmmu_scdp == NULL);
1930 }
1931 
1932 void
1933 hat_free_end(struct hat *sfmmup)
1934 {
1935         int i;
1936 
1937         ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
1938         ASSERT(sfmmup->sfmmu_free == 1);
1939         ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
1940         ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
1941         ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
1942         ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
1943         ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
1944         ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
1945 
1946         if (sfmmup->sfmmu_rmstat) {
1947                 hat_freestat(sfmmup->sfmmu_as, NULL);
1948         }
1949 
1950         while (sfmmup->sfmmu_tsb != NULL) {
1951                 struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
1952                 sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
1953                 sfmmup->sfmmu_tsb = next;
1954         }
1955 
1956         if (sfmmup->sfmmu_srdp != NULL) {
1957                 sfmmu_leave_srd(sfmmup);
1958                 ASSERT(sfmmup->sfmmu_srdp == NULL);
1959                 for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1960                         if (sfmmup->sfmmu_hmeregion_links[i] != NULL) {
1961                                 kmem_free(sfmmup->sfmmu_hmeregion_links[i],
1962                                     SFMMU_L2_HMERLINKS_SIZE);
1963                                 sfmmup->sfmmu_hmeregion_links[i] = NULL;
1964                         }
1965                 }
1966         }
1967         sfmmu_free_sfmmu(sfmmup);
1968 
1969 #ifdef DEBUG
1970         for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
1971                 ASSERT(sfmmup->sfmmu_hmeregion_links[i] == NULL);
1972         }
1973 #endif
1974 
1975         kmem_cache_free(sfmmuid_cache, sfmmup);
1976 }
1977 
1978 /*
1979  * Duplicate the translations of an as into another newas
1980  */
1981 /* ARGSUSED */
1982 int
1983 hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
1984         uint_t flag)
1985 {
1986         sf_srd_t *srdp;
1987         sf_scd_t *scdp;
1988         int i;
1989         extern uint_t get_color_start(struct as *);
1990 
1991         ASSERT(hat->sfmmu_xhat_provider == NULL);
1992         ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW) ||
1993             (flag == HAT_DUP_SRD));
1994         ASSERT(hat != ksfmmup);
1995         ASSERT(newhat != ksfmmup);
1996         ASSERT(flag != HAT_DUP_ALL || hat->sfmmu_srdp == newhat->sfmmu_srdp);
1997 
1998         if (flag == HAT_DUP_COW) {
1999                 panic("hat_dup: HAT_DUP_COW not supported");
2000         }
2001 
2002         if (flag == HAT_DUP_SRD && ((srdp = hat->sfmmu_srdp) != NULL)) {
2003                 ASSERT(srdp->srd_evp != NULL);
2004                 VN_HOLD(srdp->srd_evp);
2005                 ASSERT(srdp->srd_refcnt > 0);
2006                 newhat->sfmmu_srdp = srdp;
2007                 atomic_add_32((volatile uint_t *)&srdp->srd_refcnt, 1);
2008         }
2009 
2010         /*
2011          * HAT_DUP_ALL flag is used after as duplication is done.
2012          */
2013         if (flag == HAT_DUP_ALL && ((srdp = newhat->sfmmu_srdp) != NULL)) {
2014                 ASSERT(newhat->sfmmu_srdp->srd_refcnt >= 2);
2015                 newhat->sfmmu_rtteflags = hat->sfmmu_rtteflags;
2016                 if (hat->sfmmu_flags & HAT_4MTEXT_FLAG) {
2017                         newhat->sfmmu_flags |= HAT_4MTEXT_FLAG;
2018                 }
2019 
2020                 /* check if need to join scd */
2021                 if ((scdp = hat->sfmmu_scdp) != NULL &&
2022                     newhat->sfmmu_scdp != scdp) {
2023                         int ret;
2024                         SF_RGNMAP_IS_SUBSET(&newhat->sfmmu_region_map,
2025                             &scdp->scd_region_map, ret);
2026                         ASSERT(ret);
2027                         sfmmu_join_scd(scdp, newhat);
2028                         ASSERT(newhat->sfmmu_scdp == scdp &&
2029                             scdp->scd_refcnt >= 2);
2030                         for (i = 0; i < max_mmu_page_sizes; i++) {
2031                                 newhat->sfmmu_ismttecnt[i] =
2032                                     hat->sfmmu_ismttecnt[i];
2033                                 newhat->sfmmu_scdismttecnt[i] =
2034                                     hat->sfmmu_scdismttecnt[i];
2035                         }
2036                 }
2037 
2038                 sfmmu_check_page_sizes(newhat, 1);
2039         }
2040 
2041         if (flag == HAT_DUP_ALL && consistent_coloring == 0 &&
2042             update_proc_pgcolorbase_after_fork != 0) {
2043                 hat->sfmmu_clrbin = get_color_start(hat->sfmmu_as);
2044         }
2045         return (0);
2046 }
2047 
2048 void
2049 hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
2050         uint_t attr, uint_t flags)
2051 {
2052         hat_do_memload(hat, addr, pp, attr, flags,
2053             SFMMU_INVALID_SHMERID);
2054 }
2055 
2056 void
2057 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
2058         uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
2059 {
2060         uint_t rid;
2061         if (rcookie == HAT_INVALID_REGION_COOKIE ||
2062             hat->sfmmu_xhat_provider != NULL) {
2063                 hat_do_memload(hat, addr, pp, attr, flags,
2064                     SFMMU_INVALID_SHMERID);
2065                 return;
2066         }
2067         rid = (uint_t)((uint64_t)rcookie);
2068         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2069         hat_do_memload(hat, addr, pp, attr, flags, rid);
2070 }
2071 
2072 /*
2073  * Set up addr to map to page pp with protection prot.
2074  * As an optimization we also load the TSB with the
2075  * corresponding tte but it is no big deal if  the tte gets kicked out.
2076  */
2077 static void
2078 hat_do_memload(struct hat *hat, caddr_t addr, struct page *pp,
2079         uint_t attr, uint_t flags, uint_t rid)
2080 {
2081         tte_t tte;
2082 
2083 
2084         ASSERT(hat != NULL);
2085         ASSERT(PAGE_LOCKED(pp));
2086         ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2087         ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2088         ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2089         SFMMU_VALIDATE_HMERID(hat, rid, addr, MMU_PAGESIZE);
2090 
2091         if (PP_ISFREE(pp)) {
2092                 panic("hat_memload: loading a mapping to free page %p",
2093                     (void *)pp);
2094         }
2095 
2096         if (hat->sfmmu_xhat_provider) {
2097                 /* no regions for xhats */
2098                 ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
2099                 XHAT_MEMLOAD(hat, addr, pp, attr, flags);
2100                 return;
2101         }
2102 
2103         ASSERT((hat == ksfmmup) ||
2104             AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
2105 
2106         if (flags & ~SFMMU_LOAD_ALLFLAG)
2107                 cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
2108                     flags & ~SFMMU_LOAD_ALLFLAG);
2109 
2110         if (hat->sfmmu_rmstat)
2111                 hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
2112 
2113 #if defined(SF_ERRATA_57)
2114         if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2115             (addr < errata57_limit) && (attr & PROT_EXEC) &&
2116             !(flags & HAT_LOAD_SHARE)) {
2117                 cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
2118                     " page executable");
2119                 attr &= ~PROT_EXEC;
2120         }
2121 #endif
2122 
2123         sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2124         (void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags, rid);
2125 
2126         /*
2127          * Check TSB and TLB page sizes.
2128          */
2129         if ((flags & HAT_LOAD_SHARE) == 0) {
2130                 sfmmu_check_page_sizes(hat, 1);
2131         }
2132 }
2133 
2134 /*
2135  * hat_devload can be called to map real memory (e.g.
2136  * /dev/kmem) and even though hat_devload will determine pf is
2137  * for memory, it will be unable to get a shared lock on the
2138  * page (because someone else has it exclusively) and will
2139  * pass dp = NULL.  If tteload doesn't get a non-NULL
2140  * page pointer it can't cache memory.
2141  */
2142 void
2143 hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
2144         uint_t attr, int flags)
2145 {
2146         tte_t tte;
2147         struct page *pp = NULL;
2148         int use_lgpg = 0;
2149 
2150         ASSERT(hat != NULL);
2151 
2152         if (hat->sfmmu_xhat_provider) {
2153                 XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags);
2154                 return;
2155         }
2156 
2157         ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
2158         ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2159         ASSERT((hat == ksfmmup) ||
2160             AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
2161         if (len == 0)
2162                 panic("hat_devload: zero len");
2163         if (flags & ~SFMMU_LOAD_ALLFLAG)
2164                 cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
2165                     flags & ~SFMMU_LOAD_ALLFLAG);
2166 
2167 #if defined(SF_ERRATA_57)
2168         if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2169             (addr < errata57_limit) && (attr & PROT_EXEC) &&
2170             !(flags & HAT_LOAD_SHARE)) {
2171                 cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
2172                     " page executable");
2173                 attr &= ~PROT_EXEC;
2174         }
2175 #endif
2176 
2177         /*
2178          * If it's a memory page find its pp
2179          */
2180         if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
2181                 pp = page_numtopp_nolock(pfn);
2182                 if (pp == NULL) {
2183                         flags |= HAT_LOAD_NOCONSIST;
2184                 } else {
2185                         if (PP_ISFREE(pp)) {
2186                                 panic("hat_memload: loading "
2187                                     "a mapping to free page %p",
2188                                     (void *)pp);
2189                         }
2190                         if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
2191                                 panic("hat_memload: loading a mapping "
2192                                     "to unlocked relocatable page %p",
2193                                     (void *)pp);
2194                         }
2195                         ASSERT(len == MMU_PAGESIZE);
2196                 }
2197         }
2198 
2199         if (hat->sfmmu_rmstat)
2200                 hat_resvstat(len, hat->sfmmu_as, addr);
2201 
2202         if (flags & HAT_LOAD_NOCONSIST) {
2203                 attr |= SFMMU_UNCACHEVTTE;
2204                 use_lgpg = 1;
2205         }
2206         if (!pf_is_memory(pfn)) {
2207                 attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
2208                 use_lgpg = 1;
2209                 switch (attr & HAT_ORDER_MASK) {
2210                         case HAT_STRICTORDER:
2211                         case HAT_UNORDERED_OK:
2212                                 /*
2213                                  * we set the side effect bit for all non
2214                                  * memory mappings unless merging is ok
2215                                  */
2216                                 attr |= SFMMU_SIDEFFECT;
2217                                 break;
2218                         case HAT_MERGING_OK:
2219                         case HAT_LOADCACHING_OK:
2220                         case HAT_STORECACHING_OK:
2221                                 break;
2222                         default:
2223                                 panic("hat_devload: bad attr");
2224                                 break;
2225                 }
2226         }
2227         while (len) {
2228                 if (!use_lgpg) {
2229                         sfmmu_memtte(&tte, pfn, attr, TTE8K);
2230                         (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2231                             flags, SFMMU_INVALID_SHMERID);
2232                         len -= MMU_PAGESIZE;
2233                         addr += MMU_PAGESIZE;
2234                         pfn++;
2235                         continue;
2236                 }
2237                 /*
2238                  *  try to use large pages, check va/pa alignments
2239                  *  Note that 32M/256M page sizes are not (yet) supported.
2240                  */
2241                 if ((len >= MMU_PAGESIZE4M) &&
2242                     !((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
2243                     !(disable_large_pages & (1 << TTE4M)) &&
2244                     !(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
2245                         sfmmu_memtte(&tte, pfn, attr, TTE4M);
2246                         (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2247                             flags, SFMMU_INVALID_SHMERID);
2248                         len -= MMU_PAGESIZE4M;
2249                         addr += MMU_PAGESIZE4M;
2250                         pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
2251                 } else if ((len >= MMU_PAGESIZE512K) &&
2252                     !((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
2253                     !(disable_large_pages & (1 << TTE512K)) &&
2254                     !(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
2255                         sfmmu_memtte(&tte, pfn, attr, TTE512K);
2256                         (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2257                             flags, SFMMU_INVALID_SHMERID);
2258                         len -= MMU_PAGESIZE512K;
2259                         addr += MMU_PAGESIZE512K;
2260                         pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
2261                 } else if ((len >= MMU_PAGESIZE64K) &&
2262                     !((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
2263                     !(disable_large_pages & (1 << TTE64K)) &&
2264                     !(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
2265                         sfmmu_memtte(&tte, pfn, attr, TTE64K);
2266                         (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2267                             flags, SFMMU_INVALID_SHMERID);
2268                         len -= MMU_PAGESIZE64K;
2269                         addr += MMU_PAGESIZE64K;
2270                         pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
2271                 } else {
2272                         sfmmu_memtte(&tte, pfn, attr, TTE8K);
2273                         (void) sfmmu_tteload_array(hat, &tte, addr, &pp,
2274                             flags, SFMMU_INVALID_SHMERID);
2275                         len -= MMU_PAGESIZE;
2276                         addr += MMU_PAGESIZE;
2277                         pfn++;
2278                 }
2279         }
2280 
2281         /*
2282          * Check TSB and TLB page sizes.
2283          */
2284         if ((flags & HAT_LOAD_SHARE) == 0) {
2285                 sfmmu_check_page_sizes(hat, 1);
2286         }
2287 }
2288 
2289 void
2290 hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
2291         struct page **pps, uint_t attr, uint_t flags)
2292 {
2293         hat_do_memload_array(hat, addr, len, pps, attr, flags,
2294             SFMMU_INVALID_SHMERID);
2295 }
2296 
2297 void
2298 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
2299         struct page **pps, uint_t attr, uint_t flags,
2300         hat_region_cookie_t rcookie)
2301 {
2302         uint_t rid;
2303         if (rcookie == HAT_INVALID_REGION_COOKIE ||
2304             hat->sfmmu_xhat_provider != NULL) {
2305                 hat_do_memload_array(hat, addr, len, pps, attr, flags,
2306                     SFMMU_INVALID_SHMERID);
2307                 return;
2308         }
2309         rid = (uint_t)((uint64_t)rcookie);
2310         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
2311         hat_do_memload_array(hat, addr, len, pps, attr, flags, rid);
2312 }
2313 
2314 /*
2315  * Map the largest extend possible out of the page array. The array may NOT
2316  * be in order.  The largest possible mapping a page can have
2317  * is specified in the p_szc field.  The p_szc field
2318  * cannot change as long as there any mappings (large or small)
2319  * to any of the pages that make up the large page. (ie. any
2320  * promotion/demotion of page size is not up to the hat but up to
2321  * the page free list manager).  The array
2322  * should consist of properly aligned contigous pages that are
2323  * part of a big page for a large mapping to be created.
2324  */
2325 static void
2326 hat_do_memload_array(struct hat *hat, caddr_t addr, size_t len,
2327         struct page **pps, uint_t attr, uint_t flags, uint_t rid)
2328 {
2329         int  ttesz;
2330         size_t mapsz;
2331         pgcnt_t numpg, npgs;
2332         tte_t tte;
2333         page_t *pp;
2334         uint_t large_pages_disable;
2335 
2336         ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
2337         SFMMU_VALIDATE_HMERID(hat, rid, addr, len);
2338 
2339         if (hat->sfmmu_xhat_provider) {
2340                 ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
2341                 XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags);
2342                 return;
2343         }
2344 
2345         if (hat->sfmmu_rmstat)
2346                 hat_resvstat(len, hat->sfmmu_as, addr);
2347 
2348 #if defined(SF_ERRATA_57)
2349         if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
2350             (addr < errata57_limit) && (attr & PROT_EXEC) &&
2351             !(flags & HAT_LOAD_SHARE)) {
2352                 cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
2353                     "user page executable");
2354                 attr &= ~PROT_EXEC;
2355         }
2356 #endif
2357 
2358         /* Get number of pages */
2359         npgs = len >> MMU_PAGESHIFT;
2360 
2361         if (flags & HAT_LOAD_SHARE) {
2362                 large_pages_disable = disable_ism_large_pages;
2363         } else {
2364                 large_pages_disable = disable_large_pages;
2365         }
2366 
2367         if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
2368                 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2369                     rid);
2370                 return;
2371         }
2372 
2373         while (npgs >= NHMENTS) {
2374                 pp = *pps;
2375                 for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
2376                         /*
2377                          * Check if this page size is disabled.
2378                          */
2379                         if (large_pages_disable & (1 << ttesz))
2380                                 continue;
2381 
2382                         numpg = TTEPAGES(ttesz);
2383                         mapsz = numpg << MMU_PAGESHIFT;
2384                         if ((npgs >= numpg) &&
2385                             IS_P2ALIGNED(addr, mapsz) &&
2386                             IS_P2ALIGNED(pp->p_pagenum, numpg)) {
2387                                 /*
2388                                  * At this point we have enough pages and
2389                                  * we know the virtual address and the pfn
2390                                  * are properly aligned.  We still need
2391                                  * to check for physical contiguity but since
2392                                  * it is very likely that this is the case
2393                                  * we will assume they are so and undo
2394                                  * the request if necessary.  It would
2395                                  * be great if we could get a hint flag
2396                                  * like HAT_CONTIG which would tell us
2397                                  * the pages are contigous for sure.
2398                                  */
2399                                 sfmmu_memtte(&tte, (*pps)->p_pagenum,
2400                                     attr, ttesz);
2401                                 if (!sfmmu_tteload_array(hat, &tte, addr,
2402                                     pps, flags, rid)) {
2403                                         break;
2404                                 }
2405                         }
2406                 }
2407                 if (ttesz == TTE8K) {
2408                         /*
2409                          * We were not able to map array using a large page
2410                          * batch a hmeblk or fraction at a time.
2411                          */
2412                         numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
2413                             & (NHMENTS-1);
2414                         numpg = NHMENTS - numpg;
2415                         ASSERT(numpg <= npgs);
2416                         mapsz = numpg * MMU_PAGESIZE;
2417                         sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
2418                             numpg, rid);
2419                 }
2420                 addr += mapsz;
2421                 npgs -= numpg;
2422                 pps += numpg;
2423         }
2424 
2425         if (npgs) {
2426                 sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs,
2427                     rid);
2428         }
2429 
2430         /*
2431          * Check TSB and TLB page sizes.
2432          */
2433         if ((flags & HAT_LOAD_SHARE) == 0) {
2434                 sfmmu_check_page_sizes(hat, 1);
2435         }
2436 }
2437 
2438 /*
2439  * Function tries to batch 8K pages into the same hme blk.
2440  */
2441 static void
2442 sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
2443                     uint_t attr, uint_t flags, pgcnt_t npgs, uint_t rid)
2444 {
2445         tte_t   tte;
2446         page_t *pp;
2447         struct hmehash_bucket *hmebp;
2448         struct hme_blk *hmeblkp;
2449         int     index;
2450 
2451         while (npgs) {
2452                 /*
2453                  * Acquire the hash bucket.
2454                  */
2455                 hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K,
2456                     rid);
2457                 ASSERT(hmebp);
2458 
2459                 /*
2460                  * Find the hment block.
2461                  */
2462                 hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
2463                     TTE8K, flags, rid);
2464                 ASSERT(hmeblkp);
2465 
2466                 do {
2467                         /*
2468                          * Make the tte.
2469                          */
2470                         pp = *pps;
2471                         sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
2472 
2473                         /*
2474                          * Add the translation.
2475                          */
2476                         (void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
2477                             vaddr, pps, flags, rid);
2478 
2479                         /*
2480                          * Goto next page.
2481                          */
2482                         pps++;
2483                         npgs--;
2484 
2485                         /*
2486                          * Goto next address.
2487                          */
2488                         vaddr += MMU_PAGESIZE;
2489 
2490                         /*
2491                          * Don't crossover into a different hmentblk.
2492                          */
2493                         index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
2494                             (NHMENTS-1));
2495 
2496                 } while (index != 0 && npgs != 0);
2497 
2498                 /*
2499                  * Release the hash bucket.
2500                  */
2501 
2502                 sfmmu_tteload_release_hashbucket(hmebp);
2503         }
2504 }
2505 
2506 /*
2507  * Construct a tte for a page:
2508  *
2509  * tte_valid = 1
2510  * tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
2511  * tte_size = size
2512  * tte_nfo = attr & HAT_NOFAULT
2513  * tte_ie = attr & HAT_STRUCTURE_LE
2514  * tte_hmenum = hmenum
2515  * tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
2516  * tte_palo = pp->p_pagenum & TTE_PALOMASK;
2517  * tte_ref = 1 (optimization)
2518  * tte_wr_perm = attr & PROT_WRITE;
2519  * tte_no_sync = attr & HAT_NOSYNC
2520  * tte_lock = attr & SFMMU_LOCKTTE
2521  * tte_cp = !(attr & SFMMU_UNCACHEPTTE)
2522  * tte_cv = !(attr & SFMMU_UNCACHEVTTE)
2523  * tte_e = attr & SFMMU_SIDEFFECT
2524  * tte_priv = !(attr & PROT_USER)
2525  * tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
2526  * tte_glb = 0
2527  */
2528 void
2529 sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
2530 {
2531         ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
2532 
2533         ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
2534         ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
2535 
2536         if (TTE_IS_NOSYNC(ttep)) {
2537                 TTE_SET_REF(ttep);
2538                 if (TTE_IS_WRITABLE(ttep)) {
2539                         TTE_SET_MOD(ttep);
2540                 }
2541         }
2542         if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
2543                 panic("sfmmu_memtte: can't set both NFO and EXEC bits");
2544         }
2545 }
2546 
2547 /*
2548  * This function will add a translation to the hme_blk and allocate the
2549  * hme_blk if one does not exist.
2550  * If a page structure is specified then it will add the
2551  * corresponding hment to the mapping list.
2552  * It will also update the hmenum field for the tte.
2553  *
2554  * Currently this function is only used for kernel mappings.
2555  * So pass invalid region to sfmmu_tteload_array().
2556  */
2557 void
2558 sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
2559         uint_t flags)
2560 {
2561         ASSERT(sfmmup == ksfmmup);
2562         (void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags,
2563             SFMMU_INVALID_SHMERID);
2564 }
2565 
2566 /*
2567  * Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
2568  * Assumes that a particular page size may only be resident in one TSB.
2569  */
2570 static void
2571 sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
2572 {
2573         struct tsb_info *tsbinfop = NULL;
2574         uint64_t tag;
2575         struct tsbe *tsbe_addr;
2576         uint64_t tsb_base;
2577         uint_t tsb_size;
2578         int vpshift = MMU_PAGESHIFT;
2579         int phys = 0;
2580 
2581         if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
2582                 phys = ktsb_phys;
2583                 if (ttesz >= TTE4M) {
2584 #ifndef sun4v
2585                         ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2586 #endif
2587                         tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2588                         tsb_size = ktsb4m_szcode;
2589                 } else {
2590                         tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2591                         tsb_size = ktsb_szcode;
2592                 }
2593         } else {
2594                 SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2595 
2596                 /*
2597                  * If there isn't a TSB for this page size, or the TSB is
2598                  * swapped out, there is nothing to do.  Note that the latter
2599                  * case seems impossible but can occur if hat_pageunload()
2600                  * is called on an ISM mapping while the process is swapped
2601                  * out.
2602                  */
2603                 if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2604                         return;
2605 
2606                 /*
2607                  * If another thread is in the middle of relocating a TSB
2608                  * we can't unload the entry so set a flag so that the
2609                  * TSB will be flushed before it can be accessed by the
2610                  * process.
2611                  */
2612                 if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2613                         if (ttep == NULL)
2614                                 tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2615                         return;
2616                 }
2617 #if defined(UTSB_PHYS)
2618                 phys = 1;
2619                 tsb_base = (uint64_t)tsbinfop->tsb_pa;
2620 #else
2621                 tsb_base = (uint64_t)tsbinfop->tsb_va;
2622 #endif
2623                 tsb_size = tsbinfop->tsb_szc;
2624         }
2625         if (ttesz >= TTE4M)
2626                 vpshift = MMU_PAGESHIFT4M;
2627 
2628         tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2629         tag = sfmmu_make_tsbtag(vaddr);
2630 
2631         if (ttep == NULL) {
2632                 sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2633         } else {
2634                 if (ttesz >= TTE4M) {
2635                         SFMMU_STAT(sf_tsb_load4m);
2636                 } else {
2637                         SFMMU_STAT(sf_tsb_load8k);
2638                 }
2639 
2640                 sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
2641         }
2642 }
2643 
2644 /*
2645  * Unmap all entries from [start, end) matching the given page size.
2646  *
2647  * This function is used primarily to unmap replicated 64K or 512K entries
2648  * from the TSB that are inserted using the base page size TSB pointer, but
2649  * it may also be called to unmap a range of addresses from the TSB.
2650  */
2651 void
2652 sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
2653 {
2654         struct tsb_info *tsbinfop;
2655         uint64_t tag;
2656         struct tsbe *tsbe_addr;
2657         caddr_t vaddr;
2658         uint64_t tsb_base;
2659         int vpshift, vpgsz;
2660         uint_t tsb_size;
2661         int phys = 0;
2662 
2663         /*
2664          * Assumptions:
2665          *  If ttesz == 8K, 64K or 512K, we walk through the range 8K
2666          *  at a time shooting down any valid entries we encounter.
2667          *
2668          *  If ttesz >= 4M we walk the range 4M at a time shooting
2669          *  down any valid mappings we find.
2670          */
2671         if (sfmmup == ksfmmup) {
2672                 phys = ktsb_phys;
2673                 if (ttesz >= TTE4M) {
2674 #ifndef sun4v
2675                         ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
2676 #endif
2677                         tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
2678                         tsb_size = ktsb4m_szcode;
2679                 } else {
2680                         tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
2681                         tsb_size = ktsb_szcode;
2682                 }
2683         } else {
2684                 SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
2685 
2686                 /*
2687                  * If there isn't a TSB for this page size, or the TSB is
2688                  * swapped out, there is nothing to do.  Note that the latter
2689                  * case seems impossible but can occur if hat_pageunload()
2690                  * is called on an ISM mapping while the process is swapped
2691                  * out.
2692                  */
2693                 if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
2694                         return;
2695 
2696                 /*
2697                  * If another thread is in the middle of relocating a TSB
2698                  * we can't unload the entry so set a flag so that the
2699                  * TSB will be flushed before it can be accessed by the
2700                  * process.
2701                  */
2702                 if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
2703                         tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
2704                         return;
2705                 }
2706 #if defined(UTSB_PHYS)
2707                 phys = 1;
2708                 tsb_base = (uint64_t)tsbinfop->tsb_pa;
2709 #else
2710                 tsb_base = (uint64_t)tsbinfop->tsb_va;
2711 #endif
2712                 tsb_size = tsbinfop->tsb_szc;
2713         }
2714         if (ttesz >= TTE4M) {
2715                 vpshift = MMU_PAGESHIFT4M;
2716                 vpgsz = MMU_PAGESIZE4M;
2717         } else {
2718                 vpshift = MMU_PAGESHIFT;
2719                 vpgsz = MMU_PAGESIZE;
2720         }
2721 
2722         for (vaddr = start; vaddr < end; vaddr += vpgsz) {
2723                 tag = sfmmu_make_tsbtag(vaddr);
2724                 tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
2725                 sfmmu_unload_tsbe(tsbe_addr, tag, phys);
2726         }
2727 }
2728 
2729 /*
2730  * Select the optimum TSB size given the number of mappings
2731  * that need to be cached.
2732  */
2733 static int
2734 sfmmu_select_tsb_szc(pgcnt_t pgcnt)
2735 {
2736         int szc = 0;
2737 
2738 #ifdef DEBUG
2739         if (tsb_grow_stress) {
2740                 uint32_t randval = (uint32_t)gettick() >> 4;
2741                 return (randval % (tsb_max_growsize + 1));
2742         }
2743 #endif  /* DEBUG */
2744 
2745         while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
2746                 szc++;
2747         return (szc);
2748 }
2749 
2750 /*
2751  * This function will add a translation to the hme_blk and allocate the
2752  * hme_blk if one does not exist.
2753  * If a page structure is specified then it will add the
2754  * corresponding hment to the mapping list.
2755  * It will also update the hmenum field for the tte.
2756  * Furthermore, it attempts to create a large page translation
2757  * for <addr,hat> at page array pps.  It assumes addr and first
2758  * pp is correctly aligned.  It returns 0 if successful and 1 otherwise.
2759  */
2760 static int
2761 sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
2762         page_t **pps, uint_t flags, uint_t rid)
2763 {
2764         struct hmehash_bucket *hmebp;
2765         struct hme_blk *hmeblkp;
2766         int     ret;
2767         uint_t  size;
2768 
2769         /*
2770          * Get mapping size.
2771          */
2772         size = TTE_CSZ(ttep);
2773         ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2774 
2775         /*
2776          * Acquire the hash bucket.
2777          */
2778         hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size, rid);
2779         ASSERT(hmebp);
2780 
2781         /*
2782          * Find the hment block.
2783          */
2784         hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags,
2785             rid);
2786         ASSERT(hmeblkp);
2787 
2788         /*
2789          * Add the translation.
2790          */
2791         ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags,
2792             rid);
2793 
2794         /*
2795          * Release the hash bucket.
2796          */
2797         sfmmu_tteload_release_hashbucket(hmebp);
2798 
2799         return (ret);
2800 }
2801 
2802 /*
2803  * Function locks and returns a pointer to the hash bucket for vaddr and size.
2804  */
2805 static struct hmehash_bucket *
2806 sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size,
2807     uint_t rid)
2808 {
2809         struct hmehash_bucket *hmebp;
2810         int hmeshift;
2811         void *htagid = sfmmutohtagid(sfmmup, rid);
2812 
2813         ASSERT(htagid != NULL);
2814 
2815         hmeshift = HME_HASH_SHIFT(size);
2816 
2817         hmebp = HME_HASH_FUNCTION(htagid, vaddr, hmeshift);
2818 
2819         SFMMU_HASH_LOCK(hmebp);
2820 
2821         return (hmebp);
2822 }
2823 
2824 /*
2825  * Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
2826  * hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
2827  * allocated.
2828  */
2829 static struct hme_blk *
2830 sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
2831         caddr_t vaddr, uint_t size, uint_t flags, uint_t rid)
2832 {
2833         hmeblk_tag hblktag;
2834         int hmeshift;
2835         struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
2836 
2837         SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
2838 
2839         hblktag.htag_id = sfmmutohtagid(sfmmup, rid);
2840         ASSERT(hblktag.htag_id != NULL);
2841         hmeshift = HME_HASH_SHIFT(size);
2842         hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
2843         hblktag.htag_rehash = HME_HASH_REHASH(size);
2844         hblktag.htag_rid = rid;
2845 
2846 ttearray_realloc:
2847 
2848         HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
2849 
2850         /*
2851          * We block until hblk_reserve_lock is released; it's held by
2852          * the thread, temporarily using hblk_reserve, until hblk_reserve is
2853          * replaced by a hblk from sfmmu8_cache.
2854          */
2855         if (hmeblkp == (struct hme_blk *)hblk_reserve &&
2856             hblk_reserve_thread != curthread) {
2857                 SFMMU_HASH_UNLOCK(hmebp);
2858                 mutex_enter(&hblk_reserve_lock);
2859                 mutex_exit(&hblk_reserve_lock);
2860                 SFMMU_STAT(sf_hblk_reserve_hit);
2861                 SFMMU_HASH_LOCK(hmebp);
2862                 goto ttearray_realloc;
2863         }
2864 
2865         if (hmeblkp == NULL) {
2866                 hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
2867                     hblktag, flags, rid);
2868                 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
2869                 ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
2870         } else {
2871                 /*
2872                  * It is possible for 8k and 64k hblks to collide since they
2873                  * have the same rehash value. This is because we
2874                  * lazily free hblks and 8K/64K blks could be lingering.
2875                  * If we find size mismatch we free the block and & try again.
2876                  */
2877                 if (get_hblk_ttesz(hmeblkp) != size) {
2878                         ASSERT(!hmeblkp->hblk_vcnt);
2879                         ASSERT(!hmeblkp->hblk_hmecnt);
2880                         sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
2881                             &list, 0);
2882                         goto ttearray_realloc;
2883                 }
2884                 if (hmeblkp->hblk_shw_bit) {
2885                         /*
2886                          * if the hblk was previously used as a shadow hblk then
2887                          * we will change it to a normal hblk
2888                          */
2889                         ASSERT(!hmeblkp->hblk_shared);
2890                         if (hmeblkp->hblk_shw_mask) {
2891                                 sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
2892                                 ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
2893                                 goto ttearray_realloc;
2894                         } else {
2895                                 hmeblkp->hblk_shw_bit = 0;
2896                         }
2897                 }
2898                 SFMMU_STAT(sf_hblk_hit);
2899         }
2900 
2901         /*
2902          * hat_memload() should never call kmem_cache_free() for kernel hmeblks;
2903          * see block comment showing the stacktrace in sfmmu_hblk_alloc();
2904          * set the flag parameter to 1 so that sfmmu_hblks_list_purge() will
2905          * just add these hmeblks to the per-cpu pending queue.
2906          */
2907         sfmmu_hblks_list_purge(&list, 1);
2908 
2909         ASSERT(get_hblk_ttesz(hmeblkp) == size);
2910         ASSERT(!hmeblkp->hblk_shw_bit);
2911         ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
2912         ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
2913         ASSERT(hmeblkp->hblk_tag.htag_rid == rid);
2914 
2915         return (hmeblkp);
2916 }
2917 
2918 /*
2919  * Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
2920  * otherwise.
2921  */
2922 static int
2923 sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
2924         caddr_t vaddr, page_t **pps, uint_t flags, uint_t rid)
2925 {
2926         page_t *pp = *pps;
2927         int hmenum, size, remap;
2928         tte_t tteold, flush_tte;
2929 #ifdef DEBUG
2930         tte_t orig_old;
2931 #endif /* DEBUG */
2932         struct sf_hment *sfhme;
2933         kmutex_t *pml, *pmtx;
2934         hatlock_t *hatlockp;
2935         int myflt;
2936 
2937         /*
2938          * remove this panic when we decide to let user virtual address
2939          * space be >= USERLIMIT.
2940          */
2941         if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
2942                 panic("user addr %p in kernel space", (void *)vaddr);
2943 #if defined(TTE_IS_GLOBAL)
2944         if (TTE_IS_GLOBAL(ttep))
2945                 panic("sfmmu_tteload: creating global tte");
2946 #endif
2947 
2948 #ifdef DEBUG
2949         if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
2950             !TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
2951                 panic("sfmmu_tteload: non cacheable memory tte");
2952 #endif /* DEBUG */
2953 
2954         /* don't simulate dirty bit for writeable ISM/DISM mappings */
2955         if ((flags & HAT_LOAD_SHARE) && TTE_IS_WRITABLE(ttep)) {
2956                 TTE_SET_REF(ttep);
2957                 TTE_SET_MOD(ttep);
2958         }
2959 
2960         if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
2961             !TTE_IS_MOD(ttep)) {
2962                 /*
2963                  * Don't load TSB for dummy as in ISM.  Also don't preload
2964                  * the TSB if the TTE isn't writable since we're likely to
2965                  * fault on it again -- preloading can be fairly expensive.
2966                  */
2967                 flags |= SFMMU_NO_TSBLOAD;
2968         }
2969 
2970         size = TTE_CSZ(ttep);
2971         switch (size) {
2972         case TTE8K:
2973                 SFMMU_STAT(sf_tteload8k);
2974                 break;
2975         case TTE64K:
2976                 SFMMU_STAT(sf_tteload64k);
2977                 break;
2978         case TTE512K:
2979                 SFMMU_STAT(sf_tteload512k);
2980                 break;
2981         case TTE4M:
2982                 SFMMU_STAT(sf_tteload4m);
2983                 break;
2984         case (TTE32M):
2985                 SFMMU_STAT(sf_tteload32m);
2986                 ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2987                 break;
2988         case (TTE256M):
2989                 SFMMU_STAT(sf_tteload256m);
2990                 ASSERT(mmu_page_sizes == max_mmu_page_sizes);
2991                 break;
2992         }
2993 
2994         ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
2995         SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
2996         ASSERT(!SFMMU_IS_SHMERID_VALID(rid) || hmeblkp->hblk_shared);
2997         ASSERT(SFMMU_IS_SHMERID_VALID(rid) || !hmeblkp->hblk_shared);
2998 
2999         HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
3000 
3001         /*
3002          * Need to grab mlist lock here so that pageunload
3003          * will not change tte behind us.
3004          */
3005         if (pp) {
3006                 pml = sfmmu_mlist_enter(pp);
3007         }
3008 
3009         sfmmu_copytte(&sfhme->hme_tte, &tteold);
3010         /*
3011          * Look for corresponding hment and if valid verify
3012          * pfns are equal.
3013          */
3014         remap = TTE_IS_VALID(&tteold);
3015         if (remap) {
3016                 pfn_t   new_pfn, old_pfn;
3017 
3018                 old_pfn = TTE_TO_PFN(vaddr, &tteold);
3019                 new_pfn = TTE_TO_PFN(vaddr, ttep);
3020 
3021                 if (flags & HAT_LOAD_REMAP) {
3022                         /* make sure we are remapping same type of pages */
3023                         if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
3024                                 panic("sfmmu_tteload - tte remap io<->memory");
3025                         }
3026                         if (old_pfn != new_pfn &&
3027                             (pp != NULL || sfhme->hme_page != NULL)) {
3028                                 panic("sfmmu_tteload - tte remap pp != NULL");
3029                         }
3030                 } else if (old_pfn != new_pfn) {
3031                         panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
3032                             (void *)hmeblkp);
3033                 }
3034                 ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
3035         }
3036 
3037         if (pp) {
3038                 if (size == TTE8K) {
3039 #ifdef VAC
3040                         /*
3041                          * Handle VAC consistency
3042                          */
3043                         if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
3044                                 sfmmu_vac_conflict(sfmmup, vaddr, pp);
3045                         }
3046 #endif
3047 
3048                         if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3049                                 pmtx = sfmmu_page_enter(pp);
3050                                 PP_CLRRO(pp);
3051                                 sfmmu_page_exit(pmtx);
3052                         } else if (!PP_ISMAPPED(pp) &&
3053                             (!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
3054                                 pmtx = sfmmu_page_enter(pp);
3055                                 if (!(PP_ISMOD(pp))) {
3056                                         PP_SETRO(pp);
3057                                 }
3058                                 sfmmu_page_exit(pmtx);
3059                         }
3060 
3061                 } else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
3062                         /*
3063                          * sfmmu_pagearray_setup failed so return
3064                          */
3065                         sfmmu_mlist_exit(pml);
3066                         return (1);
3067                 }
3068         }
3069 
3070         /*
3071          * Make sure hment is not on a mapping list.
3072          */
3073         ASSERT(remap || (sfhme->hme_page == NULL));
3074 
3075         /* if it is not a remap then hme->next better be NULL */
3076         ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
3077 
3078         if (flags & HAT_LOAD_LOCK) {
3079                 if ((hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
3080                         panic("too high lckcnt-hmeblk %p",
3081                             (void *)hmeblkp);
3082                 }
3083                 atomic_add_32(&hmeblkp->hblk_lckcnt, 1);
3084 
3085                 HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
3086         }
3087 
3088 #ifdef VAC
3089         if (pp && PP_ISNC(pp)) {
3090                 /*
3091                  * If the physical page is marked to be uncacheable, like
3092                  * by a vac conflict, make sure the new mapping is also
3093                  * uncacheable.
3094                  */
3095                 TTE_CLR_VCACHEABLE(ttep);
3096                 ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
3097         }
3098 #endif
3099         ttep->tte_hmenum = hmenum;
3100 
3101 #ifdef DEBUG
3102         orig_old = tteold;
3103 #endif /* DEBUG */
3104 
3105         while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
3106                 if ((sfmmup == KHATID) &&
3107                     (flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
3108                         sfmmu_copytte(&sfhme->hme_tte, &tteold);
3109                 }
3110 #ifdef DEBUG
3111                 chk_tte(&orig_old, &tteold, ttep, hmeblkp);
3112 #endif /* DEBUG */
3113         }
3114         ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
3115 
3116         if (!TTE_IS_VALID(&tteold)) {
3117 
3118                 atomic_add_16(&hmeblkp->hblk_vcnt, 1);
3119                 if (rid == SFMMU_INVALID_SHMERID) {
3120                         atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1);
3121                 } else {
3122                         sf_srd_t *srdp = sfmmup->sfmmu_srdp;
3123                         sf_region_t *rgnp = srdp->srd_hmergnp[rid];
3124                         /*
3125                          * We already accounted for region ttecnt's in sfmmu
3126                          * during hat_join_region() processing. Here we
3127                          * only update ttecnt's in region struture.
3128                          */
3129                         atomic_add_long(&rgnp->rgn_ttecnt[size], 1);
3130                 }
3131         }
3132 
3133         myflt = (astosfmmu(curthread->t_procp->p_as) == sfmmup);
3134         if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
3135             sfmmup != ksfmmup) {
3136                 uchar_t tteflag = 1 << size;
3137                 if (rid == SFMMU_INVALID_SHMERID) {
3138                         if (!(sfmmup->sfmmu_tteflags & tteflag)) {
3139                                 hatlockp = sfmmu_hat_enter(sfmmup);
3140                                 sfmmup->sfmmu_tteflags |= tteflag;
3141                                 sfmmu_hat_exit(hatlockp);
3142                         }
3143                 } else if (!(sfmmup->sfmmu_rtteflags & tteflag)) {
3144                         hatlockp = sfmmu_hat_enter(sfmmup);
3145                         sfmmup->sfmmu_rtteflags |= tteflag;
3146                         sfmmu_hat_exit(hatlockp);
3147                 }
3148                 /*
3149                  * Update the current CPU tsbmiss area, so the current thread
3150                  * won't need to take the tsbmiss for the new pagesize.
3151                  * The other threads in the process will update their tsb
3152                  * miss area lazily in sfmmu_tsbmiss_exception() when they
3153                  * fail to find the translation for a newly added pagesize.
3154                  */
3155                 if (size > TTE64K && myflt) {
3156                         struct tsbmiss *tsbmp;
3157                         kpreempt_disable();
3158                         tsbmp = &tsbmiss_area[CPU->cpu_id];
3159                         if (rid == SFMMU_INVALID_SHMERID) {
3160                                 if (!(tsbmp->uhat_tteflags & tteflag)) {
3161                                         tsbmp->uhat_tteflags |= tteflag;
3162                                 }
3163                         } else {
3164                                 if (!(tsbmp->uhat_rtteflags & tteflag)) {
3165                                         tsbmp->uhat_rtteflags |= tteflag;
3166                                 }
3167                         }
3168                         kpreempt_enable();
3169                 }
3170         }
3171 
3172         if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
3173             !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
3174                 hatlockp = sfmmu_hat_enter(sfmmup);
3175                 SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
3176                 sfmmu_hat_exit(hatlockp);
3177         }
3178 
3179         flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
3180             hw_tte.tte_intlo;
3181         flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
3182             hw_tte.tte_inthi;
3183 
3184         if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
3185                 /*
3186                  * If remap and new tte differs from old tte we need
3187                  * to sync the mod bit and flush TLB/TSB.  We don't
3188                  * need to sync ref bit because we currently always set
3189                  * ref bit in tteload.
3190                  */
3191                 ASSERT(TTE_IS_REF(ttep));
3192                 if (TTE_IS_MOD(&tteold)) {
3193                         sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
3194                 }
3195                 /*
3196                  * hwtte bits shouldn't change for SRD hmeblks as long as SRD
3197                  * hmes are only used for read only text. Adding this code for
3198                  * completeness and future use of shared hmeblks with writable
3199                  * mappings of VMODSORT vnodes.
3200                  */
3201                 if (hmeblkp->hblk_shared) {
3202                         cpuset_t cpuset = sfmmu_rgntlb_demap(vaddr,
3203                             sfmmup->sfmmu_srdp->srd_hmergnp[rid], hmeblkp, 1);
3204                         xt_sync(cpuset);
3205                         SFMMU_STAT_ADD(sf_region_remap_demap, 1);
3206                 } else {
3207                         sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
3208                         xt_sync(sfmmup->sfmmu_cpusran);
3209                 }
3210         }
3211 
3212         if ((flags & SFMMU_NO_TSBLOAD) == 0) {
3213                 /*
3214                  * We only preload 8K and 4M mappings into the TSB, since
3215                  * 64K and 512K mappings are replicated and hence don't
3216                  * have a single, unique TSB entry. Ditto for 32M/256M.
3217                  */
3218                 if (size == TTE8K || size == TTE4M) {
3219                         sf_scd_t *scdp;
3220                         hatlockp = sfmmu_hat_enter(sfmmup);
3221                         /*
3222                          * Don't preload private TSB if the mapping is used
3223                          * by the shctx in the SCD.
3224                          */
3225                         scdp = sfmmup->sfmmu_scdp;
3226                         if (rid == SFMMU_INVALID_SHMERID || scdp == NULL ||
3227                             !SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
3228                                 sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte,
3229                                     size);
3230                         }
3231                         sfmmu_hat_exit(hatlockp);
3232                 }
3233         }
3234         if (pp) {
3235                 if (!remap) {
3236                         HME_ADD(sfhme, pp);
3237                         atomic_add_16(&hmeblkp->hblk_hmecnt, 1);
3238                         ASSERT(hmeblkp->hblk_hmecnt > 0);
3239 
3240                         /*
3241                          * Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
3242                          * see pageunload() for comment.
3243                          */
3244                 }
3245                 sfmmu_mlist_exit(pml);
3246         }
3247 
3248         return (0);
3249 }
3250 /*
3251  * Function unlocks hash bucket.
3252  */
3253 static void
3254 sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
3255 {
3256         ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3257         SFMMU_HASH_UNLOCK(hmebp);
3258 }
3259 
3260 /*
3261  * function which checks and sets up page array for a large
3262  * translation.  Will set p_vcolor, p_index, p_ro fields.
3263  * Assumes addr and pfnum of first page are properly aligned.
3264  * Will check for physical contiguity. If check fails it return
3265  * non null.
3266  */
3267 static int
3268 sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
3269 {
3270         int     i, index, ttesz;
3271         pfn_t   pfnum;
3272         pgcnt_t npgs;
3273         page_t *pp, *pp1;
3274         kmutex_t *pmtx;
3275 #ifdef VAC
3276         int osz;
3277         int cflags = 0;
3278         int vac_err = 0;
3279 #endif
3280         int newidx = 0;
3281 
3282         ttesz = TTE_CSZ(ttep);
3283 
3284         ASSERT(ttesz > TTE8K);
3285 
3286         npgs = TTEPAGES(ttesz);
3287         index = PAGESZ_TO_INDEX(ttesz);
3288 
3289         pfnum = (*pps)->p_pagenum;
3290         ASSERT(IS_P2ALIGNED(pfnum, npgs));
3291 
3292         /*
3293          * Save the first pp so we can do HAT_TMPNC at the end.
3294          */
3295         pp1 = *pps;
3296 #ifdef VAC
3297         osz = fnd_mapping_sz(pp1);
3298 #endif
3299 
3300         for (i = 0; i < npgs; i++, pps++) {
3301                 pp = *pps;
3302                 ASSERT(PAGE_LOCKED(pp));
3303                 ASSERT(pp->p_szc >= ttesz);
3304                 ASSERT(pp->p_szc == pp1->p_szc);
3305                 ASSERT(sfmmu_mlist_held(pp));
3306 
3307                 /*
3308                  * XXX is it possible to maintain P_RO on the root only?
3309                  */
3310                 if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
3311                         pmtx = sfmmu_page_enter(pp);
3312                         PP_CLRRO(pp);
3313                         sfmmu_page_exit(pmtx);
3314                 } else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
3315                     !PP_ISMOD(pp)) {
3316                         pmtx = sfmmu_page_enter(pp);
3317                         if (!(PP_ISMOD(pp))) {
3318                                 PP_SETRO(pp);
3319                         }
3320                         sfmmu_page_exit(pmtx);
3321                 }
3322 
3323                 /*
3324                  * If this is a remap we skip vac & contiguity checks.
3325                  */
3326                 if (remap)
3327                         continue;
3328 
3329                 /*
3330                  * set p_vcolor and detect any vac conflicts.
3331                  */
3332 #ifdef VAC
3333                 if (vac_err == 0) {
3334                         vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
3335 
3336                 }
3337 #endif
3338 
3339                 /*
3340                  * Save current index in case we need to undo it.
3341                  * Note: "PAGESZ_TO_INDEX(sz)   (1 << (sz))"
3342                  *      "SFMMU_INDEX_SHIFT      6"
3343                  *       "SFMMU_INDEX_MASK      ((1 << SFMMU_INDEX_SHIFT) - 1)"
3344                  *       "PP_MAPINDEX(p_index)  (p_index & SFMMU_INDEX_MASK)"
3345                  *
3346                  * So:  index = PAGESZ_TO_INDEX(ttesz);
3347                  *      if ttesz == 1 then index = 0x2
3348                  *                  2 then index = 0x4
3349                  *                  3 then index = 0x8
3350                  *                  4 then index = 0x10
3351                  *                  5 then index = 0x20
3352                  * The code below checks if it's a new pagesize (ie, newidx)
3353                  * in case we need to take it back out of p_index,
3354                  * and then or's the new index into the existing index.
3355                  */
3356                 if ((PP_MAPINDEX(pp) & index) == 0)
3357                         newidx = 1;
3358                 pp->p_index = (PP_MAPINDEX(pp) | index);
3359 
3360                 /*
3361                  * contiguity check
3362                  */
3363                 if (pp->p_pagenum != pfnum) {
3364                         /*
3365                          * If we fail the contiguity test then
3366                          * the only thing we need to fix is the p_index field.
3367                          * We might get a few extra flushes but since this
3368                          * path is rare that is ok.  The p_ro field will
3369                          * get automatically fixed on the next tteload to
3370                          * the page.  NO TNC bit is set yet.
3371                          */
3372                         while (i >= 0) {
3373                                 pp = *pps;
3374                                 if (newidx)
3375                                         pp->p_index = (PP_MAPINDEX(pp) &
3376                                             ~index);
3377                                 pps--;
3378                                 i--;
3379                         }
3380                         return (1);
3381                 }
3382                 pfnum++;
3383                 addr += MMU_PAGESIZE;
3384         }
3385 
3386 #ifdef VAC
3387         if (vac_err) {
3388                 if (ttesz > osz) {
3389                         /*
3390                          * There are some smaller mappings that causes vac
3391                          * conflicts. Convert all existing small mappings to
3392                          * TNC.
3393                          */
3394                         SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
3395                         sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
3396                             npgs);
3397                 } else {
3398                         /* EMPTY */
3399                         /*
3400                          * If there exists an big page mapping,
3401                          * that means the whole existing big page
3402                          * has TNC setting already. No need to covert to
3403                          * TNC again.
3404                          */
3405                         ASSERT(PP_ISTNC(pp1));
3406                 }
3407         }
3408 #endif  /* VAC */
3409 
3410         return (0);
3411 }
3412 
3413 #ifdef VAC
3414 /*
3415  * Routine that detects vac consistency for a large page. It also
3416  * sets virtual color for all pp's for this big mapping.
3417  */
3418 static int
3419 sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
3420 {
3421         int vcolor, ocolor;
3422 
3423         ASSERT(sfmmu_mlist_held(pp));
3424 
3425         if (PP_ISNC(pp)) {
3426                 return (HAT_TMPNC);
3427         }
3428 
3429         vcolor = addr_to_vcolor(addr);
3430         if (PP_NEWPAGE(pp)) {
3431                 PP_SET_VCOLOR(pp, vcolor);
3432                 return (0);
3433         }
3434 
3435         ocolor = PP_GET_VCOLOR(pp);
3436         if (ocolor == vcolor) {
3437                 return (0);
3438         }
3439 
3440         if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
3441                 /*
3442                  * Previous user of page had a differnet color
3443                  * but since there are no current users
3444                  * we just flush the cache and change the color.
3445                  * As an optimization for large pages we flush the
3446                  * entire cache of that color and set a flag.
3447                  */
3448                 SFMMU_STAT(sf_pgcolor_conflict);
3449                 if (!CacheColor_IsFlushed(*cflags, ocolor)) {
3450                         CacheColor_SetFlushed(*cflags, ocolor);
3451                         sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
3452                 }
3453                 PP_SET_VCOLOR(pp, vcolor);
3454                 return (0);
3455         }
3456 
3457         /*
3458          * We got a real conflict with a current mapping.
3459          * set flags to start unencaching all mappings
3460          * and return failure so we restart looping
3461          * the pp array from the beginning.
3462          */
3463         return (HAT_TMPNC);
3464 }
3465 #endif  /* VAC */
3466 
3467 /*
3468  * creates a large page shadow hmeblk for a tte.
3469  * The purpose of this routine is to allow us to do quick unloads because
3470  * the vm layer can easily pass a very large but sparsely populated range.
3471  */
3472 static struct hme_blk *
3473 sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
3474 {
3475         struct hmehash_bucket *hmebp;
3476         hmeblk_tag hblktag;
3477         int hmeshift, size, vshift;
3478         uint_t shw_mask, newshw_mask;
3479         struct hme_blk *hmeblkp;
3480 
3481         ASSERT(sfmmup != KHATID);
3482         if (mmu_page_sizes == max_mmu_page_sizes) {
3483                 ASSERT(ttesz < TTE256M);
3484         } else {
3485                 ASSERT(ttesz < TTE4M);
3486                 ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
3487                 ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
3488         }
3489 
3490         if (ttesz == TTE8K) {
3491                 size = TTE512K;
3492         } else {
3493                 size = ++ttesz;
3494         }
3495 
3496         hblktag.htag_id = sfmmup;
3497         hmeshift = HME_HASH_SHIFT(size);
3498         hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
3499         hblktag.htag_rehash = HME_HASH_REHASH(size);
3500         hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3501         hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
3502 
3503         SFMMU_HASH_LOCK(hmebp);
3504 
3505         HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
3506         ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
3507         if (hmeblkp == NULL) {
3508                 hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
3509                     hblktag, flags, SFMMU_INVALID_SHMERID);
3510         }
3511         ASSERT(hmeblkp);
3512         if (!hmeblkp->hblk_shw_mask) {
3513                 /*
3514                  * if this is a unused hblk it was just allocated or could
3515                  * potentially be a previous large page hblk so we need to
3516                  * set the shadow bit.
3517                  */
3518                 ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3519                 hmeblkp->hblk_shw_bit = 1;
3520         } else if (hmeblkp->hblk_shw_bit == 0) {
3521                 panic("sfmmu_shadow_hcreate: shw bit not set in hmeblkp 0x%p",
3522                     (void *)hmeblkp);
3523         }
3524         ASSERT(hmeblkp->hblk_shw_bit == 1);
3525         ASSERT(!hmeblkp->hblk_shared);
3526         vshift = vaddr_to_vshift(hblktag, vaddr, size);
3527         ASSERT(vshift < 8);
3528         /*
3529          * Atomically set shw mask bit
3530          */
3531         do {
3532                 shw_mask = hmeblkp->hblk_shw_mask;
3533                 newshw_mask = shw_mask | (1 << vshift);
3534                 newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask,
3535                     newshw_mask);
3536         } while (newshw_mask != shw_mask);
3537 
3538         SFMMU_HASH_UNLOCK(hmebp);
3539 
3540         return (hmeblkp);
3541 }
3542 
3543 /*
3544  * This routine cleanup a previous shadow hmeblk and changes it to
3545  * a regular hblk.  This happens rarely but it is possible
3546  * when a process wants to use large pages and there are hblks still
3547  * lying around from the previous as that used these hmeblks.
3548  * The alternative was to cleanup the shadow hblks at unload time
3549  * but since so few user processes actually use large pages, it is
3550  * better to be lazy and cleanup at this time.
3551  */
3552 static void
3553 sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
3554         struct hmehash_bucket *hmebp)
3555 {
3556         caddr_t addr, endaddr;
3557         int hashno, size;
3558 
3559         ASSERT(hmeblkp->hblk_shw_bit);
3560         ASSERT(!hmeblkp->hblk_shared);
3561 
3562         ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
3563 
3564         if (!hmeblkp->hblk_shw_mask) {
3565                 hmeblkp->hblk_shw_bit = 0;
3566                 return;
3567         }
3568         addr = (caddr_t)get_hblk_base(hmeblkp);
3569         endaddr = get_hblk_endaddr(hmeblkp);
3570         size = get_hblk_ttesz(hmeblkp);
3571         hashno = size - 1;
3572         ASSERT(hashno > 0);
3573         SFMMU_HASH_UNLOCK(hmebp);
3574 
3575         sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
3576 
3577         SFMMU_HASH_LOCK(hmebp);
3578 }
3579 
3580 static void
3581 sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
3582         int hashno)
3583 {
3584         int hmeshift, shadow = 0;
3585         hmeblk_tag hblktag;
3586         struct hmehash_bucket *hmebp;
3587         struct hme_blk *hmeblkp;
3588         struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
3589 
3590         ASSERT(hashno > 0);
3591         hblktag.htag_id = sfmmup;
3592         hblktag.htag_rehash = hashno;
3593         hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3594 
3595         hmeshift = HME_HASH_SHIFT(hashno);
3596 
3597         while (addr < endaddr) {
3598                 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3599                 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3600                 SFMMU_HASH_LOCK(hmebp);
3601                 /* inline HME_HASH_SEARCH */
3602                 hmeblkp = hmebp->hmeblkp;
3603                 pr_hblk = NULL;
3604                 while (hmeblkp) {
3605                         if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
3606                                 /* found hme_blk */
3607                                 ASSERT(!hmeblkp->hblk_shared);
3608                                 if (hmeblkp->hblk_shw_bit) {
3609                                         if (hmeblkp->hblk_shw_mask) {
3610                                                 shadow = 1;
3611                                                 sfmmu_shadow_hcleanup(sfmmup,
3612                                                     hmeblkp, hmebp);
3613                                                 break;
3614                                         } else {
3615                                                 hmeblkp->hblk_shw_bit = 0;
3616                                         }
3617                                 }
3618 
3619                                 /*
3620                                  * Hblk_hmecnt and hblk_vcnt could be non zero
3621                                  * since hblk_unload() does not gurantee that.
3622                                  *
3623                                  * XXX - this could cause tteload() to spin
3624                                  * where sfmmu_shadow_hcleanup() is called.
3625                                  */
3626                         }
3627 
3628                         nx_hblk = hmeblkp->hblk_next;
3629                         if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
3630                                 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3631                                     &list, 0);
3632                         } else {
3633                                 pr_hblk = hmeblkp;
3634                         }
3635                         hmeblkp = nx_hblk;
3636                 }
3637 
3638                 SFMMU_HASH_UNLOCK(hmebp);
3639 
3640                 if (shadow) {
3641                         /*
3642                          * We found another shadow hblk so cleaned its
3643                          * children.  We need to go back and cleanup
3644                          * the original hblk so we don't change the
3645                          * addr.
3646                          */
3647                         shadow = 0;
3648                 } else {
3649                         addr = (caddr_t)roundup((uintptr_t)addr + 1,
3650                             (1 << hmeshift));
3651                 }
3652         }
3653         sfmmu_hblks_list_purge(&list, 0);
3654 }
3655 
3656 /*
3657  * This routine's job is to delete stale invalid shared hmeregions hmeblks that
3658  * may still linger on after pageunload.
3659  */
3660 static void
3661 sfmmu_cleanup_rhblk(sf_srd_t *srdp, caddr_t addr, uint_t rid, int ttesz)
3662 {
3663         int hmeshift;
3664         hmeblk_tag hblktag;
3665         struct hmehash_bucket *hmebp;
3666         struct hme_blk *hmeblkp;
3667         struct hme_blk *pr_hblk;
3668         struct hme_blk *list = NULL;
3669 
3670         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3671         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3672 
3673         hmeshift = HME_HASH_SHIFT(ttesz);
3674         hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3675         hblktag.htag_rehash = ttesz;
3676         hblktag.htag_rid = rid;
3677         hblktag.htag_id = srdp;
3678         hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3679 
3680         SFMMU_HASH_LOCK(hmebp);
3681         HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
3682         if (hmeblkp != NULL) {
3683                 ASSERT(hmeblkp->hblk_shared);
3684                 ASSERT(!hmeblkp->hblk_shw_bit);
3685                 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3686                         panic("sfmmu_cleanup_rhblk: valid hmeblk");
3687                 }
3688                 ASSERT(!hmeblkp->hblk_lckcnt);
3689                 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3690                     &list, 0);
3691         }
3692         SFMMU_HASH_UNLOCK(hmebp);
3693         sfmmu_hblks_list_purge(&list, 0);
3694 }
3695 
3696 /* ARGSUSED */
3697 static void
3698 sfmmu_rgn_cb_noop(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr,
3699     size_t r_size, void *r_obj, u_offset_t r_objoff)
3700 {
3701 }
3702 
3703 /*
3704  * Searches for an hmeblk which maps addr, then unloads this mapping
3705  * and updates *eaddrp, if the hmeblk is found.
3706  */
3707 static void
3708 sfmmu_unload_hmeregion_va(sf_srd_t *srdp, uint_t rid, caddr_t addr,
3709     caddr_t eaddr, int ttesz, caddr_t *eaddrp)
3710 {
3711         int hmeshift;
3712         hmeblk_tag hblktag;
3713         struct hmehash_bucket *hmebp;
3714         struct hme_blk *hmeblkp;
3715         struct hme_blk *pr_hblk;
3716         struct hme_blk *list = NULL;
3717 
3718         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3719         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3720         ASSERT(ttesz >= HBLK_MIN_TTESZ);
3721 
3722         hmeshift = HME_HASH_SHIFT(ttesz);
3723         hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3724         hblktag.htag_rehash = ttesz;
3725         hblktag.htag_rid = rid;
3726         hblktag.htag_id = srdp;
3727         hmebp = HME_HASH_FUNCTION(srdp, addr, hmeshift);
3728 
3729         SFMMU_HASH_LOCK(hmebp);
3730         HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
3731         if (hmeblkp != NULL) {
3732                 ASSERT(hmeblkp->hblk_shared);
3733                 ASSERT(!hmeblkp->hblk_lckcnt);
3734                 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
3735                         *eaddrp = sfmmu_hblk_unload(NULL, hmeblkp, addr,
3736                             eaddr, NULL, HAT_UNLOAD);
3737                         ASSERT(*eaddrp > addr);
3738                 }
3739                 ASSERT(!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt);
3740                 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
3741                     &list, 0);
3742         }
3743         SFMMU_HASH_UNLOCK(hmebp);
3744         sfmmu_hblks_list_purge(&list, 0);
3745 }
3746 
3747 static void
3748 sfmmu_unload_hmeregion(sf_srd_t *srdp, sf_region_t *rgnp)
3749 {
3750         int ttesz = rgnp->rgn_pgszc;
3751         size_t rsz = rgnp->rgn_size;
3752         caddr_t rsaddr = rgnp->rgn_saddr;
3753         caddr_t readdr = rsaddr + rsz;
3754         caddr_t rhsaddr;
3755         caddr_t va;
3756         uint_t rid = rgnp->rgn_id;
3757         caddr_t cbsaddr;
3758         caddr_t cbeaddr;
3759         hat_rgn_cb_func_t rcbfunc;
3760         ulong_t cnt;
3761 
3762         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
3763         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
3764 
3765         ASSERT(IS_P2ALIGNED(rsaddr, TTEBYTES(ttesz)));
3766         ASSERT(IS_P2ALIGNED(rsz, TTEBYTES(ttesz)));
3767         if (ttesz < HBLK_MIN_TTESZ) {
3768                 ttesz = HBLK_MIN_TTESZ;
3769                 rhsaddr = (caddr_t)P2ALIGN((uintptr_t)rsaddr, HBLK_MIN_BYTES);
3770         } else {
3771                 rhsaddr = rsaddr;
3772         }
3773 
3774         if ((rcbfunc = rgnp->rgn_cb_function) == NULL) {
3775                 rcbfunc = sfmmu_rgn_cb_noop;
3776         }
3777 
3778         while (ttesz >= HBLK_MIN_TTESZ) {
3779                 cbsaddr = rsaddr;
3780                 cbeaddr = rsaddr;
3781                 if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
3782                         ttesz--;
3783                         continue;
3784                 }
3785                 cnt = 0;
3786                 va = rsaddr;
3787                 while (va < readdr) {
3788                         ASSERT(va >= rhsaddr);
3789                         if (va != cbeaddr) {
3790                                 if (cbeaddr != cbsaddr) {
3791                                         ASSERT(cbeaddr > cbsaddr);
3792                                         (*rcbfunc)(cbsaddr, cbeaddr,
3793                                             rsaddr, rsz, rgnp->rgn_obj,
3794                                             rgnp->rgn_objoff);
3795                                 }
3796                                 cbsaddr = va;
3797                                 cbeaddr = va;
3798                         }
3799                         sfmmu_unload_hmeregion_va(srdp, rid, va, readdr,
3800                             ttesz, &cbeaddr);
3801                         cnt++;
3802                         va = rhsaddr + (cnt << TTE_PAGE_SHIFT(ttesz));
3803                 }
3804                 if (cbeaddr != cbsaddr) {
3805                         ASSERT(cbeaddr > cbsaddr);
3806                         (*rcbfunc)(cbsaddr, cbeaddr, rsaddr,
3807                             rsz, rgnp->rgn_obj,
3808                             rgnp->rgn_objoff);
3809                 }
3810                 ttesz--;
3811         }
3812 }
3813 
3814 /*
3815  * Release one hardware address translation lock on the given address range.
3816  */
3817 void
3818 hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
3819 {
3820         struct hmehash_bucket *hmebp;
3821         hmeblk_tag hblktag;
3822         int hmeshift, hashno = 1;
3823         struct hme_blk *hmeblkp, *list = NULL;
3824         caddr_t endaddr;
3825 
3826         ASSERT(sfmmup != NULL);
3827         ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3828 
3829         ASSERT((sfmmup == ksfmmup) ||
3830             AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
3831         ASSERT((len & MMU_PAGEOFFSET) == 0);
3832         endaddr = addr + len;
3833         hblktag.htag_id = sfmmup;
3834         hblktag.htag_rid = SFMMU_INVALID_SHMERID;
3835 
3836         /*
3837          * Spitfire supports 4 page sizes.
3838          * Most pages are expected to be of the smallest page size (8K) and
3839          * these will not need to be rehashed. 64K pages also don't need to be
3840          * rehashed because an hmeblk spans 64K of address space. 512K pages
3841          * might need 1 rehash and and 4M pages might need 2 rehashes.
3842          */
3843         while (addr < endaddr) {
3844                 hmeshift = HME_HASH_SHIFT(hashno);
3845                 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
3846                 hblktag.htag_rehash = hashno;
3847                 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
3848 
3849                 SFMMU_HASH_LOCK(hmebp);
3850 
3851                 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
3852                 if (hmeblkp != NULL) {
3853                         ASSERT(!hmeblkp->hblk_shared);
3854                         /*
3855                          * If we encounter a shadow hmeblk then
3856                          * we know there are no valid hmeblks mapping
3857                          * this address at this size or larger.
3858                          * Just increment address by the smallest
3859                          * page size.
3860                          */
3861                         if (hmeblkp->hblk_shw_bit) {
3862                                 addr += MMU_PAGESIZE;
3863                         } else {
3864                                 addr = sfmmu_hblk_unlock(hmeblkp, addr,
3865                                     endaddr);
3866                         }
3867                         SFMMU_HASH_UNLOCK(hmebp);
3868                         hashno = 1;
3869                         continue;
3870                 }
3871                 SFMMU_HASH_UNLOCK(hmebp);
3872 
3873                 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
3874                         /*
3875                          * We have traversed the whole list and rehashed
3876                          * if necessary without finding the address to unlock
3877                          * which should never happen.
3878                          */
3879                         panic("sfmmu_unlock: addr not found. "
3880                             "addr %p hat %p", (void *)addr, (void *)sfmmup);
3881                 } else {
3882                         hashno++;
3883                 }
3884         }
3885 
3886         sfmmu_hblks_list_purge(&list, 0);
3887 }
3888 
3889 void
3890 hat_unlock_region(struct hat *sfmmup, caddr_t addr, size_t len,
3891     hat_region_cookie_t rcookie)
3892 {
3893         sf_srd_t *srdp;
3894         sf_region_t *rgnp;
3895         int ttesz;
3896         uint_t rid;
3897         caddr_t eaddr;
3898         caddr_t va;
3899         int hmeshift;
3900         hmeblk_tag hblktag;
3901         struct hmehash_bucket *hmebp;
3902         struct hme_blk *hmeblkp;
3903         struct hme_blk *pr_hblk;
3904         struct hme_blk *list;
3905 
3906         if (rcookie == HAT_INVALID_REGION_COOKIE) {
3907                 hat_unlock(sfmmup, addr, len);
3908                 return;
3909         }
3910 
3911         ASSERT(sfmmup != NULL);
3912         ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
3913         ASSERT(sfmmup != ksfmmup);
3914 
3915         srdp = sfmmup->sfmmu_srdp;
3916         rid = (uint_t)((uint64_t)rcookie);
3917         VERIFY3U(rid, <, SFMMU_MAX_HME_REGIONS);
3918         eaddr = addr + len;
3919         va = addr;
3920         list = NULL;
3921         rgnp = srdp->srd_hmergnp[rid];
3922         SFMMU_VALIDATE_HMERID(sfmmup, rid, addr, len);
3923 
3924         ASSERT(IS_P2ALIGNED(addr, TTEBYTES(rgnp->rgn_pgszc)));
3925         ASSERT(IS_P2ALIGNED(len, TTEBYTES(rgnp->rgn_pgszc)));
3926         if (rgnp->rgn_pgszc < HBLK_MIN_TTESZ) {
3927                 ttesz = HBLK_MIN_TTESZ;
3928         } else {
3929                 ttesz = rgnp->rgn_pgszc;
3930         }
3931         while (va < eaddr) {
3932                 while (ttesz < rgnp->rgn_pgszc &&
3933                     IS_P2ALIGNED(va, TTEBYTES(ttesz + 1))) {
3934                         ttesz++;
3935                 }
3936                 while (ttesz >= HBLK_MIN_TTESZ) {
3937                         if (!(rgnp->rgn_hmeflags & (1 << ttesz))) {
3938                                 ttesz--;
3939                                 continue;
3940                         }
3941                         hmeshift = HME_HASH_SHIFT(ttesz);
3942                         hblktag.htag_bspage = HME_HASH_BSPAGE(va, hmeshift);
3943                         hblktag.htag_rehash = ttesz;
3944                         hblktag.htag_rid = rid;
3945                         hblktag.htag_id = srdp;
3946                         hmebp = HME_HASH_FUNCTION(srdp, va, hmeshift);
3947                         SFMMU_HASH_LOCK(hmebp);
3948                         HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk,
3949                             &list);
3950                         if (hmeblkp == NULL) {
3951                                 SFMMU_HASH_UNLOCK(hmebp);
3952                                 ttesz--;
3953                                 continue;
3954                         }
3955                         ASSERT(hmeblkp->hblk_shared);
3956                         va = sfmmu_hblk_unlock(hmeblkp, va, eaddr);
3957                         ASSERT(va >= eaddr ||
3958                             IS_P2ALIGNED((uintptr_t)va, TTEBYTES(ttesz)));
3959                         SFMMU_HASH_UNLOCK(hmebp);
3960                         break;
3961                 }
3962                 if (ttesz < HBLK_MIN_TTESZ) {
3963                         panic("hat_unlock_region: addr not found "
3964                             "addr %p hat %p", (void *)va, (void *)sfmmup);
3965                 }
3966         }
3967         sfmmu_hblks_list_purge(&list, 0);
3968 }
3969 
3970 /*
3971  * Function to unlock a range of addresses in an hmeblk.  It returns the
3972  * next address that needs to be unlocked.
3973  * Should be called with the hash lock held.
3974  */
3975 static caddr_t
3976 sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
3977 {
3978         struct sf_hment *sfhme;
3979         tte_t tteold, ttemod;
3980         int ttesz, ret;
3981 
3982         ASSERT(in_hblk_range(hmeblkp, addr));
3983         ASSERT(hmeblkp->hblk_shw_bit == 0);
3984 
3985         endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
3986         ttesz = get_hblk_ttesz(hmeblkp);
3987 
3988         HBLKTOHME(sfhme, hmeblkp, addr);
3989         while (addr < endaddr) {
3990 readtte:
3991                 sfmmu_copytte(&sfhme->hme_tte, &tteold);
3992                 if (TTE_IS_VALID(&tteold)) {
3993 
3994                         ttemod = tteold;
3995 
3996                         ret = sfmmu_modifytte_try(&tteold, &ttemod,
3997                             &sfhme->hme_tte);
3998 
3999                         if (ret < 0)
4000                                 goto readtte;
4001 
4002                         if (hmeblkp->hblk_lckcnt == 0)
4003                                 panic("zero hblk lckcnt");
4004 
4005                         if (((uintptr_t)addr + TTEBYTES(ttesz)) >
4006                             (uintptr_t)endaddr)
4007                                 panic("can't unlock large tte");
4008 
4009                         ASSERT(hmeblkp->hblk_lckcnt > 0);
4010                         atomic_add_32(&hmeblkp->hblk_lckcnt, -1);
4011                         HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
4012                 } else {
4013                         panic("sfmmu_hblk_unlock: invalid tte");
4014                 }
4015                 addr += TTEBYTES(ttesz);
4016                 sfhme++;
4017         }
4018         return (addr);
4019 }
4020 
4021 /*
4022  * Physical Address Mapping Framework
4023  *
4024  * General rules:
4025  *
4026  * (1) Applies only to seg_kmem memory pages. To make things easier,
4027  *     seg_kpm addresses are also accepted by the routines, but nothing
4028  *     is done with them since by definition their PA mappings are static.
4029  * (2) hat_add_callback() may only be called while holding the page lock
4030  *     SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
4031  *     or passing HAC_PAGELOCK flag.
4032  * (3) prehandler() and posthandler() may not call hat_add_callback() or
4033  *     hat_delete_callback(), nor should they allocate memory. Post quiesce
4034  *     callbacks may not sleep or acquire adaptive mutex locks.
4035  * (4) Either prehandler() or posthandler() (but not both) may be specified
4036  *     as being NULL.  Specifying an errhandler() is optional.
4037  *
4038  * Details of using the framework:
4039  *
4040  * registering a callback (hat_register_callback())
4041  *
4042  *      Pass prehandler, posthandler, errhandler addresses
4043  *      as described below. If capture_cpus argument is nonzero,
4044  *      suspend callback to the prehandler will occur with CPUs
4045  *      captured and executing xc_loop() and CPUs will remain
4046  *      captured until after the posthandler suspend callback
4047  *      occurs.
4048  *
4049  * adding a callback (hat_add_callback())
4050  *
4051  *      as_pagelock();
4052  *      hat_add_callback();
4053  *      save returned pfn in private data structures or program registers;
4054  *      as_pageunlock();
4055  *
4056  * prehandler()
4057  *
4058  *      Stop all accesses by physical address to this memory page.
4059  *      Called twice: the first, PRESUSPEND, is a context safe to acquire
4060  *      adaptive locks. The second, SUSPEND, is called at high PIL with
4061  *      CPUs captured so adaptive locks may NOT be acquired (and all spin
4062  *      locks must be XCALL_PIL or higher locks).
4063  *
4064  *      May return the following errors:
4065  *              EIO:    A fatal error has occurred. This will result in panic.
4066  *              EAGAIN: The page cannot be suspended. This will fail the
4067  *                      relocation.
4068  *              0:      Success.
4069  *
4070  * posthandler()
4071  *
4072  *      Save new pfn in private data structures or program registers;
4073  *      not allowed to fail (non-zero return values will result in panic).
4074  *
4075  * errhandler()
4076  *
4077  *      called when an error occurs related to the callback.  Currently
4078  *      the only such error is HAT_CB_ERR_LEAKED which indicates that
4079  *      a page is being freed, but there are still outstanding callback(s)
4080  *      registered on the page.
4081  *
4082  * removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
4083  *
4084  *      stop using physical address
4085  *      hat_delete_callback();
4086  *
4087  */
4088 
4089 /*
4090  * Register a callback class.  Each subsystem should do this once and
4091  * cache the id_t returned for use in setting up and tearing down callbacks.
4092  *
4093  * There is no facility for removing callback IDs once they are created;
4094  * the "key" should be unique for each module, so in case a module is unloaded
4095  * and subsequently re-loaded, we can recycle the module's previous entry.
4096  */
4097 id_t
4098 hat_register_callback(int key,
4099         int (*prehandler)(caddr_t, uint_t, uint_t, void *),
4100         int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
4101         int (*errhandler)(caddr_t, uint_t, uint_t, void *),
4102         int capture_cpus)
4103 {
4104         id_t id;
4105 
4106         /*
4107          * Search the table for a pre-existing callback associated with
4108          * the identifier "key".  If one exists, we re-use that entry in
4109          * the table for this instance, otherwise we assign the next
4110          * available table slot.
4111          */
4112         for (id = 0; id < sfmmu_max_cb_id; id++) {
4113                 if (sfmmu_cb_table[id].key == key)
4114                         break;
4115         }
4116 
4117         if (id == sfmmu_max_cb_id) {
4118                 id = sfmmu_cb_nextid++;
4119                 if (id >= sfmmu_max_cb_id)
4120                         panic("hat_register_callback: out of callback IDs");
4121         }
4122 
4123         ASSERT(prehandler != NULL || posthandler != NULL);
4124 
4125         sfmmu_cb_table[id].key = key;
4126         sfmmu_cb_table[id].prehandler = prehandler;
4127         sfmmu_cb_table[id].posthandler = posthandler;
4128         sfmmu_cb_table[id].errhandler = errhandler;
4129         sfmmu_cb_table[id].capture_cpus = capture_cpus;
4130 
4131         return (id);
4132 }
4133 
4134 #define HAC_COOKIE_NONE (void *)-1
4135 
4136 /*
4137  * Add relocation callbacks to the specified addr/len which will be called
4138  * when relocating the associated page. See the description of pre and
4139  * posthandler above for more details.
4140  *
4141  * If HAC_PAGELOCK is included in flags, the underlying memory page is
4142  * locked internally so the caller must be able to deal with the callback
4143  * running even before this function has returned.  If HAC_PAGELOCK is not
4144  * set, it is assumed that the underlying memory pages are locked.
4145  *
4146  * Since the caller must track the individual page boundaries anyway,
4147  * we only allow a callback to be added to a single page (large
4148  * or small).  Thus [addr, addr + len) MUST be contained within a single
4149  * page.
4150  *
4151  * Registering multiple callbacks on the same [addr, addr+len) is supported,
4152  * _provided_that_ a unique parameter is specified for each callback.
4153  * If multiple callbacks are registered on the same range the callback will
4154  * be invoked with each unique parameter. Registering the same callback with
4155  * the same argument more than once will result in corrupted kernel state.
4156  *
4157  * Returns the pfn of the underlying kernel page in *rpfn
4158  * on success, or PFN_INVALID on failure.
4159  *
4160  * cookiep (if passed) provides storage space for an opaque cookie
4161  * to return later to hat_delete_callback(). This cookie makes the callback
4162  * deletion significantly quicker by avoiding a potentially lengthy hash
4163  * search.
4164  *
4165  * Returns values:
4166  *    0:      success
4167  *    ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
4168  *    EINVAL: callback ID is not valid
4169  *    ENXIO:  ["vaddr", "vaddr" + len) is not mapped in the kernel's address
4170  *            space
4171  *    ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
4172  */
4173 int
4174 hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
4175         void *pvt, pfn_t *rpfn, void **cookiep)
4176 {
4177         struct          hmehash_bucket *hmebp;
4178         hmeblk_tag      hblktag;
4179         struct hme_blk  *hmeblkp;
4180         int             hmeshift, hashno;
4181         caddr_t         saddr, eaddr, baseaddr;
4182         struct pa_hment *pahmep;
4183         struct sf_hment *sfhmep, *osfhmep;
4184         kmutex_t        *pml;
4185         tte_t           tte;
4186         page_t          *pp;
4187         vnode_t         *vp;
4188         u_offset_t      off;
4189         pfn_t           pfn;
4190         int             kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
4191         int             locked = 0;
4192 
4193         /*
4194          * For KPM mappings, just return the physical address since we
4195          * don't need to register any callbacks.
4196          */
4197         if (IS_KPM_ADDR(vaddr)) {
4198                 uint64_t paddr;
4199                 SFMMU_KPM_VTOP(vaddr, paddr);
4200                 *rpfn = btop(paddr);
4201                 if (cookiep != NULL)
4202                         *cookiep = HAC_COOKIE_NONE;
4203                 return (0);
4204         }
4205 
4206         if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
4207                 *rpfn = PFN_INVALID;
4208                 return (EINVAL);
4209         }
4210 
4211         if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
4212                 *rpfn = PFN_INVALID;
4213                 return (ENOMEM);
4214         }
4215 
4216         sfhmep = &pahmep->sfment;
4217 
4218         saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4219         eaddr = saddr + len;
4220 
4221 rehash:
4222         /* Find the mapping(s) for this page */
4223         for (hashno = TTE64K, hmeblkp = NULL;
4224             hmeblkp == NULL && hashno <= mmu_hashcnt;
4225             hashno++) {
4226                 hmeshift = HME_HASH_SHIFT(hashno);
4227                 hblktag.htag_id = ksfmmup;
4228                 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4229                 hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4230                 hblktag.htag_rehash = hashno;
4231                 hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4232 
4233                 SFMMU_HASH_LOCK(hmebp);
4234 
4235                 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4236 
4237                 if (hmeblkp == NULL)
4238                         SFMMU_HASH_UNLOCK(hmebp);
4239         }
4240 
4241         if (hmeblkp == NULL) {
4242                 kmem_cache_free(pa_hment_cache, pahmep);
4243                 *rpfn = PFN_INVALID;
4244                 return (ENXIO);
4245         }
4246 
4247         ASSERT(!hmeblkp->hblk_shared);
4248 
4249         HBLKTOHME(osfhmep, hmeblkp, saddr);
4250         sfmmu_copytte(&osfhmep->hme_tte, &tte);
4251 
4252         if (!TTE_IS_VALID(&tte)) {
4253                 SFMMU_HASH_UNLOCK(hmebp);
4254                 kmem_cache_free(pa_hment_cache, pahmep);
4255                 *rpfn = PFN_INVALID;
4256                 return (ENXIO);
4257         }
4258 
4259         /*
4260          * Make sure the boundaries for the callback fall within this
4261          * single mapping.
4262          */
4263         baseaddr = (caddr_t)get_hblk_base(hmeblkp);
4264         ASSERT(saddr >= baseaddr);
4265         if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
4266                 SFMMU_HASH_UNLOCK(hmebp);
4267                 kmem_cache_free(pa_hment_cache, pahmep);
4268                 *rpfn = PFN_INVALID;
4269                 return (ERANGE);
4270         }
4271 
4272         pfn = sfmmu_ttetopfn(&tte, vaddr);
4273 
4274         /*
4275          * The pfn may not have a page_t underneath in which case we
4276          * just return it. This can happen if we are doing I/O to a
4277          * static portion of the kernel's address space, for instance.
4278          */
4279         pp = osfhmep->hme_page;
4280         if (pp == NULL) {
4281                 SFMMU_HASH_UNLOCK(hmebp);
4282                 kmem_cache_free(pa_hment_cache, pahmep);
4283                 *rpfn = pfn;
4284                 if (cookiep)
4285                         *cookiep = HAC_COOKIE_NONE;
4286                 return (0);
4287         }
4288         ASSERT(pp == PP_PAGEROOT(pp));
4289 
4290         vp = pp->p_vnode;
4291         off = pp->p_offset;
4292 
4293         pml = sfmmu_mlist_enter(pp);
4294 
4295         if (flags & HAC_PAGELOCK) {
4296                 if (!page_trylock(pp, SE_SHARED)) {
4297                         /*
4298                          * Somebody is holding SE_EXCL lock. Might
4299                          * even be hat_page_relocate(). Drop all
4300                          * our locks, lookup the page in &kvp, and
4301                          * retry. If it doesn't exist in &kvp and &zvp,
4302                          * then we must be dealing with a kernel mapped
4303                          * page which doesn't actually belong to
4304                          * segkmem so we punt.
4305                          */
4306                         sfmmu_mlist_exit(pml);
4307                         SFMMU_HASH_UNLOCK(hmebp);
4308                         pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4309 
4310                         /* check zvp before giving up */
4311                         if (pp == NULL)
4312                                 pp = page_lookup(&zvp, (u_offset_t)saddr,
4313                                     SE_SHARED);
4314 
4315                         /* Okay, we didn't find it, give up */
4316                         if (pp == NULL) {
4317                                 kmem_cache_free(pa_hment_cache, pahmep);
4318                                 *rpfn = pfn;
4319                                 if (cookiep)
4320                                         *cookiep = HAC_COOKIE_NONE;
4321                                 return (0);
4322                         }
4323                         page_unlock(pp);
4324                         goto rehash;
4325                 }
4326                 locked = 1;
4327         }
4328 
4329         if (!PAGE_LOCKED(pp) && !panicstr)
4330                 panic("hat_add_callback: page 0x%p not locked", (void *)pp);
4331 
4332         if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4333             pp->p_offset != off) {
4334                 /*
4335                  * The page moved before we got our hands on it.  Drop
4336                  * all the locks and try again.
4337                  */
4338                 ASSERT((flags & HAC_PAGELOCK) != 0);
4339                 sfmmu_mlist_exit(pml);
4340                 SFMMU_HASH_UNLOCK(hmebp);
4341                 page_unlock(pp);
4342                 locked = 0;
4343                 goto rehash;
4344         }
4345 
4346         if (!VN_ISKAS(vp)) {
4347                 /*
4348                  * This is not a segkmem page but another page which
4349                  * has been kernel mapped. It had better have at least
4350                  * a share lock on it. Return the pfn.
4351                  */
4352                 sfmmu_mlist_exit(pml);
4353                 SFMMU_HASH_UNLOCK(hmebp);
4354                 if (locked)
4355                         page_unlock(pp);
4356                 kmem_cache_free(pa_hment_cache, pahmep);
4357                 ASSERT(PAGE_LOCKED(pp));
4358                 *rpfn = pfn;
4359                 if (cookiep)
4360                         *cookiep = HAC_COOKIE_NONE;
4361                 return (0);
4362         }
4363 
4364         /*
4365          * Setup this pa_hment and link its embedded dummy sf_hment into
4366          * the mapping list.
4367          */
4368         pp->p_share++;
4369         pahmep->cb_id = callback_id;
4370         pahmep->addr = vaddr;
4371         pahmep->len = len;
4372         pahmep->refcnt = 1;
4373         pahmep->flags = 0;
4374         pahmep->pvt = pvt;
4375 
4376         sfhmep->hme_tte.ll = 0;
4377         sfhmep->hme_data = pahmep;
4378         sfhmep->hme_prev = osfhmep;
4379         sfhmep->hme_next = osfhmep->hme_next;
4380 
4381         if (osfhmep->hme_next)
4382                 osfhmep->hme_next->hme_prev = sfhmep;
4383 
4384         osfhmep->hme_next = sfhmep;
4385 
4386         sfmmu_mlist_exit(pml);
4387         SFMMU_HASH_UNLOCK(hmebp);
4388 
4389         if (locked)
4390                 page_unlock(pp);
4391 
4392         *rpfn = pfn;
4393         if (cookiep)
4394                 *cookiep = (void *)pahmep;
4395 
4396         return (0);
4397 }
4398 
4399 /*
4400  * Remove the relocation callbacks from the specified addr/len.
4401  */
4402 void
4403 hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
4404         void *cookie)
4405 {
4406         struct          hmehash_bucket *hmebp;
4407         hmeblk_tag      hblktag;
4408         struct hme_blk  *hmeblkp;
4409         int             hmeshift, hashno;
4410         caddr_t         saddr;
4411         struct pa_hment *pahmep;
4412         struct sf_hment *sfhmep, *osfhmep;
4413         kmutex_t        *pml;
4414         tte_t           tte;
4415         page_t          *pp;
4416         vnode_t         *vp;
4417         u_offset_t      off;
4418         int             locked = 0;
4419 
4420         /*
4421          * If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
4422          * remove so just return.
4423          */
4424         if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
4425                 return;
4426 
4427         saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
4428 
4429 rehash:
4430         /* Find the mapping(s) for this page */
4431         for (hashno = TTE64K, hmeblkp = NULL;
4432             hmeblkp == NULL && hashno <= mmu_hashcnt;
4433             hashno++) {
4434                 hmeshift = HME_HASH_SHIFT(hashno);
4435                 hblktag.htag_id = ksfmmup;
4436                 hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4437                 hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
4438                 hblktag.htag_rehash = hashno;
4439                 hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
4440 
4441                 SFMMU_HASH_LOCK(hmebp);
4442 
4443                 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
4444 
4445                 if (hmeblkp == NULL)
4446                         SFMMU_HASH_UNLOCK(hmebp);
4447         }
4448 
4449         if (hmeblkp == NULL)
4450                 return;
4451 
4452         ASSERT(!hmeblkp->hblk_shared);
4453 
4454         HBLKTOHME(osfhmep, hmeblkp, saddr);
4455 
4456         sfmmu_copytte(&osfhmep->hme_tte, &tte);
4457         if (!TTE_IS_VALID(&tte)) {
4458                 SFMMU_HASH_UNLOCK(hmebp);
4459                 return;
4460         }
4461 
4462         pp = osfhmep->hme_page;
4463         if (pp == NULL) {
4464                 SFMMU_HASH_UNLOCK(hmebp);
4465                 ASSERT(cookie == NULL);
4466                 return;
4467         }
4468 
4469         vp = pp->p_vnode;
4470         off = pp->p_offset;
4471 
4472         pml = sfmmu_mlist_enter(pp);
4473 
4474         if (flags & HAC_PAGELOCK) {
4475                 if (!page_trylock(pp, SE_SHARED)) {
4476                         /*
4477                          * Somebody is holding SE_EXCL lock. Might
4478                          * even be hat_page_relocate(). Drop all
4479                          * our locks, lookup the page in &kvp, and
4480                          * retry. If it doesn't exist in &kvp and &zvp,
4481                          * then we must be dealing with a kernel mapped
4482                          * page which doesn't actually belong to
4483                          * segkmem so we punt.
4484                          */
4485                         sfmmu_mlist_exit(pml);
4486                         SFMMU_HASH_UNLOCK(hmebp);
4487                         pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
4488                         /* check zvp before giving up */
4489                         if (pp == NULL)
4490                                 pp = page_lookup(&zvp, (u_offset_t)saddr,
4491                                     SE_SHARED);
4492 
4493                         if (pp == NULL) {
4494                                 ASSERT(cookie == NULL);
4495                                 return;
4496                         }
4497                         page_unlock(pp);
4498                         goto rehash;
4499                 }
4500                 locked = 1;
4501         }
4502 
4503         ASSERT(PAGE_LOCKED(pp));
4504 
4505         if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
4506             pp->p_offset != off) {
4507                 /*
4508                  * The page moved before we got our hands on it.  Drop
4509                  * all the locks and try again.
4510                  */
4511                 ASSERT((flags & HAC_PAGELOCK) != 0);
4512                 sfmmu_mlist_exit(pml);
4513                 SFMMU_HASH_UNLOCK(hmebp);
4514                 page_unlock(pp);
4515                 locked = 0;
4516                 goto rehash;
4517         }
4518 
4519         if (!VN_ISKAS(vp)) {
4520                 /*
4521                  * This is not a segkmem page but another page which
4522                  * has been kernel mapped.
4523                  */
4524                 sfmmu_mlist_exit(pml);
4525                 SFMMU_HASH_UNLOCK(hmebp);
4526                 if (locked)
4527                         page_unlock(pp);
4528                 ASSERT(cookie == NULL);
4529                 return;
4530         }
4531 
4532         if (cookie != NULL) {
4533                 pahmep = (struct pa_hment *)cookie;
4534                 sfhmep = &pahmep->sfment;
4535         } else {
4536                 for (sfhmep = pp->p_mapping; sfhmep != NULL;
4537                     sfhmep = sfhmep->hme_next) {
4538 
4539                         /*
4540                          * skip va<->pa mappings
4541                          */
4542                         if (!IS_PAHME(sfhmep))
4543                                 continue;
4544 
4545                         pahmep = sfhmep->hme_data;
4546                         ASSERT(pahmep != NULL);
4547 
4548                         /*
4549                          * if pa_hment matches, remove it
4550                          */
4551                         if ((pahmep->pvt == pvt) &&
4552                             (pahmep->addr == vaddr) &&
4553                             (pahmep->len == len)) {
4554                                 break;
4555                         }
4556                 }
4557         }
4558 
4559         if (sfhmep == NULL) {
4560                 if (!panicstr) {
4561                         panic("hat_delete_callback: pa_hment not found, pp %p",
4562                             (void *)pp);
4563                 }
4564                 return;
4565         }
4566 
4567         /*
4568          * Note: at this point a valid kernel mapping must still be
4569          * present on this page.
4570          */
4571         pp->p_share--;
4572         if (pp->p_share <= 0)
4573                 panic("hat_delete_callback: zero p_share");
4574 
4575         if (--pahmep->refcnt == 0) {
4576                 if (pahmep->flags != 0)
4577                         panic("hat_delete_callback: pa_hment is busy");
4578 
4579                 /*
4580                  * Remove sfhmep from the mapping list for the page.
4581                  */
4582                 if (sfhmep->hme_prev) {
4583                         sfhmep->hme_prev->hme_next = sfhmep->hme_next;
4584                 } else {
4585                         pp->p_mapping = sfhmep->hme_next;
4586                 }
4587 
4588                 if (sfhmep->hme_next)
4589                         sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
4590 
4591                 sfmmu_mlist_exit(pml);
4592                 SFMMU_HASH_UNLOCK(hmebp);
4593 
4594                 if (locked)
4595                         page_unlock(pp);
4596 
4597                 kmem_cache_free(pa_hment_cache, pahmep);
4598                 return;
4599         }
4600 
4601         sfmmu_mlist_exit(pml);
4602         SFMMU_HASH_UNLOCK(hmebp);
4603         if (locked)
4604                 page_unlock(pp);
4605 }
4606 
4607 /*
4608  * hat_probe returns 1 if the translation for the address 'addr' is
4609  * loaded, zero otherwise.
4610  *
4611  * hat_probe should be used only for advisorary purposes because it may
4612  * occasionally return the wrong value. The implementation must guarantee that
4613  * returning the wrong value is a very rare event. hat_probe is used
4614  * to implement optimizations in the segment drivers.
4615  *
4616  */
4617 int
4618 hat_probe(struct hat *sfmmup, caddr_t addr)
4619 {
4620         pfn_t pfn;
4621         tte_t tte;
4622 
4623         ASSERT(sfmmup != NULL);
4624         ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4625 
4626         ASSERT((sfmmup == ksfmmup) ||
4627             AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4628 
4629         if (sfmmup == ksfmmup) {
4630                 while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
4631                     == PFN_SUSPENDED) {
4632                         sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
4633                 }
4634         } else {
4635                 pfn = sfmmu_uvatopfn(addr, sfmmup, NULL);
4636         }
4637 
4638         if (pfn != PFN_INVALID)
4639                 return (1);
4640         else
4641                 return (0);
4642 }
4643 
4644 ssize_t
4645 hat_getpagesize(struct hat *sfmmup, caddr_t addr)
4646 {
4647         tte_t tte;
4648 
4649         ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4650 
4651         if (sfmmup == ksfmmup) {
4652                 if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4653                         return (-1);
4654                 }
4655         } else {
4656                 if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4657                         return (-1);
4658                 }
4659         }
4660 
4661         ASSERT(TTE_IS_VALID(&tte));
4662         return (TTEBYTES(TTE_CSZ(&tte)));
4663 }
4664 
4665 uint_t
4666 hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
4667 {
4668         tte_t tte;
4669 
4670         ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
4671 
4672         if (sfmmup == ksfmmup) {
4673                 if (sfmmu_vatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4674                         tte.ll = 0;
4675                 }
4676         } else {
4677                 if (sfmmu_uvatopfn(addr, sfmmup, &tte) == PFN_INVALID) {
4678                         tte.ll = 0;
4679                 }
4680         }
4681         if (TTE_IS_VALID(&tte)) {
4682                 *attr = sfmmu_ptov_attr(&tte);
4683                 return (0);
4684         }
4685         *attr = 0;
4686         return ((uint_t)0xffffffff);
4687 }
4688 
4689 /*
4690  * Enables more attributes on specified address range (ie. logical OR)
4691  */
4692 void
4693 hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4694 {
4695         if (hat->sfmmu_xhat_provider) {
4696                 XHAT_SETATTR(hat, addr, len, attr);
4697                 return;
4698         } else {
4699                 /*
4700                  * This must be a CPU HAT. If the address space has
4701                  * XHATs attached, change attributes for all of them,
4702                  * just in case
4703                  */
4704                 ASSERT(hat->sfmmu_as != NULL);
4705                 if (hat->sfmmu_as->a_xhat != NULL)
4706                         xhat_setattr_all(hat->sfmmu_as, addr, len, attr);
4707         }
4708 
4709         sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
4710 }
4711 
4712 /*
4713  * Assigns attributes to the specified address range.  All the attributes
4714  * are specified.
4715  */
4716 void
4717 hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4718 {
4719         if (hat->sfmmu_xhat_provider) {
4720                 XHAT_CHGATTR(hat, addr, len, attr);
4721                 return;
4722         } else {
4723                 /*
4724                  * This must be a CPU HAT. If the address space has
4725                  * XHATs attached, change attributes for all of them,
4726                  * just in case
4727                  */
4728                 ASSERT(hat->sfmmu_as != NULL);
4729                 if (hat->sfmmu_as->a_xhat != NULL)
4730                         xhat_chgattr_all(hat->sfmmu_as, addr, len, attr);
4731         }
4732 
4733         sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
4734 }
4735 
4736 /*
4737  * Remove attributes on the specified address range (ie. loginal NAND)
4738  */
4739 void
4740 hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
4741 {
4742         if (hat->sfmmu_xhat_provider) {
4743                 XHAT_CLRATTR(hat, addr, len, attr);
4744                 return;
4745         } else {
4746                 /*
4747                  * This must be a CPU HAT. If the address space has
4748                  * XHATs attached, change attributes for all of them,
4749                  * just in case
4750                  */
4751                 ASSERT(hat->sfmmu_as != NULL);
4752                 if (hat->sfmmu_as->a_xhat != NULL)
4753                         xhat_clrattr_all(hat->sfmmu_as, addr, len, attr);
4754         }
4755 
4756         sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
4757 }
4758 
4759 /*
4760  * Change attributes on an address range to that specified by attr and mode.
4761  */
4762 static void
4763 sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
4764         int mode)
4765 {
4766         struct hmehash_bucket *hmebp;
4767         hmeblk_tag hblktag;
4768         int hmeshift, hashno = 1;
4769         struct hme_blk *hmeblkp, *list = NULL;
4770         caddr_t endaddr;
4771         cpuset_t cpuset;
4772         demap_range_t dmr;
4773 
4774         CPUSET_ZERO(cpuset);
4775 
4776         ASSERT((sfmmup == ksfmmup) ||
4777             AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
4778         ASSERT((len & MMU_PAGEOFFSET) == 0);
4779         ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
4780 
4781         if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
4782             ((addr + len) > (caddr_t)USERLIMIT)) {
4783                 panic("user addr %p in kernel space",
4784                     (void *)addr);
4785         }
4786 
4787         endaddr = addr + len;
4788         hblktag.htag_id = sfmmup;
4789         hblktag.htag_rid = SFMMU_INVALID_SHMERID;
4790         DEMAP_RANGE_INIT(sfmmup, &dmr);
4791 
4792         while (addr < endaddr) {
4793                 hmeshift = HME_HASH_SHIFT(hashno);
4794                 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
4795                 hblktag.htag_rehash = hashno;
4796                 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
4797 
4798                 SFMMU_HASH_LOCK(hmebp);
4799 
4800                 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
4801                 if (hmeblkp != NULL) {
4802                         ASSERT(!hmeblkp->hblk_shared);
4803                         /*
4804                          * We've encountered a shadow hmeblk so skip the range
4805                          * of the next smaller mapping size.
4806                          */
4807                         if (hmeblkp->hblk_shw_bit) {
4808                                 ASSERT(sfmmup != ksfmmup);
4809                                 ASSERT(hashno > 1);
4810                                 addr = (caddr_t)P2END((uintptr_t)addr,
4811                                     TTEBYTES(hashno - 1));
4812                         } else {
4813                                 addr = sfmmu_hblk_chgattr(sfmmup,
4814                                     hmeblkp, addr, endaddr, &dmr, attr, mode);
4815                         }
4816                         SFMMU_HASH_UNLOCK(hmebp);
4817                         hashno = 1;
4818                         continue;
4819                 }
4820                 SFMMU_HASH_UNLOCK(hmebp);
4821 
4822                 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
4823                         /*
4824                          * We have traversed the whole list and rehashed
4825                          * if necessary without finding the address to chgattr.
4826                          * This is ok, so we increment the address by the
4827                          * smallest hmeblk range for kernel mappings or for
4828                          * user mappings with no large pages, and the largest
4829                          * hmeblk range, to account for shadow hmeblks, for
4830                          * user mappings with large pages and continue.
4831                          */
4832                         if (sfmmup == ksfmmup)
4833                                 addr = (caddr_t)P2END((uintptr_t)addr,
4834                                     TTEBYTES(1));
4835                         else
4836                                 addr = (caddr_t)P2END((uintptr_t)addr,
4837                                     TTEBYTES(hashno));
4838                         hashno = 1;
4839                 } else {
4840                         hashno++;
4841                 }
4842         }
4843 
4844         sfmmu_hblks_list_purge(&list, 0);
4845         DEMAP_RANGE_FLUSH(&dmr);
4846         cpuset = sfmmup->sfmmu_cpusran;
4847         xt_sync(cpuset);
4848 }
4849 
4850 /*
4851  * This function chgattr on a range of addresses in an hmeblk.  It returns the
4852  * next addres that needs to be chgattr.
4853  * It should be called with the hash lock held.
4854  * XXX It should be possible to optimize chgattr by not flushing every time but
4855  * on the other hand:
4856  * 1. do one flush crosscall.
4857  * 2. only flush if we are increasing permissions (make sure this will work)
4858  */
4859 static caddr_t
4860 sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
4861         caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
4862 {
4863         tte_t tte, tteattr, tteflags, ttemod;
4864         struct sf_hment *sfhmep;
4865         int ttesz;
4866         struct page *pp = NULL;
4867         kmutex_t *pml, *pmtx;
4868         int ret;
4869         int use_demap_range;
4870 #if defined(SF_ERRATA_57)
4871         int check_exec;
4872 #endif
4873 
4874         ASSERT(in_hblk_range(hmeblkp, addr));
4875         ASSERT(hmeblkp->hblk_shw_bit == 0);
4876         ASSERT(!hmeblkp->hblk_shared);
4877 
4878         endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
4879         ttesz = get_hblk_ttesz(hmeblkp);
4880 
4881         /*
4882          * Flush the current demap region if addresses have been
4883          * skipped or the page size doesn't match.
4884          */
4885         use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
4886         if (use_demap_range) {
4887                 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
4888         } else if (dmrp != NULL) {
4889                 DEMAP_RANGE_FLUSH(dmrp);
4890         }
4891 
4892         tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
4893 #if defined(SF_ERRATA_57)
4894         check_exec = (sfmmup != ksfmmup) &&
4895             AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
4896             TTE_IS_EXECUTABLE(&tteattr);
4897 #endif
4898         HBLKTOHME(sfhmep, hmeblkp, addr);
4899         while (addr < endaddr) {
4900                 sfmmu_copytte(&sfhmep->hme_tte, &tte);
4901                 if (TTE_IS_VALID(&tte)) {
4902                         if ((tte.ll & tteflags.ll) == tteattr.ll) {
4903                                 /*
4904                                  * if the new attr is the same as old
4905                                  * continue
4906                                  */
4907                                 goto next_addr;
4908                         }
4909                         if (!TTE_IS_WRITABLE(&tteattr)) {
4910                                 /*
4911                                  * make sure we clear hw modify bit if we
4912                                  * removing write protections
4913                                  */
4914                                 tteflags.tte_intlo |= TTE_HWWR_INT;
4915                         }
4916 
4917                         pml = NULL;
4918                         pp = sfhmep->hme_page;
4919                         if (pp) {
4920                                 pml = sfmmu_mlist_enter(pp);
4921                         }
4922 
4923                         if (pp != sfhmep->hme_page) {
4924                                 /*
4925                                  * tte must have been unloaded.
4926                                  */
4927                                 ASSERT(pml);
4928                                 sfmmu_mlist_exit(pml);
4929                                 continue;
4930                         }
4931 
4932                         ASSERT(pp == NULL || sfmmu_mlist_held(pp));
4933 
4934                         ttemod = tte;
4935                         ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
4936                         ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
4937 
4938 #if defined(SF_ERRATA_57)
4939                         if (check_exec && addr < errata57_limit)
4940                                 ttemod.tte_exec_perm = 0;
4941 #endif
4942                         ret = sfmmu_modifytte_try(&tte, &ttemod,
4943                             &sfhmep->hme_tte);
4944 
4945                         if (ret < 0) {
4946                                 /* tte changed underneath us */
4947                                 if (pml) {
4948                                         sfmmu_mlist_exit(pml);
4949                                 }
4950                                 continue;
4951                         }
4952 
4953                         if (tteflags.tte_intlo & TTE_HWWR_INT) {
4954                                 /*
4955                                  * need to sync if we are clearing modify bit.
4956                                  */
4957                                 sfmmu_ttesync(sfmmup, addr, &tte, pp);
4958                         }
4959 
4960                         if (pp && PP_ISRO(pp)) {
4961                                 if (tteattr.tte_intlo & TTE_WRPRM_INT) {
4962                                         pmtx = sfmmu_page_enter(pp);
4963                                         PP_CLRRO(pp);
4964                                         sfmmu_page_exit(pmtx);
4965                                 }
4966                         }
4967 
4968                         if (ret > 0 && use_demap_range) {
4969                                 DEMAP_RANGE_MARKPG(dmrp, addr);
4970                         } else if (ret > 0) {
4971                                 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
4972                         }
4973 
4974                         if (pml) {
4975                                 sfmmu_mlist_exit(pml);
4976                         }
4977                 }
4978 next_addr:
4979                 addr += TTEBYTES(ttesz);
4980                 sfhmep++;
4981                 DEMAP_RANGE_NEXTPG(dmrp);
4982         }
4983         return (addr);
4984 }
4985 
4986 /*
4987  * This routine converts virtual attributes to physical ones.  It will
4988  * update the tteflags field with the tte mask corresponding to the attributes
4989  * affected and it returns the new attributes.  It will also clear the modify
4990  * bit if we are taking away write permission.  This is necessary since the
4991  * modify bit is the hardware permission bit and we need to clear it in order
4992  * to detect write faults.
4993  */
4994 static uint64_t
4995 sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
4996 {
4997         tte_t ttevalue;
4998 
4999         ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
5000 
5001         switch (mode) {
5002         case SFMMU_CHGATTR:
5003                 /* all attributes specified */
5004                 ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
5005                 ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
5006                 ttemaskp->tte_inthi = TTEINTHI_ATTR;
5007                 ttemaskp->tte_intlo = TTEINTLO_ATTR;
5008                 break;
5009         case SFMMU_SETATTR:
5010                 ASSERT(!(attr & ~HAT_PROT_MASK));
5011                 ttemaskp->ll = 0;
5012                 ttevalue.ll = 0;
5013                 /*
5014                  * a valid tte implies exec and read for sfmmu
5015                  * so no need to do anything about them.
5016                  * since priviledged access implies user access
5017                  * PROT_USER doesn't make sense either.
5018                  */
5019                 if (attr & PROT_WRITE) {
5020                         ttemaskp->tte_intlo |= TTE_WRPRM_INT;
5021                         ttevalue.tte_intlo |= TTE_WRPRM_INT;
5022                 }
5023                 break;
5024         case SFMMU_CLRATTR:
5025                 /* attributes will be nand with current ones */
5026                 if (attr & ~(PROT_WRITE | PROT_USER)) {
5027                         panic("sfmmu: attr %x not supported", attr);
5028                 }
5029                 ttemaskp->ll = 0;
5030                 ttevalue.ll = 0;
5031                 if (attr & PROT_WRITE) {
5032                         /* clear both writable and modify bit */
5033                         ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
5034                 }
5035                 if (attr & PROT_USER) {
5036                         ttemaskp->tte_intlo |= TTE_PRIV_INT;
5037                         ttevalue.tte_intlo |= TTE_PRIV_INT;
5038                 }
5039                 break;
5040         default:
5041                 panic("sfmmu_vtop_attr: bad mode %x", mode);
5042         }
5043         ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
5044         return (ttevalue.ll);
5045 }
5046 
5047 static uint_t
5048 sfmmu_ptov_attr(tte_t *ttep)
5049 {
5050         uint_t attr;
5051 
5052         ASSERT(TTE_IS_VALID(ttep));
5053 
5054         attr = PROT_READ;
5055 
5056         if (TTE_IS_WRITABLE(ttep)) {
5057                 attr |= PROT_WRITE;
5058         }
5059         if (TTE_IS_EXECUTABLE(ttep)) {
5060                 attr |= PROT_EXEC;
5061         }
5062         if (!TTE_IS_PRIVILEGED(ttep)) {
5063                 attr |= PROT_USER;
5064         }
5065         if (TTE_IS_NFO(ttep)) {
5066                 attr |= HAT_NOFAULT;
5067         }
5068         if (TTE_IS_NOSYNC(ttep)) {
5069                 attr |= HAT_NOSYNC;
5070         }
5071         if (TTE_IS_SIDEFFECT(ttep)) {
5072                 attr |= SFMMU_SIDEFFECT;
5073         }
5074         if (!TTE_IS_VCACHEABLE(ttep)) {
5075                 attr |= SFMMU_UNCACHEVTTE;
5076         }
5077         if (!TTE_IS_PCACHEABLE(ttep)) {
5078                 attr |= SFMMU_UNCACHEPTTE;
5079         }
5080         return (attr);
5081 }
5082 
5083 /*
5084  * hat_chgprot is a deprecated hat call.  New segment drivers
5085  * should store all attributes and use hat_*attr calls.
5086  *
5087  * Change the protections in the virtual address range
5088  * given to the specified virtual protection.  If vprot is ~PROT_WRITE,
5089  * then remove write permission, leaving the other
5090  * permissions unchanged.  If vprot is ~PROT_USER, remove user permissions.
5091  *
5092  */
5093 void
5094 hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
5095 {
5096         struct hmehash_bucket *hmebp;
5097         hmeblk_tag hblktag;
5098         int hmeshift, hashno = 1;
5099         struct hme_blk *hmeblkp, *list = NULL;
5100         caddr_t endaddr;
5101         cpuset_t cpuset;
5102         demap_range_t dmr;
5103 
5104         ASSERT((len & MMU_PAGEOFFSET) == 0);
5105         ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
5106 
5107         if (sfmmup->sfmmu_xhat_provider) {
5108                 XHAT_CHGPROT(sfmmup, addr, len, vprot);
5109                 return;
5110         } else {
5111                 /*
5112                  * This must be a CPU HAT. If the address space has
5113                  * XHATs attached, change attributes for all of them,
5114                  * just in case
5115                  */
5116                 ASSERT(sfmmup->sfmmu_as != NULL);
5117                 if (sfmmup->sfmmu_as->a_xhat != NULL)
5118                         xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot);
5119         }
5120 
5121         CPUSET_ZERO(cpuset);
5122 
5123         if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
5124             ((addr + len) > (caddr_t)USERLIMIT)) {
5125                 panic("user addr %p vprot %x in kernel space",
5126                     (void *)addr, vprot);
5127         }
5128         endaddr = addr + len;
5129         hblktag.htag_id = sfmmup;
5130         hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5131         DEMAP_RANGE_INIT(sfmmup, &dmr);
5132 
5133         while (addr < endaddr) {
5134                 hmeshift = HME_HASH_SHIFT(hashno);
5135                 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5136                 hblktag.htag_rehash = hashno;
5137                 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5138 
5139                 SFMMU_HASH_LOCK(hmebp);
5140 
5141                 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
5142                 if (hmeblkp != NULL) {
5143                         ASSERT(!hmeblkp->hblk_shared);
5144                         /*
5145                          * We've encountered a shadow hmeblk so skip the range
5146                          * of the next smaller mapping size.
5147                          */
5148                         if (hmeblkp->hblk_shw_bit) {
5149                                 ASSERT(sfmmup != ksfmmup);
5150                                 ASSERT(hashno > 1);
5151                                 addr = (caddr_t)P2END((uintptr_t)addr,
5152                                     TTEBYTES(hashno - 1));
5153                         } else {
5154                                 addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
5155                                     addr, endaddr, &dmr, vprot);
5156                         }
5157                         SFMMU_HASH_UNLOCK(hmebp);
5158                         hashno = 1;
5159                         continue;
5160                 }
5161                 SFMMU_HASH_UNLOCK(hmebp);
5162 
5163                 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
5164                         /*
5165                          * We have traversed the whole list and rehashed
5166                          * if necessary without finding the address to chgprot.
5167                          * This is ok so we increment the address by the
5168                          * smallest hmeblk range for kernel mappings and the
5169                          * largest hmeblk range, to account for shadow hmeblks,
5170                          * for user mappings and continue.
5171                          */
5172                         if (sfmmup == ksfmmup)
5173                                 addr = (caddr_t)P2END((uintptr_t)addr,
5174                                     TTEBYTES(1));
5175                         else
5176                                 addr = (caddr_t)P2END((uintptr_t)addr,
5177                                     TTEBYTES(hashno));
5178                         hashno = 1;
5179                 } else {
5180                         hashno++;
5181                 }
5182         }
5183 
5184         sfmmu_hblks_list_purge(&list, 0);
5185         DEMAP_RANGE_FLUSH(&dmr);
5186         cpuset = sfmmup->sfmmu_cpusran;
5187         xt_sync(cpuset);
5188 }
5189 
5190 /*
5191  * This function chgprots a range of addresses in an hmeblk.  It returns the
5192  * next addres that needs to be chgprot.
5193  * It should be called with the hash lock held.
5194  * XXX It shold be possible to optimize chgprot by not flushing every time but
5195  * on the other hand:
5196  * 1. do one flush crosscall.
5197  * 2. only flush if we are increasing permissions (make sure this will work)
5198  */
5199 static caddr_t
5200 sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5201         caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
5202 {
5203         uint_t pprot;
5204         tte_t tte, ttemod;
5205         struct sf_hment *sfhmep;
5206         uint_t tteflags;
5207         int ttesz;
5208         struct page *pp = NULL;
5209         kmutex_t *pml, *pmtx;
5210         int ret;
5211         int use_demap_range;
5212 #if defined(SF_ERRATA_57)
5213         int check_exec;
5214 #endif
5215 
5216         ASSERT(in_hblk_range(hmeblkp, addr));
5217         ASSERT(hmeblkp->hblk_shw_bit == 0);
5218         ASSERT(!hmeblkp->hblk_shared);
5219 
5220 #ifdef DEBUG
5221         if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5222             (endaddr < get_hblk_endaddr(hmeblkp))) {
5223                 panic("sfmmu_hblk_chgprot: partial chgprot of large page");
5224         }
5225 #endif /* DEBUG */
5226 
5227         endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5228         ttesz = get_hblk_ttesz(hmeblkp);
5229 
5230         pprot = sfmmu_vtop_prot(vprot, &tteflags);
5231 #if defined(SF_ERRATA_57)
5232         check_exec = (sfmmup != ksfmmup) &&
5233             AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
5234             ((vprot & PROT_EXEC) == PROT_EXEC);
5235 #endif
5236         HBLKTOHME(sfhmep, hmeblkp, addr);
5237 
5238         /*
5239          * Flush the current demap region if addresses have been
5240          * skipped or the page size doesn't match.
5241          */
5242         use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
5243         if (use_demap_range) {
5244                 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5245         } else if (dmrp != NULL) {
5246                 DEMAP_RANGE_FLUSH(dmrp);
5247         }
5248 
5249         while (addr < endaddr) {
5250                 sfmmu_copytte(&sfhmep->hme_tte, &tte);
5251                 if (TTE_IS_VALID(&tte)) {
5252                         if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
5253                                 /*
5254                                  * if the new protection is the same as old
5255                                  * continue
5256                                  */
5257                                 goto next_addr;
5258                         }
5259                         pml = NULL;
5260                         pp = sfhmep->hme_page;
5261                         if (pp) {
5262                                 pml = sfmmu_mlist_enter(pp);
5263                         }
5264                         if (pp != sfhmep->hme_page) {
5265                                 /*
5266                                  * tte most have been unloaded
5267                                  * underneath us.  Recheck
5268                                  */
5269                                 ASSERT(pml);
5270                                 sfmmu_mlist_exit(pml);
5271                                 continue;
5272                         }
5273 
5274                         ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5275 
5276                         ttemod = tte;
5277                         TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
5278 #if defined(SF_ERRATA_57)
5279                         if (check_exec && addr < errata57_limit)
5280                                 ttemod.tte_exec_perm = 0;
5281 #endif
5282                         ret = sfmmu_modifytte_try(&tte, &ttemod,
5283                             &sfhmep->hme_tte);
5284 
5285                         if (ret < 0) {
5286                                 /* tte changed underneath us */
5287                                 if (pml) {
5288                                         sfmmu_mlist_exit(pml);
5289                                 }
5290                                 continue;
5291                         }
5292 
5293                         if (tteflags & TTE_HWWR_INT) {
5294                                 /*
5295                                  * need to sync if we are clearing modify bit.
5296                                  */
5297                                 sfmmu_ttesync(sfmmup, addr, &tte, pp);
5298                         }
5299 
5300                         if (pp && PP_ISRO(pp)) {
5301                                 if (pprot & TTE_WRPRM_INT) {
5302                                         pmtx = sfmmu_page_enter(pp);
5303                                         PP_CLRRO(pp);
5304                                         sfmmu_page_exit(pmtx);
5305                                 }
5306                         }
5307 
5308                         if (ret > 0 && use_demap_range) {
5309                                 DEMAP_RANGE_MARKPG(dmrp, addr);
5310                         } else if (ret > 0) {
5311                                 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
5312                         }
5313 
5314                         if (pml) {
5315                                 sfmmu_mlist_exit(pml);
5316                         }
5317                 }
5318 next_addr:
5319                 addr += TTEBYTES(ttesz);
5320                 sfhmep++;
5321                 DEMAP_RANGE_NEXTPG(dmrp);
5322         }
5323         return (addr);
5324 }
5325 
5326 /*
5327  * This routine is deprecated and should only be used by hat_chgprot.
5328  * The correct routine is sfmmu_vtop_attr.
5329  * This routine converts virtual page protections to physical ones.  It will
5330  * update the tteflags field with the tte mask corresponding to the protections
5331  * affected and it returns the new protections.  It will also clear the modify
5332  * bit if we are taking away write permission.  This is necessary since the
5333  * modify bit is the hardware permission bit and we need to clear it in order
5334  * to detect write faults.
5335  * It accepts the following special protections:
5336  * ~PROT_WRITE = remove write permissions.
5337  * ~PROT_USER = remove user permissions.
5338  */
5339 static uint_t
5340 sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
5341 {
5342         if (vprot == (uint_t)~PROT_WRITE) {
5343                 *tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
5344                 return (0);             /* will cause wrprm to be cleared */
5345         }
5346         if (vprot == (uint_t)~PROT_USER) {
5347                 *tteflagsp = TTE_PRIV_INT;
5348                 return (0);             /* will cause privprm to be cleared */
5349         }
5350         if ((vprot == 0) || (vprot == PROT_USER) ||
5351             ((vprot & PROT_ALL) != vprot)) {
5352                 panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5353         }
5354 
5355         switch (vprot) {
5356         case (PROT_READ):
5357         case (PROT_EXEC):
5358         case (PROT_EXEC | PROT_READ):
5359                 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5360                 return (TTE_PRIV_INT);          /* set prv and clr wrt */
5361         case (PROT_WRITE):
5362         case (PROT_WRITE | PROT_READ):
5363         case (PROT_EXEC | PROT_WRITE):
5364         case (PROT_EXEC | PROT_WRITE | PROT_READ):
5365                 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5366                 return (TTE_PRIV_INT | TTE_WRPRM_INT);  /* set prv and wrt */
5367         case (PROT_USER | PROT_READ):
5368         case (PROT_USER | PROT_EXEC):
5369         case (PROT_USER | PROT_EXEC | PROT_READ):
5370                 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
5371                 return (0);                     /* clr prv and wrt */
5372         case (PROT_USER | PROT_WRITE):
5373         case (PROT_USER | PROT_WRITE | PROT_READ):
5374         case (PROT_USER | PROT_EXEC | PROT_WRITE):
5375         case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
5376                 *tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
5377                 return (TTE_WRPRM_INT);         /* clr prv and set wrt */
5378         default:
5379                 panic("sfmmu_vtop_prot -- bad prot %x", vprot);
5380         }
5381         return (0);
5382 }
5383 
5384 /*
5385  * Alternate unload for very large virtual ranges. With a true 64 bit VA,
5386  * the normal algorithm would take too long for a very large VA range with
5387  * few real mappings. This routine just walks thru all HMEs in the global
5388  * hash table to find and remove mappings.
5389  */
5390 static void
5391 hat_unload_large_virtual(
5392         struct hat              *sfmmup,
5393         caddr_t                 startaddr,
5394         size_t                  len,
5395         uint_t                  flags,
5396         hat_callback_t          *callback)
5397 {
5398         struct hmehash_bucket *hmebp;
5399         struct hme_blk *hmeblkp;
5400         struct hme_blk *pr_hblk = NULL;
5401         struct hme_blk *nx_hblk;
5402         struct hme_blk *list = NULL;
5403         int i;
5404         demap_range_t dmr, *dmrp;
5405         cpuset_t cpuset;
5406         caddr_t endaddr = startaddr + len;
5407         caddr_t sa;
5408         caddr_t ea;
5409         caddr_t cb_sa[MAX_CB_ADDR];
5410         caddr_t cb_ea[MAX_CB_ADDR];
5411         int     addr_cnt = 0;
5412         int     a = 0;
5413 
5414         if (sfmmup->sfmmu_free) {
5415                 dmrp = NULL;
5416         } else {
5417                 dmrp = &dmr;
5418                 DEMAP_RANGE_INIT(sfmmup, dmrp);
5419         }
5420 
5421         /*
5422          * Loop through all the hash buckets of HME blocks looking for matches.
5423          */
5424         for (i = 0; i <= UHMEHASH_SZ; i++) {
5425                 hmebp = &uhme_hash[i];
5426                 SFMMU_HASH_LOCK(hmebp);
5427                 hmeblkp = hmebp->hmeblkp;
5428                 pr_hblk = NULL;
5429                 while (hmeblkp) {
5430                         nx_hblk = hmeblkp->hblk_next;
5431 
5432                         /*
5433                          * skip if not this context, if a shadow block or
5434                          * if the mapping is not in the requested range
5435                          */
5436                         if (hmeblkp->hblk_tag.htag_id != sfmmup ||
5437                             hmeblkp->hblk_shw_bit ||
5438                             (sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
5439                             (ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
5440                                 pr_hblk = hmeblkp;
5441                                 goto next_block;
5442                         }
5443 
5444                         ASSERT(!hmeblkp->hblk_shared);
5445                         /*
5446                          * unload if there are any current valid mappings
5447                          */
5448                         if (hmeblkp->hblk_vcnt != 0 ||
5449                             hmeblkp->hblk_hmecnt != 0)
5450                                 (void) sfmmu_hblk_unload(sfmmup, hmeblkp,
5451                                     sa, ea, dmrp, flags);
5452 
5453                         /*
5454                          * on unmap we also release the HME block itself, once
5455                          * all mappings are gone.
5456                          */
5457                         if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
5458                             !hmeblkp->hblk_vcnt &&
5459                             !hmeblkp->hblk_hmecnt) {
5460                                 ASSERT(!hmeblkp->hblk_lckcnt);
5461                                 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
5462                                     &list, 0);
5463                         } else {
5464                                 pr_hblk = hmeblkp;
5465                         }
5466 
5467                         if (callback == NULL)
5468                                 goto next_block;
5469 
5470                         /*
5471                          * HME blocks may span more than one page, but we may be
5472                          * unmapping only one page, so check for a smaller range
5473                          * for the callback
5474                          */
5475                         if (sa < startaddr)
5476                                 sa = startaddr;
5477                         if (--ea > endaddr)
5478                                 ea = endaddr - 1;
5479 
5480                         cb_sa[addr_cnt] = sa;
5481                         cb_ea[addr_cnt] = ea;
5482                         if (++addr_cnt == MAX_CB_ADDR) {
5483                                 if (dmrp != NULL) {
5484                                         DEMAP_RANGE_FLUSH(dmrp);
5485                                         cpuset = sfmmup->sfmmu_cpusran;
5486                                         xt_sync(cpuset);
5487                                 }
5488 
5489                                 for (a = 0; a < MAX_CB_ADDR; ++a) {
5490                                         callback->hcb_start_addr = cb_sa[a];
5491                                         callback->hcb_end_addr = cb_ea[a];
5492                                         callback->hcb_function(callback);
5493                                 }
5494                                 addr_cnt = 0;
5495                         }
5496 
5497 next_block:
5498                         hmeblkp = nx_hblk;
5499                 }
5500                 SFMMU_HASH_UNLOCK(hmebp);
5501         }
5502 
5503         sfmmu_hblks_list_purge(&list, 0);
5504         if (dmrp != NULL) {
5505                 DEMAP_RANGE_FLUSH(dmrp);
5506                 cpuset = sfmmup->sfmmu_cpusran;
5507                 xt_sync(cpuset);
5508         }
5509 
5510         for (a = 0; a < addr_cnt; ++a) {
5511                 callback->hcb_start_addr = cb_sa[a];
5512                 callback->hcb_end_addr = cb_ea[a];
5513                 callback->hcb_function(callback);
5514         }
5515 
5516         /*
5517          * Check TSB and TLB page sizes if the process isn't exiting.
5518          */
5519         if (!sfmmup->sfmmu_free)
5520                 sfmmu_check_page_sizes(sfmmup, 0);
5521 }
5522 
5523 /*
5524  * Unload all the mappings in the range [addr..addr+len). addr and len must
5525  * be MMU_PAGESIZE aligned.
5526  */
5527 
5528 extern struct seg *segkmap;
5529 #define ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
5530 segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
5531 
5532 
5533 void
5534 hat_unload_callback(
5535         struct hat *sfmmup,
5536         caddr_t addr,
5537         size_t len,
5538         uint_t flags,
5539         hat_callback_t *callback)
5540 {
5541         struct hmehash_bucket *hmebp;
5542         hmeblk_tag hblktag;
5543         int hmeshift, hashno, iskernel;
5544         struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
5545         caddr_t endaddr;
5546         cpuset_t cpuset;
5547         int addr_count = 0;
5548         int a;
5549         caddr_t cb_start_addr[MAX_CB_ADDR];
5550         caddr_t cb_end_addr[MAX_CB_ADDR];
5551         int issegkmap = ISSEGKMAP(sfmmup, addr);
5552         demap_range_t dmr, *dmrp;
5553 
5554         if (sfmmup->sfmmu_xhat_provider) {
5555                 XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback);
5556                 return;
5557         } else {
5558                 /*
5559                  * This must be a CPU HAT. If the address space has
5560                  * XHATs attached, unload the mappings for all of them,
5561                  * just in case
5562                  */
5563                 ASSERT(sfmmup->sfmmu_as != NULL);
5564                 if (sfmmup->sfmmu_as->a_xhat != NULL)
5565                         xhat_unload_callback_all(sfmmup->sfmmu_as, addr,
5566                             len, flags, callback);
5567         }
5568 
5569         ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
5570             AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
5571 
5572         ASSERT(sfmmup != NULL);
5573         ASSERT((len & MMU_PAGEOFFSET) == 0);
5574         ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
5575 
5576         /*
5577          * Probing through a large VA range (say 63 bits) will be slow, even
5578          * at 4 Meg steps between the probes. So, when the virtual address range
5579          * is very large, search the HME entries for what to unload.
5580          *
5581          *      len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
5582          *
5583          *      UHMEHASH_SZ is number of hash buckets to examine
5584          *
5585          */
5586         if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
5587                 hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
5588                 return;
5589         }
5590 
5591         CPUSET_ZERO(cpuset);
5592 
5593         /*
5594          * If the process is exiting, we can save a lot of fuss since
5595          * we'll flush the TLB when we free the ctx anyway.
5596          */
5597         if (sfmmup->sfmmu_free) {
5598                 dmrp = NULL;
5599         } else {
5600                 dmrp = &dmr;
5601                 DEMAP_RANGE_INIT(sfmmup, dmrp);
5602         }
5603 
5604         endaddr = addr + len;
5605         hblktag.htag_id = sfmmup;
5606         hblktag.htag_rid = SFMMU_INVALID_SHMERID;
5607 
5608         /*
5609          * It is likely for the vm to call unload over a wide range of
5610          * addresses that are actually very sparsely populated by
5611          * translations.  In order to speed this up the sfmmu hat supports
5612          * the concept of shadow hmeblks. Dummy large page hmeblks that
5613          * correspond to actual small translations are allocated at tteload
5614          * time and are referred to as shadow hmeblks.  Now, during unload
5615          * time, we first check if we have a shadow hmeblk for that
5616          * translation.  The absence of one means the corresponding address
5617          * range is empty and can be skipped.
5618          *
5619          * The kernel is an exception to above statement and that is why
5620          * we don't use shadow hmeblks and hash starting from the smallest
5621          * page size.
5622          */
5623         if (sfmmup == KHATID) {
5624                 iskernel = 1;
5625                 hashno = TTE64K;
5626         } else {
5627                 iskernel = 0;
5628                 if (mmu_page_sizes == max_mmu_page_sizes) {
5629                         hashno = TTE256M;
5630                 } else {
5631                         hashno = TTE4M;
5632                 }
5633         }
5634         while (addr < endaddr) {
5635                 hmeshift = HME_HASH_SHIFT(hashno);
5636                 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
5637                 hblktag.htag_rehash = hashno;
5638                 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
5639 
5640                 SFMMU_HASH_LOCK(hmebp);
5641 
5642                 HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, pr_hblk, &list);
5643                 if (hmeblkp == NULL) {
5644                         /*
5645                          * didn't find an hmeblk. skip the appropiate
5646                          * address range.
5647                          */
5648                         SFMMU_HASH_UNLOCK(hmebp);
5649                         if (iskernel) {
5650                                 if (hashno < mmu_hashcnt) {
5651                                         hashno++;
5652                                         continue;
5653                                 } else {
5654                                         hashno = TTE64K;
5655                                         addr = (caddr_t)roundup((uintptr_t)addr
5656                                             + 1, MMU_PAGESIZE64K);
5657                                         continue;
5658                                 }
5659                         }
5660                         addr = (caddr_t)roundup((uintptr_t)addr + 1,
5661                             (1 << hmeshift));
5662                         if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5663                                 ASSERT(hashno == TTE64K);
5664                                 continue;
5665                         }
5666                         if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5667                                 hashno = TTE512K;
5668                                 continue;
5669                         }
5670                         if (mmu_page_sizes == max_mmu_page_sizes) {
5671                                 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5672                                         hashno = TTE4M;
5673                                         continue;
5674                                 }
5675                                 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5676                                         hashno = TTE32M;
5677                                         continue;
5678                                 }
5679                                 hashno = TTE256M;
5680                                 continue;
5681                         } else {
5682                                 hashno = TTE4M;
5683                                 continue;
5684                         }
5685                 }
5686                 ASSERT(hmeblkp);
5687                 ASSERT(!hmeblkp->hblk_shared);
5688                 if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5689                         /*
5690                          * If the valid count is zero we can skip the range
5691                          * mapped by this hmeblk.
5692                          * We free hblks in the case of HAT_UNMAP.  HAT_UNMAP
5693                          * is used by segment drivers as a hint
5694                          * that the mapping resource won't be used any longer.
5695                          * The best example of this is during exit().
5696                          */
5697                         addr = (caddr_t)roundup((uintptr_t)addr + 1,
5698                             get_hblk_span(hmeblkp));
5699                         if ((flags & HAT_UNLOAD_UNMAP) ||
5700                             (iskernel && !issegkmap)) {
5701                                 sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk,
5702                                     &list, 0);
5703                         }
5704                         SFMMU_HASH_UNLOCK(hmebp);
5705 
5706                         if (iskernel) {
5707                                 hashno = TTE64K;
5708                                 continue;
5709                         }
5710                         if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5711                                 ASSERT(hashno == TTE64K);
5712                                 continue;
5713                         }
5714                         if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5715                                 hashno = TTE512K;
5716                                 continue;
5717                         }
5718                         if (mmu_page_sizes == max_mmu_page_sizes) {
5719                                 if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5720                                         hashno = TTE4M;
5721                                         continue;
5722                                 }
5723                                 if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5724                                         hashno = TTE32M;
5725                                         continue;
5726                                 }
5727                                 hashno = TTE256M;
5728                                 continue;
5729                         } else {
5730                                 hashno = TTE4M;
5731                                 continue;
5732                         }
5733                 }
5734                 if (hmeblkp->hblk_shw_bit) {
5735                         /*
5736                          * If we encounter a shadow hmeblk we know there is
5737                          * smaller sized hmeblks mapping the same address space.
5738                          * Decrement the hash size and rehash.
5739                          */
5740                         ASSERT(sfmmup != KHATID);
5741                         hashno--;
5742                         SFMMU_HASH_UNLOCK(hmebp);
5743                         continue;
5744                 }
5745 
5746                 /*
5747                  * track callback address ranges.
5748                  * only start a new range when it's not contiguous
5749                  */
5750                 if (callback != NULL) {
5751                         if (addr_count > 0 &&
5752                             addr == cb_end_addr[addr_count - 1])
5753                                 --addr_count;
5754                         else
5755                                 cb_start_addr[addr_count] = addr;
5756                 }
5757 
5758                 addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
5759                     dmrp, flags);
5760 
5761                 if (callback != NULL)
5762                         cb_end_addr[addr_count++] = addr;
5763 
5764                 if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
5765                     !hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
5766                         sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 0);
5767                 }
5768                 SFMMU_HASH_UNLOCK(hmebp);
5769 
5770                 /*
5771                  * Notify our caller as to exactly which pages
5772                  * have been unloaded. We do these in clumps,
5773                  * to minimize the number of xt_sync()s that need to occur.
5774                  */
5775                 if (callback != NULL && addr_count == MAX_CB_ADDR) {
5776                         if (dmrp != NULL) {
5777                                 DEMAP_RANGE_FLUSH(dmrp);
5778                                 cpuset = sfmmup->sfmmu_cpusran;
5779                                 xt_sync(cpuset);
5780                         }
5781 
5782                         for (a = 0; a < MAX_CB_ADDR; ++a) {
5783                                 callback->hcb_start_addr = cb_start_addr[a];
5784                                 callback->hcb_end_addr = cb_end_addr[a];
5785                                 callback->hcb_function(callback);
5786                         }
5787                         addr_count = 0;
5788                 }
5789                 if (iskernel) {
5790                         hashno = TTE64K;
5791                         continue;
5792                 }
5793                 if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
5794                         ASSERT(hashno == TTE64K);
5795                         continue;
5796                 }
5797                 if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
5798                         hashno = TTE512K;
5799                         continue;
5800                 }
5801                 if (mmu_page_sizes == max_mmu_page_sizes) {
5802                         if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
5803                                 hashno = TTE4M;
5804                                 continue;
5805                         }
5806                         if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
5807                                 hashno = TTE32M;
5808                                 continue;
5809                         }
5810                         hashno = TTE256M;
5811                 } else {
5812                         hashno = TTE4M;
5813                 }
5814         }
5815 
5816         sfmmu_hblks_list_purge(&list, 0);
5817         if (dmrp != NULL) {
5818                 DEMAP_RANGE_FLUSH(dmrp);
5819                 cpuset = sfmmup->sfmmu_cpusran;
5820                 xt_sync(cpuset);
5821         }
5822         if (callback && addr_count != 0) {
5823                 for (a = 0; a < addr_count; ++a) {
5824                         callback->hcb_start_addr = cb_start_addr[a];
5825                         callback->hcb_end_addr = cb_end_addr[a];
5826                         callback->hcb_function(callback);
5827                 }
5828         }
5829 
5830         /*
5831          * Check TSB and TLB page sizes if the process isn't exiting.
5832          */
5833         if (!sfmmup->sfmmu_free)
5834                 sfmmu_check_page_sizes(sfmmup, 0);
5835 }
5836 
5837 /*
5838  * Unload all the mappings in the range [addr..addr+len). addr and len must
5839  * be MMU_PAGESIZE aligned.
5840  */
5841 void
5842 hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
5843 {
5844         if (sfmmup->sfmmu_xhat_provider) {
5845                 XHAT_UNLOAD(sfmmup, addr, len, flags);
5846                 return;
5847         }
5848         hat_unload_callback(sfmmup, addr, len, flags, NULL);
5849 }
5850 
5851 
5852 /*
5853  * Find the largest mapping size for this page.
5854  */
5855 int
5856 fnd_mapping_sz(page_t *pp)
5857 {
5858         int sz;
5859         int p_index;
5860 
5861         p_index = PP_MAPINDEX(pp);
5862 
5863         sz = 0;
5864         p_index >>= 1;    /* don't care about 8K bit */
5865         for (; p_index; p_index >>= 1) {
5866                 sz++;
5867         }
5868 
5869         return (sz);
5870 }
5871 
5872 /*
5873  * This function unloads a range of addresses for an hmeblk.
5874  * It returns the next address to be unloaded.
5875  * It should be called with the hash lock held.
5876  */
5877 static caddr_t
5878 sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
5879         caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
5880 {
5881         tte_t   tte, ttemod;
5882         struct  sf_hment *sfhmep;
5883         int     ttesz;
5884         long    ttecnt;
5885         page_t *pp;
5886         kmutex_t *pml;
5887         int ret;
5888         int use_demap_range;
5889 
5890         ASSERT(in_hblk_range(hmeblkp, addr));
5891         ASSERT(!hmeblkp->hblk_shw_bit);
5892         ASSERT(sfmmup != NULL || hmeblkp->hblk_shared);
5893         ASSERT(sfmmup == NULL || !hmeblkp->hblk_shared);
5894         ASSERT(dmrp == NULL || !hmeblkp->hblk_shared);
5895 
5896 #ifdef DEBUG
5897         if (get_hblk_ttesz(hmeblkp) != TTE8K &&
5898             (endaddr < get_hblk_endaddr(hmeblkp))) {
5899                 panic("sfmmu_hblk_unload: partial unload of large page");
5900         }
5901 #endif /* DEBUG */
5902 
5903         endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
5904         ttesz = get_hblk_ttesz(hmeblkp);
5905 
5906         use_demap_range = ((dmrp == NULL) ||
5907             (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
5908 
5909         if (use_demap_range) {
5910                 DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
5911         } else if (dmrp != NULL) {
5912                 DEMAP_RANGE_FLUSH(dmrp);
5913         }
5914         ttecnt = 0;
5915         HBLKTOHME(sfhmep, hmeblkp, addr);
5916 
5917         while (addr < endaddr) {
5918                 pml = NULL;
5919                 sfmmu_copytte(&sfhmep->hme_tte, &tte);
5920                 if (TTE_IS_VALID(&tte)) {
5921                         pp = sfhmep->hme_page;
5922                         if (pp != NULL) {
5923                                 pml = sfmmu_mlist_enter(pp);
5924                         }
5925 
5926                         /*
5927                          * Verify if hme still points to 'pp' now that
5928                          * we have p_mapping lock.
5929                          */
5930                         if (sfhmep->hme_page != pp) {
5931                                 if (pp != NULL && sfhmep->hme_page != NULL) {
5932                                         ASSERT(pml != NULL);
5933                                         sfmmu_mlist_exit(pml);
5934                                         /* Re-start this iteration. */
5935                                         continue;
5936                                 }
5937                                 ASSERT((pp != NULL) &&
5938                                     (sfhmep->hme_page == NULL));
5939                                 goto tte_unloaded;
5940                         }
5941 
5942                         /*
5943                          * This point on we have both HASH and p_mapping
5944                          * lock.
5945                          */
5946                         ASSERT(pp == sfhmep->hme_page);
5947                         ASSERT(pp == NULL || sfmmu_mlist_held(pp));
5948 
5949                         /*
5950                          * We need to loop on modify tte because it is
5951                          * possible for pagesync to come along and
5952                          * change the software bits beneath us.
5953                          *
5954                          * Page_unload can also invalidate the tte after
5955                          * we read tte outside of p_mapping lock.
5956                          */
5957 again:
5958                         ttemod = tte;
5959 
5960                         TTE_SET_INVALID(&ttemod);
5961                         ret = sfmmu_modifytte_try(&tte, &ttemod,
5962                             &sfhmep->hme_tte);
5963 
5964                         if (ret <= 0) {
5965                                 if (TTE_IS_VALID(&tte)) {
5966                                         ASSERT(ret < 0);
5967                                         goto again;
5968                                 }
5969                                 if (pp != NULL) {
5970                                         panic("sfmmu_hblk_unload: pp = 0x%p "
5971                                             "tte became invalid under mlist"
5972                                             " lock = 0x%p", (void *)pp,
5973                                             (void *)pml);
5974                                 }
5975                                 continue;
5976                         }
5977 
5978                         if (!(flags & HAT_UNLOAD_NOSYNC)) {
5979                                 sfmmu_ttesync(sfmmup, addr, &tte, pp);
5980                         }
5981 
5982                         /*
5983                          * Ok- we invalidated the tte. Do the rest of the job.
5984                          */
5985                         ttecnt++;
5986 
5987                         if (flags & HAT_UNLOAD_UNLOCK) {
5988                                 ASSERT(hmeblkp->hblk_lckcnt > 0);
5989                                 atomic_add_32(&hmeblkp->hblk_lckcnt, -1);
5990                                 HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
5991                         }
5992 
5993                         /*
5994                          * Normally we would need to flush the page
5995                          * from the virtual cache at this point in
5996                          * order to prevent a potential cache alias
5997                          * inconsistency.
5998                          * The particular scenario we need to worry
5999                          * about is:
6000                          * Given:  va1 and va2 are two virtual address
6001                          * that alias and map the same physical
6002                          * address.
6003                          * 1.   mapping exists from va1 to pa and data
6004                          * has been read into the cache.
6005                          * 2.   unload va1.
6006                          * 3.   load va2 and modify data using va2.
6007                          * 4    unload va2.
6008                          * 5.   load va1 and reference data.  Unless we
6009                          * flush the data cache when we unload we will
6010                          * get stale data.
6011                          * Fortunately, page coloring eliminates the
6012                          * above scenario by remembering the color a
6013                          * physical page was last or is currently
6014                          * mapped to.  Now, we delay the flush until
6015                          * the loading of translations.  Only when the
6016                          * new translation is of a different color
6017                          * are we forced to flush.
6018                          */
6019                         if (use_demap_range) {
6020                                 /*
6021                                  * Mark this page as needing a demap.
6022                                  */
6023                                 DEMAP_RANGE_MARKPG(dmrp, addr);
6024                         } else {
6025                                 ASSERT(sfmmup != NULL);
6026                                 ASSERT(!hmeblkp->hblk_shared);
6027                                 sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
6028                                     sfmmup->sfmmu_free, 0);
6029                         }
6030 
6031                         if (pp) {
6032                                 /*
6033                                  * Remove the hment from the mapping list
6034                                  */
6035                                 ASSERT(hmeblkp->hblk_hmecnt > 0);
6036 
6037                                 /*
6038                                  * Again, we cannot
6039                                  * ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
6040                                  */
6041                                 HME_SUB(sfhmep, pp);
6042                                 membar_stst();
6043                                 atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
6044                         }
6045 
6046                         ASSERT(hmeblkp->hblk_vcnt > 0);
6047                         atomic_add_16(&hmeblkp->hblk_vcnt, -1);
6048 
6049                         ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
6050                             !hmeblkp->hblk_lckcnt);
6051 
6052 #ifdef VAC
6053                         if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
6054                                 if (PP_ISTNC(pp)) {
6055                                         /*
6056                                          * If page was temporary
6057                                          * uncached, try to recache
6058                                          * it. Note that HME_SUB() was
6059                                          * called above so p_index and
6060                                          * mlist had been updated.
6061                                          */
6062                                         conv_tnc(pp, ttesz);
6063                                 } else if (pp->p_mapping == NULL) {
6064                                         ASSERT(kpm_enable);
6065                                         /*
6066                                          * Page is marked to be in VAC conflict
6067                                          * to an existing kpm mapping and/or is
6068                                          * kpm mapped using only the regular
6069                                          * pagesize.
6070                                          */
6071                                         sfmmu_kpm_hme_unload(pp);
6072                                 }
6073                         }
6074 #endif  /* VAC */
6075                 } else if ((pp = sfhmep->hme_page) != NULL) {
6076                                 /*
6077                                  * TTE is invalid but the hme
6078                                  * still exists. let pageunload
6079                                  * complete its job.
6080                                  */
6081                                 ASSERT(pml == NULL);
6082                                 pml = sfmmu_mlist_enter(pp);
6083                                 if (sfhmep->hme_page != NULL) {
6084                                         sfmmu_mlist_exit(pml);
6085                                         continue;
6086                                 }
6087                                 ASSERT(sfhmep->hme_page == NULL);
6088                 } else if (hmeblkp->hblk_hmecnt != 0) {
6089                         /*
6090                          * pageunload may have not finished decrementing
6091                          * hblk_vcnt and hblk_hmecnt. Find page_t if any and
6092                          * wait for pageunload to finish. Rely on pageunload
6093                          * to decrement hblk_hmecnt after hblk_vcnt.
6094                          */
6095                         pfn_t pfn = TTE_TO_TTEPFN(&tte);
6096                         ASSERT(pml == NULL);
6097                         if (pf_is_memory(pfn)) {
6098                                 pp = page_numtopp_nolock(pfn);
6099                                 if (pp != NULL) {
6100                                         pml = sfmmu_mlist_enter(pp);
6101                                         sfmmu_mlist_exit(pml);
6102                                         pml = NULL;
6103                                 }
6104                         }
6105                 }
6106 
6107 tte_unloaded:
6108                 /*
6109                  * At this point, the tte we are looking at
6110                  * should be unloaded, and hme has been unlinked
6111                  * from page too. This is important because in
6112                  * pageunload, it does ttesync() then HME_SUB.
6113                  * We need to make sure HME_SUB has been completed
6114                  * so we know ttesync() has been completed. Otherwise,
6115                  * at exit time, after return from hat layer, VM will
6116                  * release as structure which hat_setstat() (called
6117                  * by ttesync()) needs.
6118                  */
6119 #ifdef DEBUG
6120                 {
6121                         tte_t   dtte;
6122 
6123                         ASSERT(sfhmep->hme_page == NULL);
6124 
6125                         sfmmu_copytte(&sfhmep->hme_tte, &dtte);
6126                         ASSERT(!TTE_IS_VALID(&dtte));
6127                 }
6128 #endif
6129 
6130                 if (pml) {
6131                         sfmmu_mlist_exit(pml);
6132                 }
6133 
6134                 addr += TTEBYTES(ttesz);
6135                 sfhmep++;
6136                 DEMAP_RANGE_NEXTPG(dmrp);
6137         }
6138         /*
6139          * For shared hmeblks this routine is only called when region is freed
6140          * and no longer referenced.  So no need to decrement ttecnt
6141          * in the region structure here.
6142          */
6143         if (ttecnt > 0 && sfmmup != NULL) {
6144                 atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
6145         }
6146         return (addr);
6147 }
6148 
6149 /*
6150  * Invalidate a virtual address range for the local CPU.
6151  * For best performance ensure that the va range is completely
6152  * mapped, otherwise the entire TLB will be flushed.
6153  */
6154 void
6155 hat_flush_range(struct hat *sfmmup, caddr_t va, size_t size)
6156 {
6157         ssize_t sz;
6158         caddr_t endva = va + size;
6159 
6160         while (va < endva) {
6161                 sz = hat_getpagesize(sfmmup, va);
6162                 if (sz < 0) {
6163                         vtag_flushall();
6164                         break;
6165                 }
6166                 vtag_flushpage(va, (uint64_t)sfmmup);
6167                 va += sz;
6168         }
6169 }
6170 
6171 /*
6172  * Synchronize all the mappings in the range [addr..addr+len).
6173  * Can be called with clearflag having two states:
6174  * HAT_SYNC_DONTZERO means just return the rm stats
6175  * HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
6176  */
6177 void
6178 hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
6179 {
6180         struct hmehash_bucket *hmebp;
6181         hmeblk_tag hblktag;
6182         int hmeshift, hashno = 1;
6183         struct hme_blk *hmeblkp, *list = NULL;
6184         caddr_t endaddr;
6185         cpuset_t cpuset;
6186 
6187         ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
6188         ASSERT((sfmmup == ksfmmup) ||
6189             AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
6190         ASSERT((len & MMU_PAGEOFFSET) == 0);
6191         ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
6192             (clearflag == HAT_SYNC_ZERORM));
6193 
6194         CPUSET_ZERO(cpuset);
6195 
6196         endaddr = addr + len;
6197         hblktag.htag_id = sfmmup;
6198         hblktag.htag_rid = SFMMU_INVALID_SHMERID;
6199 
6200         /*
6201          * Spitfire supports 4 page sizes.
6202          * Most pages are expected to be of the smallest page
6203          * size (8K) and these will not need to be rehashed. 64K
6204          * pages also don't need to be rehashed because the an hmeblk
6205          * spans 64K of address space. 512K pages might need 1 rehash and
6206          * and 4M pages 2 rehashes.
6207          */
6208         while (addr < endaddr) {
6209                 hmeshift = HME_HASH_SHIFT(hashno);
6210                 hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
6211                 hblktag.htag_rehash = hashno;
6212                 hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
6213 
6214                 SFMMU_HASH_LOCK(hmebp);
6215 
6216                 HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
6217                 if (hmeblkp != NULL) {
6218                         ASSERT(!hmeblkp->hblk_shared);
6219                         /*
6220                          * We've encountered a shadow hmeblk so skip the range
6221                          * of the next smaller mapping size.
6222                          */
6223                         if (hmeblkp->hblk_shw_bit) {
6224                                 ASSERT(sfmmup != ksfmmup);
6225                                 ASSERT(hashno > 1);
6226                                 addr = (caddr_t)P2END((uintptr_t)addr,
6227                                     TTEBYTES(hashno - 1));
6228                         } else {
6229                                 addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
6230                                     addr, endaddr, clearflag);
6231                         }
6232                         SFMMU_HASH_UNLOCK(hmebp);
6233                         hashno = 1;
6234                         continue;
6235                 }
6236                 SFMMU_HASH_UNLOCK(hmebp);
6237 
6238                 if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
6239                         /*
6240                          * We have traversed the whole list and rehashed
6241                          * if necessary without finding the address to sync.
6242                          * This is ok so we increment the address by the
6243                          * smallest hmeblk range for kernel mappings and the
6244                          * largest hmeblk range, to account for shadow hmeblks,
6245                          * for user mappings and continue.
6246                          */
6247                         if (sfmmup == ksfmmup)
6248                                 addr = (caddr_t)P2END((uintptr_t)addr,
6249                                     TTEBYTES(1));
6250                         else
6251                                 addr = (caddr_t)P2END((uintptr_t)addr,
6252                                     TTEBYTES(hashno));
6253                         hashno = 1;
6254                 } else {
6255                         hashno++;
6256                 }
6257         }
6258         sfmmu_hblks_list_purge(&list, 0);
6259         cpuset = sfmmup->sfmmu_cpusran;
6260         xt_sync(cpuset);
6261 }
6262 
6263 static caddr_t
6264 sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
6265         caddr_t endaddr, int clearflag)
6266 {
6267         tte_t   tte, ttemod;
6268         struct sf_hment *sfhmep;
6269         int ttesz;
6270         struct page *pp;
6271         kmutex_t *pml;
6272         int ret;
6273 
6274         ASSERT(hmeblkp->hblk_shw_bit == 0);
6275         ASSERT(!hmeblkp->hblk_shared);
6276 
6277         endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
6278 
6279         ttesz = get_hblk_ttesz(hmeblkp);
6280         HBLKTOHME(sfhmep, hmeblkp, addr);
6281 
6282         while (addr < endaddr) {
6283                 sfmmu_copytte(&sfhmep->hme_tte, &tte);
6284                 if (TTE_IS_VALID(&tte)) {
6285                         pml = NULL;
6286                         pp = sfhmep->hme_page;
6287                         if (pp) {
6288                                 pml = sfmmu_mlist_enter(pp);
6289                         }
6290                         if (pp != sfhmep->hme_page) {
6291                                 /*
6292                                  * tte most have been unloaded
6293                                  * underneath us.  Recheck
6294                                  */
6295                                 ASSERT(pml);
6296                                 sfmmu_mlist_exit(pml);
6297                                 continue;
6298                         }
6299 
6300                         ASSERT(pp == NULL || sfmmu_mlist_held(pp));
6301 
6302                         if (clearflag == HAT_SYNC_ZERORM) {
6303                                 ttemod = tte;
6304                                 TTE_CLR_RM(&ttemod);
6305                                 ret = sfmmu_modifytte_try(&tte, &ttemod,
6306                                     &sfhmep->hme_tte);
6307                                 if (ret < 0) {
6308                                         if (pml) {
6309                                                 sfmmu_mlist_exit(pml);
6310                                         }
6311                                         continue;
6312                                 }
6313 
6314                                 if (ret > 0) {
6315                                         sfmmu_tlb_demap(addr, sfmmup,
6316                                             hmeblkp, 0, 0);
6317                                 }
6318                         }
6319                         sfmmu_ttesync(sfmmup, addr, &tte, pp);
6320                         if (pml) {
6321                                 sfmmu_mlist_exit(pml);
6322                         }
6323                 }
6324                 addr += TTEBYTES(ttesz);
6325                 sfhmep++;
6326         }
6327         return (addr);
6328 }
6329 
6330 /*
6331  * This function will sync a tte to the page struct and it will
6332  * update the hat stats. Currently it allows us to pass a NULL pp
6333  * and we will simply update the stats.  We may want to change this
6334  * so we only keep stats for pages backed by pp's.
6335  */
6336 static void
6337 sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
6338 {
6339         uint_t rm = 0;
6340         int     sz;
6341         pgcnt_t npgs;
6342 
6343         ASSERT(TTE_IS_VALID(ttep));
6344 
6345         if (TTE_IS_NOSYNC(ttep)) {
6346                 return;
6347         }
6348 
6349         if (TTE_IS_REF(ttep))  {
6350                 rm = P_REF;
6351         }
6352         if (TTE_IS_MOD(ttep))  {
6353                 rm |= P_MOD;
6354         }
6355 
6356         if (rm == 0) {
6357                 return;
6358         }
6359 
6360         sz = TTE_CSZ(ttep);
6361         if (sfmmup != NULL && sfmmup->sfmmu_rmstat) {
6362                 int i;
6363                 caddr_t vaddr = addr;
6364 
6365                 for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
6366                         hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
6367                 }
6368 
6369         }
6370 
6371         /*
6372          * XXX I want to use cas to update nrm bits but they
6373          * currently belong in common/vm and not in hat where
6374          * they should be.
6375          * The nrm bits are protected by the same mutex as
6376          * the one that protects the page's mapping list.
6377          */
6378         if (!pp)
6379                 return;
6380         ASSERT(sfmmu_mlist_held(pp));
6381         /*
6382          * If the tte is for a large page, we need to sync all the
6383          * pages covered by the tte.
6384          */
6385         if (sz != TTE8K) {
6386                 ASSERT(pp->p_szc != 0);
6387                 pp = PP_GROUPLEADER(pp, sz);
6388                 ASSERT(sfmmu_mlist_held(pp));
6389         }
6390 
6391         /* Get number of pages from tte size. */
6392         npgs = TTEPAGES(sz);
6393 
6394         do {
6395                 ASSERT(pp);
6396                 ASSERT(sfmmu_mlist_held(pp));
6397                 if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
6398                     ((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
6399                         hat_page_setattr(pp, rm);
6400 
6401                 /*
6402                  * Are we done? If not, we must have a large mapping.
6403                  * For large mappings we need to sync the rest of the pages
6404                  * covered by this tte; goto the next page.
6405                  */
6406         } while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
6407 }
6408 
6409 /*
6410  * Execute pre-callback handler of each pa_hment linked to pp
6411  *
6412  * Inputs:
6413  *   flag: either HAT_PRESUSPEND or HAT_SUSPEND.
6414  *   capture_cpus: pointer to return value (below)
6415  *
6416  * Returns:
6417  *   Propagates the subsystem callback return values back to the caller;
6418  *   returns 0 on success.  If capture_cpus is non-NULL, the value returned
6419  *   is zero if all of the pa_hments are of a type that do not require
6420  *   capturing CPUs prior to suspending the mapping, else it is 1.
6421  */
6422 static int
6423 hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
6424 {
6425         struct sf_hment *sfhmep;
6426         struct pa_hment *pahmep;
6427         int (*f)(caddr_t, uint_t, uint_t, void *);
6428         int             ret;
6429         id_t            id;
6430         int             locked = 0;
6431         kmutex_t        *pml;
6432 
6433         ASSERT(PAGE_EXCL(pp));
6434         if (!sfmmu_mlist_held(pp)) {
6435                 pml = sfmmu_mlist_enter(pp);
6436                 locked = 1;
6437         }
6438 
6439         if (capture_cpus)
6440                 *capture_cpus = 0;
6441 
6442 top:
6443         for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6444                 /*
6445                  * skip sf_hments corresponding to VA<->PA mappings;
6446                  * for pa_hment's, hme_tte.ll is zero
6447                  */
6448                 if (!IS_PAHME(sfhmep))
6449                         continue;
6450 
6451                 pahmep = sfhmep->hme_data;
6452                 ASSERT(pahmep != NULL);
6453 
6454                 /*
6455                  * skip if pre-handler has been called earlier in this loop
6456                  */
6457                 if (pahmep->flags & flag)
6458                         continue;
6459 
6460                 id = pahmep->cb_id;
6461                 ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6462                 if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
6463                         *capture_cpus = 1;
6464                 if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
6465                         pahmep->flags |= flag;
6466                         continue;
6467                 }
6468 
6469                 /*
6470                  * Drop the mapping list lock to avoid locking order issues.
6471                  */
6472                 if (locked)
6473                         sfmmu_mlist_exit(pml);
6474 
6475                 ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
6476                 if (ret != 0)
6477                         return (ret);   /* caller must do the cleanup */
6478 
6479                 if (locked) {
6480                         pml = sfmmu_mlist_enter(pp);
6481                         pahmep->flags |= flag;
6482                         goto top;
6483                 }
6484 
6485                 pahmep->flags |= flag;
6486         }
6487 
6488         if (locked)
6489                 sfmmu_mlist_exit(pml);
6490 
6491         return (0);
6492 }
6493 
6494 /*
6495  * Execute post-callback handler of each pa_hment linked to pp
6496  *
6497  * Same overall assumptions and restrictions apply as for
6498  * hat_pageprocess_precallbacks().
6499  */
6500 static void
6501 hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
6502 {
6503         pfn_t pgpfn = pp->p_pagenum;
6504         pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
6505         pfn_t newpfn;
6506         struct sf_hment *sfhmep;
6507         struct pa_hment *pahmep;
6508         int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
6509         id_t    id;
6510         int     locked = 0;
6511         kmutex_t *pml;
6512 
6513         ASSERT(PAGE_EXCL(pp));
6514         if (!sfmmu_mlist_held(pp)) {
6515                 pml = sfmmu_mlist_enter(pp);
6516                 locked = 1;
6517         }
6518 
6519 top:
6520         for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6521                 /*
6522                  * skip sf_hments corresponding to VA<->PA mappings;
6523                  * for pa_hment's, hme_tte.ll is zero
6524                  */
6525                 if (!IS_PAHME(sfhmep))
6526                         continue;
6527 
6528                 pahmep = sfhmep->hme_data;
6529                 ASSERT(pahmep != NULL);
6530 
6531                 if ((pahmep->flags & flag) == 0)
6532                         continue;
6533 
6534                 pahmep->flags &= ~flag;
6535 
6536                 id = pahmep->cb_id;
6537                 ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
6538                 if ((f = sfmmu_cb_table[id].posthandler) == NULL)
6539                         continue;
6540 
6541                 /*
6542                  * Convert the base page PFN into the constituent PFN
6543                  * which is needed by the callback handler.
6544                  */
6545                 newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
6546 
6547                 /*
6548                  * Drop the mapping list lock to avoid locking order issues.
6549                  */
6550                 if (locked)
6551                         sfmmu_mlist_exit(pml);
6552 
6553                 if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
6554                     != 0)
6555                         panic("sfmmu: posthandler failed");
6556 
6557                 if (locked) {
6558                         pml = sfmmu_mlist_enter(pp);
6559                         goto top;
6560                 }
6561         }
6562 
6563         if (locked)
6564                 sfmmu_mlist_exit(pml);
6565 }
6566 
6567 /*
6568  * Suspend locked kernel mapping
6569  */
6570 void
6571 hat_pagesuspend(struct page *pp)
6572 {
6573         struct sf_hment *sfhmep;
6574         sfmmu_t *sfmmup;
6575         tte_t tte, ttemod;
6576         struct hme_blk *hmeblkp;
6577         caddr_t addr;
6578         int index, cons;
6579         cpuset_t cpuset;
6580 
6581         ASSERT(PAGE_EXCL(pp));
6582         ASSERT(sfmmu_mlist_held(pp));
6583 
6584         mutex_enter(&kpr_suspendlock);
6585 
6586         /*
6587          * We're about to suspend a kernel mapping so mark this thread as
6588          * non-traceable by DTrace. This prevents us from running into issues
6589          * with probe context trying to touch a suspended page
6590          * in the relocation codepath itself.
6591          */
6592         curthread->t_flag |= T_DONTDTRACE;
6593 
6594         index = PP_MAPINDEX(pp);
6595         cons = TTE8K;
6596 
6597 retry:
6598         for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
6599 
6600                 if (IS_PAHME(sfhmep))
6601                         continue;
6602 
6603                 if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
6604                         continue;
6605 
6606                 /*
6607                  * Loop until we successfully set the suspend bit in
6608                  * the TTE.
6609                  */
6610 again:
6611                 sfmmu_copytte(&sfhmep->hme_tte, &tte);
6612                 ASSERT(TTE_IS_VALID(&tte));
6613 
6614                 ttemod = tte;
6615                 TTE_SET_SUSPEND(&ttemod);
6616                 if (sfmmu_modifytte_try(&tte, &ttemod,
6617                     &sfhmep->hme_tte) < 0)
6618                         goto again;
6619 
6620                 /*
6621                  * Invalidate TSB entry
6622                  */
6623                 hmeblkp = sfmmu_hmetohblk(sfhmep);
6624 
6625                 sfmmup = hblktosfmmu(hmeblkp);
6626                 ASSERT(sfmmup == ksfmmup);
6627                 ASSERT(!hmeblkp->hblk_shared);
6628 
6629                 addr = tte_to_vaddr(hmeblkp, tte);
6630 
6631                 /*
6632                  * No need to make sure that the TSB for this sfmmu is
6633                  * not being relocated since it is ksfmmup and thus it
6634                  * will never be relocated.
6635                  */
6636                 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
6637 
6638                 /*
6639                  * Update xcall stats
6640                  */
6641                 cpuset = cpu_ready_set;
6642                 CPUSET_DEL(cpuset, CPU->cpu_id);
6643 
6644                 /* LINTED: constant in conditional context */
6645                 SFMMU_XCALL_STATS(ksfmmup);
6646 
6647                 /*
6648                  * Flush TLB entry on remote CPU's
6649                  */
6650                 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
6651                     (uint64_t)ksfmmup);
6652                 xt_sync(cpuset);
6653 
6654                 /*
6655                  * Flush TLB entry on local CPU
6656                  */
6657                 vtag_flushpage(addr, (uint64_t)ksfmmup);
6658         }
6659 
6660         while (index != 0) {
6661                 index = index >> 1;
6662                 if (index != 0)
6663                         cons++;
6664                 if (index & 0x1) {
6665                         pp = PP_GROUPLEADER(pp, cons);
6666                         goto retry;
6667                 }
6668         }
6669 }
6670 
6671 #ifdef  DEBUG
6672 
6673 #define N_PRLE  1024
6674 struct prle {
6675         page_t *targ;
6676         page_t *repl;
6677         int status;
6678         int pausecpus;
6679         hrtime_t whence;
6680 };
6681 
6682 static struct prle page_relocate_log[N_PRLE];
6683 static int prl_entry;
6684 static kmutex_t prl_mutex;
6685 
6686 #define PAGE_RELOCATE_LOG(t, r, s, p)                                   \
6687         mutex_enter(&prl_mutex);                                    \
6688         page_relocate_log[prl_entry].targ = *(t);                       \
6689         page_relocate_log[prl_entry].repl = *(r);                       \
6690         page_relocate_log[prl_entry].status = (s);                      \
6691         page_relocate_log[prl_entry].pausecpus = (p);                   \
6692         page_relocate_log[prl_entry].whence = gethrtime();              \
6693         prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1;     \
6694         mutex_exit(&prl_mutex);
6695 
6696 #else   /* !DEBUG */
6697 #define PAGE_RELOCATE_LOG(t, r, s, p)
6698 #endif
6699 
6700 /*
6701  * Core Kernel Page Relocation Algorithm
6702  *
6703  * Input:
6704  *
6705  * target :     constituent pages are SE_EXCL locked.
6706  * replacement: constituent pages are SE_EXCL locked.
6707  *
6708  * Output:
6709  *
6710  * nrelocp:     number of pages relocated
6711  */
6712 int
6713 hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
6714 {
6715         page_t          *targ, *repl;
6716         page_t          *tpp, *rpp;
6717         kmutex_t        *low, *high;
6718         spgcnt_t        npages, i;
6719         page_t          *pl = NULL;
6720         int             old_pil;
6721         cpuset_t        cpuset;
6722         int             cap_cpus;
6723         int             ret;
6724 #ifdef VAC
6725         int             cflags = 0;
6726 #endif
6727 
6728         if (!kcage_on || PP_ISNORELOC(*target)) {
6729                 PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
6730                 return (EAGAIN);
6731         }
6732 
6733         mutex_enter(&kpr_mutex);
6734         kreloc_thread = curthread;
6735 
6736         targ = *target;
6737         repl = *replacement;
6738         ASSERT(repl != NULL);
6739         ASSERT(targ->p_szc == repl->p_szc);
6740 
6741         npages = page_get_pagecnt(targ->p_szc);
6742 
6743         /*
6744          * unload VA<->PA mappings that are not locked
6745          */
6746         tpp = targ;
6747         for (i = 0; i < npages; i++) {
6748                 (void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
6749                 tpp++;
6750         }
6751 
6752         /*
6753          * Do "presuspend" callbacks, in a context from which we can still
6754          * block as needed. Note that we don't hold the mapping list lock
6755          * of "targ" at this point due to potential locking order issues;
6756          * we assume that between the hat_pageunload() above and holding
6757          * the SE_EXCL lock that the mapping list *cannot* change at this
6758          * point.
6759          */
6760         ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
6761         if (ret != 0) {
6762                 /*
6763                  * EIO translates to fatal error, for all others cleanup
6764                  * and return EAGAIN.
6765                  */
6766                 ASSERT(ret != EIO);
6767                 hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
6768                 PAGE_RELOCATE_LOG(target, replacement, ret, -1);
6769                 kreloc_thread = NULL;
6770                 mutex_exit(&kpr_mutex);
6771                 return (EAGAIN);
6772         }
6773 
6774         /*
6775          * acquire p_mapping list lock for both the target and replacement
6776          * root pages.
6777          *
6778          * low and high refer to the need to grab the mlist locks in a
6779          * specific order in order to prevent race conditions.  Thus the
6780          * lower lock must be grabbed before the higher lock.
6781          *
6782          * This will block hat_unload's accessing p_mapping list.  Since
6783          * we have SE_EXCL lock, hat_memload and hat_pageunload will be
6784          * blocked.  Thus, no one else will be accessing the p_mapping list
6785          * while we suspend and reload the locked mapping below.
6786          */
6787         tpp = targ;
6788         rpp = repl;
6789         sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
6790 
6791         kpreempt_disable();
6792 
6793         /*
6794          * We raise our PIL to 13 so that we don't get captured by
6795          * another CPU or pinned by an interrupt thread.  We can't go to
6796          * PIL 14 since the nexus driver(s) may need to interrupt at
6797          * that level in the case of IOMMU pseudo mappings.
6798          */
6799         cpuset = cpu_ready_set;
6800         CPUSET_DEL(cpuset, CPU->cpu_id);
6801         if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
6802                 old_pil = splr(XCALL_PIL);
6803         } else {
6804                 old_pil = -1;
6805                 xc_attention(cpuset);
6806         }
6807         ASSERT(getpil() == XCALL_PIL);
6808 
6809         /*
6810          * Now do suspend callbacks. In the case of an IOMMU mapping
6811          * this will suspend all DMA activity to the page while it is
6812          * being relocated. Since we are well above LOCK_LEVEL and CPUs
6813          * may be captured at this point we should have acquired any needed
6814          * locks in the presuspend callback.
6815          */
6816         ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
6817         if (ret != 0) {
6818                 repl = targ;
6819                 goto suspend_fail;
6820         }
6821 
6822         /*
6823          * Raise the PIL yet again, this time to block all high-level
6824          * interrupts on this CPU. This is necessary to prevent an
6825          * interrupt routine from pinning the thread which holds the
6826          * mapping suspended and then touching the suspended page.
6827          *
6828          * Once the page is suspended we also need to be careful to
6829          * avoid calling any functions which touch any seg_kmem memory
6830          * since that memory may be backed by the very page we are
6831          * relocating in here!
6832          */
6833         hat_pagesuspend(targ);
6834 
6835         /*
6836          * Now that we are confident everybody has stopped using this page,
6837          * copy the page contents.  Note we use a physical copy to prevent
6838          * locking issues and to avoid fpRAS because we can't handle it in
6839          * this context.
6840          */
6841         for (i = 0; i < npages; i++, tpp++, rpp++) {
6842 #ifdef VAC
6843                 /*
6844                  * If the replacement has a different vcolor than
6845                  * the one being replacd, we need to handle VAC
6846                  * consistency for it just as we were setting up
6847                  * a new mapping to it.
6848                  */
6849                 if ((PP_GET_VCOLOR(rpp) != NO_VCOLOR) &&
6850                     (tpp->p_vcolor != rpp->p_vcolor) &&
6851                     !CacheColor_IsFlushed(cflags, PP_GET_VCOLOR(rpp))) {
6852                         CacheColor_SetFlushed(cflags, PP_GET_VCOLOR(rpp));
6853                         sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
6854                             rpp->p_pagenum);
6855                 }
6856 #endif
6857                 /*
6858                  * Copy the contents of the page.
6859                  */
6860                 ppcopy_kernel(tpp, rpp);
6861         }
6862 
6863         tpp = targ;
6864         rpp = repl;
6865         for (i = 0; i < npages; i++, tpp++, rpp++) {
6866                 /*
6867                  * Copy attributes.  VAC consistency was handled above,
6868                  * if required.
6869                  */
6870                 rpp->p_nrm = tpp->p_nrm;
6871                 tpp->p_nrm = 0;
6872                 rpp->p_index = tpp->p_index;
6873                 tpp->p_index = 0;
6874 #ifdef VAC
6875                 rpp->p_vcolor = tpp->p_vcolor;
6876 #endif
6877         }
6878 
6879         /*
6880          * First, unsuspend the page, if we set the suspend bit, and transfer
6881          * the mapping list from the target page to the replacement page.
6882          * Next process postcallbacks; since pa_hment's are linked only to the
6883          * p_mapping list of root page, we don't iterate over the constituent
6884          * pages.
6885          */
6886         hat_pagereload(targ, repl);
6887 
6888 suspend_fail:
6889         hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
6890 
6891         /*
6892          * Now lower our PIL and release any captured CPUs since we
6893          * are out of the "danger zone".  After this it will again be
6894          * safe to acquire adaptive mutex locks, or to drop them...
6895          */
6896         if (old_pil != -1) {
6897                 splx(old_pil);
6898         } else {
6899                 xc_dismissed(cpuset);
6900         }
6901 
6902         kpreempt_enable();
6903 
6904         sfmmu_mlist_reloc_exit(low, high);
6905 
6906         /*
6907          * Postsuspend callbacks should drop any locks held across
6908          * the suspend callbacks.  As before, we don't hold the mapping
6909          * list lock at this point.. our assumption is that the mapping
6910          * list still can't change due to our holding SE_EXCL lock and
6911          * there being no unlocked mappings left. Hence the restriction
6912          * on calling context to hat_delete_callback()
6913          */
6914         hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
6915         if (ret != 0) {
6916                 /*
6917                  * The second presuspend call failed: we got here through
6918                  * the suspend_fail label above.
6919                  */
6920                 ASSERT(ret != EIO);
6921                 PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
6922                 kreloc_thread = NULL;
6923                 mutex_exit(&kpr_mutex);
6924                 return (EAGAIN);
6925         }
6926 
6927         /*
6928          * Now that we're out of the performance critical section we can
6929          * take care of updating the hash table, since we still
6930          * hold all the pages locked SE_EXCL at this point we
6931          * needn't worry about things changing out from under us.
6932          */
6933         tpp = targ;
6934         rpp = repl;
6935         for (i = 0; i < npages; i++, tpp++, rpp++) {
6936 
6937                 /*
6938                  * replace targ with replacement in page_hash table
6939                  */
6940                 targ = tpp;
6941                 page_relocate_hash(rpp, targ);
6942 
6943                 /*
6944                  * concatenate target; caller of platform_page_relocate()
6945                  * expects target to be concatenated after returning.
6946                  */
6947                 ASSERT(targ->p_next == targ);
6948                 ASSERT(targ->p_prev == targ);
6949                 page_list_concat(&pl, &targ);
6950         }
6951 
6952         ASSERT(*target == pl);
6953         *nrelocp = npages;
6954         PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
6955         kreloc_thread = NULL;
6956         mutex_exit(&kpr_mutex);
6957         return (0);
6958 }
6959 
6960 /*
6961  * Called when stray pa_hments are found attached to a page which is
6962  * being freed.  Notify the subsystem which attached the pa_hment of
6963  * the error if it registered a suitable handler, else panic.
6964  */
6965 static void
6966 sfmmu_pahment_leaked(struct pa_hment *pahmep)
6967 {
6968         id_t cb_id = pahmep->cb_id;
6969 
6970         ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
6971         if (sfmmu_cb_table[cb_id].errhandler != NULL) {
6972                 if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
6973                     HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
6974                         return;         /* non-fatal */
6975         }
6976         panic("pa_hment leaked: 0x%p", (void *)pahmep);
6977 }
6978 
6979 /*
6980  * Remove all mappings to page 'pp'.
6981  */
6982 int
6983 hat_pageunload(struct page *pp, uint_t forceflag)
6984 {
6985         struct page *origpp = pp;
6986         struct sf_hment *sfhme, *tmphme;
6987         struct hme_blk *hmeblkp;
6988         kmutex_t *pml;
6989 #ifdef VAC
6990         kmutex_t *pmtx;
6991 #endif
6992         cpuset_t cpuset, tset;
6993         int index, cons;
6994         int xhme_blks;
6995         int pa_hments;
6996 
6997         ASSERT(PAGE_EXCL(pp));
6998 
6999 retry_xhat:
7000         tmphme = NULL;
7001         xhme_blks = 0;
7002         pa_hments = 0;
7003         CPUSET_ZERO(cpuset);
7004 
7005         pml = sfmmu_mlist_enter(pp);
7006 
7007 #ifdef VAC
7008         if (pp->p_kpmref)
7009                 sfmmu_kpm_pageunload(pp);
7010         ASSERT(!PP_ISMAPPED_KPM(pp));
7011 #endif
7012         /*
7013          * Clear vpm reference. Since the page is exclusively locked
7014          * vpm cannot be referencing it.
7015          */
7016         if (vpm_enable) {
7017                 pp->p_vpmref = 0;
7018         }
7019 
7020         index = PP_MAPINDEX(pp);
7021         cons = TTE8K;
7022 retry:
7023         for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7024                 tmphme = sfhme->hme_next;
7025 
7026                 if (IS_PAHME(sfhme)) {
7027                         ASSERT(sfhme->hme_data != NULL);
7028                         pa_hments++;
7029                         continue;
7030                 }
7031 
7032                 hmeblkp = sfmmu_hmetohblk(sfhme);
7033                 if (hmeblkp->hblk_xhat_bit) {
7034                         struct xhat_hme_blk *xblk =
7035                             (struct xhat_hme_blk *)hmeblkp;
7036 
7037                         (void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat,
7038                             pp, forceflag, XBLK2PROVBLK(xblk));
7039 
7040                         xhme_blks = 1;
7041                         continue;
7042                 }
7043 
7044                 /*
7045                  * If there are kernel mappings don't unload them, they will
7046                  * be suspended.
7047                  */
7048                 if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
7049                     hmeblkp->hblk_tag.htag_id == ksfmmup)
7050                         continue;
7051 
7052                 tset = sfmmu_pageunload(pp, sfhme, cons);
7053                 CPUSET_OR(cpuset, tset);
7054         }
7055 
7056         while (index != 0) {
7057                 index = index >> 1;
7058                 if (index != 0)
7059                         cons++;
7060                 if (index & 0x1) {
7061                         /* Go to leading page */
7062                         pp = PP_GROUPLEADER(pp, cons);
7063                         ASSERT(sfmmu_mlist_held(pp));
7064                         goto retry;
7065                 }
7066         }
7067 
7068         /*
7069          * cpuset may be empty if the page was only mapped by segkpm,
7070          * in which case we won't actually cross-trap.
7071          */
7072         xt_sync(cpuset);
7073 
7074         /*
7075          * The page should have no mappings at this point, unless
7076          * we were called from hat_page_relocate() in which case we
7077          * leave the locked mappings which will be suspended later.
7078          */
7079         ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments ||
7080             (forceflag == SFMMU_KERNEL_RELOC));
7081 
7082 #ifdef VAC
7083         if (PP_ISTNC(pp)) {
7084                 if (cons == TTE8K) {
7085                         pmtx = sfmmu_page_enter(pp);
7086                         PP_CLRTNC(pp);
7087                         sfmmu_page_exit(pmtx);
7088                 } else {
7089                         conv_tnc(pp, cons);
7090                 }
7091         }
7092 #endif  /* VAC */
7093 
7094         if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
7095                 /*
7096                  * Unlink any pa_hments and free them, calling back
7097                  * the responsible subsystem to notify it of the error.
7098                  * This can occur in situations such as drivers leaking
7099                  * DMA handles: naughty, but common enough that we'd like
7100                  * to keep the system running rather than bringing it
7101                  * down with an obscure error like "pa_hment leaked"
7102                  * which doesn't aid the user in debugging their driver.
7103                  */
7104                 for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7105                         tmphme = sfhme->hme_next;
7106                         if (IS_PAHME(sfhme)) {
7107                                 struct pa_hment *pahmep = sfhme->hme_data;
7108                                 sfmmu_pahment_leaked(pahmep);
7109                                 HME_SUB(sfhme, pp);
7110                                 kmem_cache_free(pa_hment_cache, pahmep);
7111                         }
7112                 }
7113 
7114                 ASSERT(!PP_ISMAPPED(origpp) || xhme_blks);
7115         }
7116 
7117         sfmmu_mlist_exit(pml);
7118 
7119         /*
7120          * XHAT may not have finished unloading pages
7121          * because some other thread was waiting for
7122          * mlist lock and XHAT_PAGEUNLOAD let it do
7123          * the job.
7124          */
7125         if (xhme_blks) {
7126                 pp = origpp;
7127                 goto retry_xhat;
7128         }
7129 
7130         return (0);
7131 }
7132 
7133 cpuset_t
7134 sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
7135 {
7136         struct hme_blk *hmeblkp;
7137         sfmmu_t *sfmmup;
7138         tte_t tte, ttemod;
7139 #ifdef DEBUG
7140         tte_t orig_old;
7141 #endif /* DEBUG */
7142         caddr_t addr;
7143         int ttesz;
7144         int ret;
7145         cpuset_t cpuset;
7146 
7147         ASSERT(pp != NULL);
7148         ASSERT(sfmmu_mlist_held(pp));
7149         ASSERT(!PP_ISKAS(pp));
7150 
7151         CPUSET_ZERO(cpuset);
7152 
7153         hmeblkp = sfmmu_hmetohblk(sfhme);
7154 
7155 readtte:
7156         sfmmu_copytte(&sfhme->hme_tte, &tte);
7157         if (TTE_IS_VALID(&tte)) {
7158                 sfmmup = hblktosfmmu(hmeblkp);
7159                 ttesz = get_hblk_ttesz(hmeblkp);
7160                 /*
7161                  * Only unload mappings of 'cons' size.
7162                  */
7163                 if (ttesz != cons)
7164                         return (cpuset);
7165 
7166                 /*
7167                  * Note that we have p_mapping lock, but no hash lock here.
7168                  * hblk_unload() has to have both hash lock AND p_mapping
7169                  * lock before it tries to modify tte. So, the tte could
7170                  * not become invalid in the sfmmu_modifytte_try() below.
7171                  */
7172                 ttemod = tte;
7173 #ifdef DEBUG
7174                 orig_old = tte;
7175 #endif /* DEBUG */
7176 
7177                 TTE_SET_INVALID(&ttemod);
7178                 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7179                 if (ret < 0) {
7180 #ifdef DEBUG
7181                         /* only R/M bits can change. */
7182                         chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
7183 #endif /* DEBUG */
7184                         goto readtte;
7185                 }
7186 
7187                 if (ret == 0) {
7188                         panic("pageunload: cas failed?");
7189                 }
7190 
7191                 addr = tte_to_vaddr(hmeblkp, tte);
7192 
7193                 if (hmeblkp->hblk_shared) {
7194                         sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7195                         uint_t rid = hmeblkp->hblk_tag.htag_rid;
7196                         sf_region_t *rgnp;
7197                         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7198                         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7199                         ASSERT(srdp != NULL);
7200                         rgnp = srdp->srd_hmergnp[rid];
7201                         SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
7202                         cpuset = sfmmu_rgntlb_demap(addr, rgnp, hmeblkp, 1);
7203                         sfmmu_ttesync(NULL, addr, &tte, pp);
7204                         ASSERT(rgnp->rgn_ttecnt[ttesz] > 0);
7205                         atomic_add_long(&rgnp->rgn_ttecnt[ttesz], -1);
7206                 } else {
7207                         sfmmu_ttesync(sfmmup, addr, &tte, pp);
7208                         atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1);
7209 
7210                         /*
7211                          * We need to flush the page from the virtual cache
7212                          * in order to prevent a virtual cache alias
7213                          * inconsistency. The particular scenario we need
7214                          * to worry about is:
7215                          * Given:  va1 and va2 are two virtual address that
7216                          * alias and will map the same physical address.
7217                          * 1.   mapping exists from va1 to pa and data has
7218                          *      been read into the cache.
7219                          * 2.   unload va1.
7220                          * 3.   load va2 and modify data using va2.
7221                          * 4    unload va2.
7222                          * 5.   load va1 and reference data.  Unless we flush
7223                          *      the data cache when we unload we will get
7224                          *      stale data.
7225                          * This scenario is taken care of by using virtual
7226                          * page coloring.
7227                          */
7228                         if (sfmmup->sfmmu_ismhat) {
7229                                 /*
7230                                  * Flush TSBs, TLBs and caches
7231                                  * of every process
7232                                  * sharing this ism segment.
7233                                  */
7234                                 sfmmu_hat_lock_all();
7235                                 mutex_enter(&ism_mlist_lock);
7236                                 kpreempt_disable();
7237                                 sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
7238                                     pp->p_pagenum, CACHE_NO_FLUSH);
7239                                 kpreempt_enable();
7240                                 mutex_exit(&ism_mlist_lock);
7241                                 sfmmu_hat_unlock_all();
7242                                 cpuset = cpu_ready_set;
7243                         } else {
7244                                 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7245                                 cpuset = sfmmup->sfmmu_cpusran;
7246                         }
7247                 }
7248 
7249                 /*
7250                  * Hme_sub has to run after ttesync() and a_rss update.
7251                  * See hblk_unload().
7252                  */
7253                 HME_SUB(sfhme, pp);
7254                 membar_stst();
7255 
7256                 /*
7257                  * We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
7258                  * since pteload may have done a HME_ADD() right after
7259                  * we did the HME_SUB() above. Hmecnt is now maintained
7260                  * by cas only. no lock guranteed its value. The only
7261                  * gurantee we have is the hmecnt should not be less than
7262                  * what it should be so the hblk will not be taken away.
7263                  * It's also important that we decremented the hmecnt after
7264                  * we are done with hmeblkp so that this hmeblk won't be
7265                  * stolen.
7266                  */
7267                 ASSERT(hmeblkp->hblk_hmecnt > 0);
7268                 ASSERT(hmeblkp->hblk_vcnt > 0);
7269                 atomic_add_16(&hmeblkp->hblk_vcnt, -1);
7270                 atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
7271                 /*
7272                  * This is bug 4063182.
7273                  * XXX: fixme
7274                  * ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
7275                  *      !hmeblkp->hblk_lckcnt);
7276                  */
7277         } else {
7278                 panic("invalid tte? pp %p &tte %p",
7279                     (void *)pp, (void *)&tte);
7280         }
7281 
7282         return (cpuset);
7283 }
7284 
7285 /*
7286  * While relocating a kernel page, this function will move the mappings
7287  * from tpp to dpp and modify any associated data with these mappings.
7288  * It also unsuspends the suspended kernel mapping.
7289  */
7290 static void
7291 hat_pagereload(struct page *tpp, struct page *dpp)
7292 {
7293         struct sf_hment *sfhme;
7294         tte_t tte, ttemod;
7295         int index, cons;
7296 
7297         ASSERT(getpil() == PIL_MAX);
7298         ASSERT(sfmmu_mlist_held(tpp));
7299         ASSERT(sfmmu_mlist_held(dpp));
7300 
7301         index = PP_MAPINDEX(tpp);
7302         cons = TTE8K;
7303 
7304         /* Update real mappings to the page */
7305 retry:
7306         for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
7307                 if (IS_PAHME(sfhme))
7308                         continue;
7309                 sfmmu_copytte(&sfhme->hme_tte, &tte);
7310                 ttemod = tte;
7311 
7312                 /*
7313                  * replace old pfn with new pfn in TTE
7314                  */
7315                 PFN_TO_TTE(ttemod, dpp->p_pagenum);
7316 
7317                 /*
7318                  * clear suspend bit
7319                  */
7320                 ASSERT(TTE_IS_SUSPEND(&ttemod));
7321                 TTE_CLR_SUSPEND(&ttemod);
7322 
7323                 if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
7324                         panic("hat_pagereload(): sfmmu_modifytte_try() failed");
7325 
7326                 /*
7327                  * set hme_page point to new page
7328                  */
7329                 sfhme->hme_page = dpp;
7330         }
7331 
7332         /*
7333          * move p_mapping list from old page to new page
7334          */
7335         dpp->p_mapping = tpp->p_mapping;
7336         tpp->p_mapping = NULL;
7337         dpp->p_share = tpp->p_share;
7338         tpp->p_share = 0;
7339 
7340         while (index != 0) {
7341                 index = index >> 1;
7342                 if (index != 0)
7343                         cons++;
7344                 if (index & 0x1) {
7345                         tpp = PP_GROUPLEADER(tpp, cons);
7346                         dpp = PP_GROUPLEADER(dpp, cons);
7347                         goto retry;
7348                 }
7349         }
7350 
7351         curthread->t_flag &= ~T_DONTDTRACE;
7352         mutex_exit(&kpr_suspendlock);
7353 }
7354 
7355 uint_t
7356 hat_pagesync(struct page *pp, uint_t clearflag)
7357 {
7358         struct sf_hment *sfhme, *tmphme = NULL;
7359         struct hme_blk *hmeblkp;
7360         kmutex_t *pml;
7361         cpuset_t cpuset, tset;
7362         int     index, cons;
7363         extern  ulong_t po_share;
7364         page_t  *save_pp = pp;
7365         int     stop_on_sh = 0;
7366         uint_t  shcnt;
7367 
7368         CPUSET_ZERO(cpuset);
7369 
7370         if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
7371                 return (PP_GENERIC_ATTR(pp));
7372         }
7373 
7374         if ((clearflag & HAT_SYNC_ZERORM) == 0) {
7375                 if ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(pp)) {
7376                         return (PP_GENERIC_ATTR(pp));
7377                 }
7378                 if ((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(pp)) {
7379                         return (PP_GENERIC_ATTR(pp));
7380                 }
7381                 if (clearflag & HAT_SYNC_STOPON_SHARED) {
7382                         if (pp->p_share > po_share) {
7383                                 hat_page_setattr(pp, P_REF);
7384                                 return (PP_GENERIC_ATTR(pp));
7385                         }
7386                         stop_on_sh = 1;
7387                         shcnt = 0;
7388                 }
7389         }
7390 
7391         clearflag &= ~HAT_SYNC_STOPON_SHARED;
7392         pml = sfmmu_mlist_enter(pp);
7393         index = PP_MAPINDEX(pp);
7394         cons = TTE8K;
7395 retry:
7396         for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7397                 /*
7398                  * We need to save the next hment on the list since
7399                  * it is possible for pagesync to remove an invalid hment
7400                  * from the list.
7401                  */
7402                 tmphme = sfhme->hme_next;
7403                 if (IS_PAHME(sfhme))
7404                         continue;
7405                 /*
7406                  * If we are looking for large mappings and this hme doesn't
7407                  * reach the range we are seeking, just ignore it.
7408                  */
7409                 hmeblkp = sfmmu_hmetohblk(sfhme);
7410                 if (hmeblkp->hblk_xhat_bit)
7411                         continue;
7412 
7413                 if (hme_size(sfhme) < cons)
7414                         continue;
7415 
7416                 if (stop_on_sh) {
7417                         if (hmeblkp->hblk_shared) {
7418                                 sf_srd_t *srdp = hblktosrd(hmeblkp);
7419                                 uint_t rid = hmeblkp->hblk_tag.htag_rid;
7420                                 sf_region_t *rgnp;
7421                                 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7422                                 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7423                                 ASSERT(srdp != NULL);
7424                                 rgnp = srdp->srd_hmergnp[rid];
7425                                 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
7426                                     rgnp, rid);
7427                                 shcnt += rgnp->rgn_refcnt;
7428                         } else {
7429                                 shcnt++;
7430                         }
7431                         if (shcnt > po_share) {
7432                                 /*
7433                                  * tell the pager to spare the page this time
7434                                  * around.
7435                                  */
7436                                 hat_page_setattr(save_pp, P_REF);
7437                                 index = 0;
7438                                 break;
7439                         }
7440                 }
7441                 tset = sfmmu_pagesync(pp, sfhme,
7442                     clearflag & ~HAT_SYNC_STOPON_RM);
7443                 CPUSET_OR(cpuset, tset);
7444 
7445                 /*
7446                  * If clearflag is HAT_SYNC_DONTZERO, break out as soon
7447                  * as the "ref" or "mod" is set or share cnt exceeds po_share.
7448                  */
7449                 if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
7450                     (((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
7451                     ((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)))) {
7452                         index = 0;
7453                         break;
7454                 }
7455         }
7456 
7457         while (index) {
7458                 index = index >> 1;
7459                 cons++;
7460                 if (index & 0x1) {
7461                         /* Go to leading page */
7462                         pp = PP_GROUPLEADER(pp, cons);
7463                         goto retry;
7464                 }
7465         }
7466 
7467         xt_sync(cpuset);
7468         sfmmu_mlist_exit(pml);
7469         return (PP_GENERIC_ATTR(save_pp));
7470 }
7471 
7472 /*
7473  * Get all the hardware dependent attributes for a page struct
7474  */
7475 static cpuset_t
7476 sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
7477         uint_t clearflag)
7478 {
7479         caddr_t addr;
7480         tte_t tte, ttemod;
7481         struct hme_blk *hmeblkp;
7482         int ret;
7483         sfmmu_t *sfmmup;
7484         cpuset_t cpuset;
7485 
7486         ASSERT(pp != NULL);
7487         ASSERT(sfmmu_mlist_held(pp));
7488         ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
7489             (clearflag == HAT_SYNC_ZERORM));
7490 
7491         SFMMU_STAT(sf_pagesync);
7492 
7493         CPUSET_ZERO(cpuset);
7494 
7495 sfmmu_pagesync_retry:
7496 
7497         sfmmu_copytte(&sfhme->hme_tte, &tte);
7498         if (TTE_IS_VALID(&tte)) {
7499                 hmeblkp = sfmmu_hmetohblk(sfhme);
7500                 sfmmup = hblktosfmmu(hmeblkp);
7501                 addr = tte_to_vaddr(hmeblkp, tte);
7502                 if (clearflag == HAT_SYNC_ZERORM) {
7503                         ttemod = tte;
7504                         TTE_CLR_RM(&ttemod);
7505                         ret = sfmmu_modifytte_try(&tte, &ttemod,
7506                             &sfhme->hme_tte);
7507                         if (ret < 0) {
7508                                 /*
7509                                  * cas failed and the new value is not what
7510                                  * we want.
7511                                  */
7512                                 goto sfmmu_pagesync_retry;
7513                         }
7514 
7515                         if (ret > 0) {
7516                                 /* we win the cas */
7517                                 if (hmeblkp->hblk_shared) {
7518                                         sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7519                                         uint_t rid =
7520                                             hmeblkp->hblk_tag.htag_rid;
7521                                         sf_region_t *rgnp;
7522                                         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7523                                         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7524                                         ASSERT(srdp != NULL);
7525                                         rgnp = srdp->srd_hmergnp[rid];
7526                                         SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7527                                             srdp, rgnp, rid);
7528                                         cpuset = sfmmu_rgntlb_demap(addr,
7529                                             rgnp, hmeblkp, 1);
7530                                 } else {
7531                                         sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
7532                                             0, 0);
7533                                         cpuset = sfmmup->sfmmu_cpusran;
7534                                 }
7535                         }
7536                 }
7537                 sfmmu_ttesync(hmeblkp->hblk_shared ? NULL : sfmmup, addr,
7538                     &tte, pp);
7539         }
7540         return (cpuset);
7541 }
7542 
7543 /*
7544  * Remove write permission from a mappings to a page, so that
7545  * we can detect the next modification of it. This requires modifying
7546  * the TTE then invalidating (demap) any TLB entry using that TTE.
7547  * This code is similar to sfmmu_pagesync().
7548  */
7549 static cpuset_t
7550 sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
7551 {
7552         caddr_t addr;
7553         tte_t tte;
7554         tte_t ttemod;
7555         struct hme_blk *hmeblkp;
7556         int ret;
7557         sfmmu_t *sfmmup;
7558         cpuset_t cpuset;
7559 
7560         ASSERT(pp != NULL);
7561         ASSERT(sfmmu_mlist_held(pp));
7562 
7563         CPUSET_ZERO(cpuset);
7564         SFMMU_STAT(sf_clrwrt);
7565 
7566 retry:
7567 
7568         sfmmu_copytte(&sfhme->hme_tte, &tte);
7569         if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
7570                 hmeblkp = sfmmu_hmetohblk(sfhme);
7571 
7572                 /*
7573                  * xhat mappings should never be to a VMODSORT page.
7574                  */
7575                 ASSERT(hmeblkp->hblk_xhat_bit == 0);
7576 
7577                 sfmmup = hblktosfmmu(hmeblkp);
7578                 addr = tte_to_vaddr(hmeblkp, tte);
7579 
7580                 ttemod = tte;
7581                 TTE_CLR_WRT(&ttemod);
7582                 TTE_CLR_MOD(&ttemod);
7583                 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
7584 
7585                 /*
7586                  * if cas failed and the new value is not what
7587                  * we want retry
7588                  */
7589                 if (ret < 0)
7590                         goto retry;
7591 
7592                 /* we win the cas */
7593                 if (ret > 0) {
7594                         if (hmeblkp->hblk_shared) {
7595                                 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
7596                                 uint_t rid = hmeblkp->hblk_tag.htag_rid;
7597                                 sf_region_t *rgnp;
7598                                 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7599                                 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7600                                 ASSERT(srdp != NULL);
7601                                 rgnp = srdp->srd_hmergnp[rid];
7602                                 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
7603                                     srdp, rgnp, rid);
7604                                 cpuset = sfmmu_rgntlb_demap(addr,
7605                                     rgnp, hmeblkp, 1);
7606                         } else {
7607                                 sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
7608                                 cpuset = sfmmup->sfmmu_cpusran;
7609                         }
7610                 }
7611         }
7612 
7613         return (cpuset);
7614 }
7615 
7616 /*
7617  * Walk all mappings of a page, removing write permission and clearing the
7618  * ref/mod bits. This code is similar to hat_pagesync()
7619  */
7620 static void
7621 hat_page_clrwrt(page_t *pp)
7622 {
7623         struct sf_hment *sfhme;
7624         struct sf_hment *tmphme = NULL;
7625         kmutex_t *pml;
7626         cpuset_t cpuset;
7627         cpuset_t tset;
7628         int     index;
7629         int      cons;
7630 
7631         CPUSET_ZERO(cpuset);
7632 
7633         pml = sfmmu_mlist_enter(pp);
7634         index = PP_MAPINDEX(pp);
7635         cons = TTE8K;
7636 retry:
7637         for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
7638                 tmphme = sfhme->hme_next;
7639 
7640                 /*
7641                  * If we are looking for large mappings and this hme doesn't
7642                  * reach the range we are seeking, just ignore its.
7643                  */
7644 
7645                 if (hme_size(sfhme) < cons)
7646                         continue;
7647 
7648                 tset = sfmmu_pageclrwrt(pp, sfhme);
7649                 CPUSET_OR(cpuset, tset);
7650         }
7651 
7652         while (index) {
7653                 index = index >> 1;
7654                 cons++;
7655                 if (index & 0x1) {
7656                         /* Go to leading page */
7657                         pp = PP_GROUPLEADER(pp, cons);
7658                         goto retry;
7659                 }
7660         }
7661 
7662         xt_sync(cpuset);
7663         sfmmu_mlist_exit(pml);
7664 }
7665 
7666 /*
7667  * Set the given REF/MOD/RO bits for the given page.
7668  * For a vnode with a sorted v_pages list, we need to change
7669  * the attributes and the v_pages list together under page_vnode_mutex.
7670  */
7671 void
7672 hat_page_setattr(page_t *pp, uint_t flag)
7673 {
7674         vnode_t         *vp = pp->p_vnode;
7675         page_t          **listp;
7676         kmutex_t        *pmtx;
7677         kmutex_t        *vphm = NULL;
7678         int             noshuffle;
7679 
7680         noshuffle = flag & P_NSH;
7681         flag &= ~P_NSH;
7682 
7683         ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7684 
7685         /*
7686          * nothing to do if attribute already set
7687          */
7688         if ((pp->p_nrm & flag) == flag)
7689                 return;
7690 
7691         if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
7692             !noshuffle) {
7693                 vphm = page_vnode_mutex(vp);
7694                 mutex_enter(vphm);
7695         }
7696 
7697         pmtx = sfmmu_page_enter(pp);
7698         pp->p_nrm |= flag;
7699         sfmmu_page_exit(pmtx);
7700 
7701         if (vphm != NULL) {
7702                 /*
7703                  * Some File Systems examine v_pages for NULL w/o
7704                  * grabbing the vphm mutex. Must not let it become NULL when
7705                  * pp is the only page on the list.
7706                  */
7707                 if (pp->p_vpnext != pp) {
7708                         page_vpsub(&vp->v_pages, pp);
7709                         if (vp->v_pages != NULL)
7710                                 listp = &vp->v_pages->p_vpprev->p_vpnext;
7711                         else
7712                                 listp = &vp->v_pages;
7713                         page_vpadd(listp, pp);
7714                 }
7715                 mutex_exit(vphm);
7716         }
7717 }
7718 
7719 void
7720 hat_page_clrattr(page_t *pp, uint_t flag)
7721 {
7722         vnode_t         *vp = pp->p_vnode;
7723         kmutex_t        *pmtx;
7724 
7725         ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7726 
7727         pmtx = sfmmu_page_enter(pp);
7728 
7729         /*
7730          * Caller is expected to hold page's io lock for VMODSORT to work
7731          * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
7732          * bit is cleared.
7733          * We don't have assert to avoid tripping some existing third party
7734          * code. The dirty page is moved back to top of the v_page list
7735          * after IO is done in pvn_write_done().
7736          */
7737         pp->p_nrm &= ~flag;
7738         sfmmu_page_exit(pmtx);
7739 
7740         if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
7741 
7742                 /*
7743                  * VMODSORT works by removing write permissions and getting
7744                  * a fault when a page is made dirty. At this point
7745                  * we need to remove write permission from all mappings
7746                  * to this page.
7747                  */
7748                 hat_page_clrwrt(pp);
7749         }
7750 }
7751 
7752 uint_t
7753 hat_page_getattr(page_t *pp, uint_t flag)
7754 {
7755         ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
7756         return ((uint_t)(pp->p_nrm & flag));
7757 }
7758 
7759 /*
7760  * DEBUG kernels: verify that a kernel va<->pa translation
7761  * is safe by checking the underlying page_t is in a page
7762  * relocation-safe state.
7763  */
7764 #ifdef  DEBUG
7765 void
7766 sfmmu_check_kpfn(pfn_t pfn)
7767 {
7768         page_t *pp;
7769         int index, cons;
7770 
7771         if (hat_check_vtop == 0)
7772                 return;
7773 
7774         if (kvseg.s_base == NULL || panicstr)
7775                 return;
7776 
7777         pp = page_numtopp_nolock(pfn);
7778         if (!pp)
7779                 return;
7780 
7781         if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7782                 return;
7783 
7784         /*
7785          * Handed a large kernel page, we dig up the root page since we
7786          * know the root page might have the lock also.
7787          */
7788         if (pp->p_szc != 0) {
7789                 index = PP_MAPINDEX(pp);
7790                 cons = TTE8K;
7791 again:
7792                 while (index != 0) {
7793                         index >>= 1;
7794                         if (index != 0)
7795                                 cons++;
7796                         if (index & 0x1) {
7797                                 pp = PP_GROUPLEADER(pp, cons);
7798                                 goto again;
7799                         }
7800                 }
7801         }
7802 
7803         if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
7804                 return;
7805 
7806         /*
7807          * Pages need to be locked or allocated "permanent" (either from
7808          * static_arena arena or explicitly setting PG_NORELOC when calling
7809          * page_create_va()) for VA->PA translations to be valid.
7810          */
7811         if (!PP_ISNORELOC(pp))
7812                 panic("Illegal VA->PA translation, pp 0x%p not permanent",
7813                     (void *)pp);
7814         else
7815                 panic("Illegal VA->PA translation, pp 0x%p not locked",
7816                     (void *)pp);
7817 }
7818 #endif  /* DEBUG */
7819 
7820 /*
7821  * Returns a page frame number for a given virtual address.
7822  * Returns PFN_INVALID to indicate an invalid mapping
7823  */
7824 pfn_t
7825 hat_getpfnum(struct hat *hat, caddr_t addr)
7826 {
7827         pfn_t pfn;
7828         tte_t tte;
7829 
7830         /*
7831          * We would like to
7832          * ASSERT(AS_LOCK_HELD(as, &as->a_lock));
7833          * but we can't because the iommu driver will call this
7834          * routine at interrupt time and it can't grab the as lock
7835          * or it will deadlock: A thread could have the as lock
7836          * and be waiting for io.  The io can't complete
7837          * because the interrupt thread is blocked trying to grab
7838          * the as lock.
7839          */
7840 
7841         ASSERT(hat->sfmmu_xhat_provider == NULL);
7842 
7843         if (hat == ksfmmup) {
7844                 if (IS_KMEM_VA_LARGEPAGE(addr)) {
7845                         ASSERT(segkmem_lpszc > 0);
7846                         pfn = sfmmu_kvaszc2pfn(addr, segkmem_lpszc);
7847                         if (pfn != PFN_INVALID) {
7848                                 sfmmu_check_kpfn(pfn);
7849                                 return (pfn);
7850                         }
7851                 } else if (segkpm && IS_KPM_ADDR(addr)) {
7852                         return (sfmmu_kpm_vatopfn(addr));
7853                 }
7854                 while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
7855                     == PFN_SUSPENDED) {
7856                         sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
7857                 }
7858                 sfmmu_check_kpfn(pfn);
7859                 return (pfn);
7860         } else {
7861                 return (sfmmu_uvatopfn(addr, hat, NULL));
7862         }
7863 }
7864 
7865 /*
7866  * This routine will return both pfn and tte for the vaddr.
7867  */
7868 static pfn_t
7869 sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup, tte_t *ttep)
7870 {
7871         struct hmehash_bucket *hmebp;
7872         hmeblk_tag hblktag;
7873         int hmeshift, hashno = 1;
7874         struct hme_blk *hmeblkp = NULL;
7875         tte_t tte;
7876 
7877         struct sf_hment *sfhmep;
7878         pfn_t pfn;
7879 
7880         /* support for ISM */
7881         ism_map_t       *ism_map;
7882         ism_blk_t       *ism_blkp;
7883         int             i;
7884         sfmmu_t *ism_hatid = NULL;
7885         sfmmu_t *locked_hatid = NULL;
7886         sfmmu_t *sv_sfmmup = sfmmup;
7887         caddr_t sv_vaddr = vaddr;
7888         sf_srd_t *srdp;
7889 
7890         if (ttep == NULL) {
7891                 ttep = &tte;
7892         } else {
7893                 ttep->ll = 0;
7894         }
7895 
7896         ASSERT(sfmmup != ksfmmup);
7897         SFMMU_STAT(sf_user_vtop);
7898         /*
7899          * Set ism_hatid if vaddr falls in a ISM segment.
7900          */
7901         ism_blkp = sfmmup->sfmmu_iblk;
7902         if (ism_blkp != NULL) {
7903                 sfmmu_ismhat_enter(sfmmup, 0);
7904                 locked_hatid = sfmmup;
7905         }
7906         while (ism_blkp != NULL && ism_hatid == NULL) {
7907                 ism_map = ism_blkp->iblk_maps;
7908                 for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
7909                         if (vaddr >= ism_start(ism_map[i]) &&
7910                             vaddr < ism_end(ism_map[i])) {
7911                                 sfmmup = ism_hatid = ism_map[i].imap_ismhat;
7912                                 vaddr = (caddr_t)(vaddr -
7913                                     ism_start(ism_map[i]));
7914                                 break;
7915                         }
7916                 }
7917                 ism_blkp = ism_blkp->iblk_next;
7918         }
7919         if (locked_hatid) {
7920                 sfmmu_ismhat_exit(locked_hatid, 0);
7921         }
7922 
7923         hblktag.htag_id = sfmmup;
7924         hblktag.htag_rid = SFMMU_INVALID_SHMERID;
7925         do {
7926                 hmeshift = HME_HASH_SHIFT(hashno);
7927                 hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
7928                 hblktag.htag_rehash = hashno;
7929                 hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
7930 
7931                 SFMMU_HASH_LOCK(hmebp);
7932 
7933                 HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
7934                 if (hmeblkp != NULL) {
7935                         ASSERT(!hmeblkp->hblk_shared);
7936                         HBLKTOHME(sfhmep, hmeblkp, vaddr);
7937                         sfmmu_copytte(&sfhmep->hme_tte, ttep);
7938                         SFMMU_HASH_UNLOCK(hmebp);
7939                         if (TTE_IS_VALID(ttep)) {
7940                                 pfn = TTE_TO_PFN(vaddr, ttep);
7941                                 return (pfn);
7942                         }
7943                         break;
7944                 }
7945                 SFMMU_HASH_UNLOCK(hmebp);
7946                 hashno++;
7947         } while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
7948 
7949         if (SF_HMERGNMAP_ISNULL(sv_sfmmup)) {
7950                 return (PFN_INVALID);
7951         }
7952         srdp = sv_sfmmup->sfmmu_srdp;
7953         ASSERT(srdp != NULL);
7954         ASSERT(srdp->srd_refcnt != 0);
7955         hblktag.htag_id = srdp;
7956         hashno = 1;
7957         do {
7958                 hmeshift = HME_HASH_SHIFT(hashno);
7959                 hblktag.htag_bspage = HME_HASH_BSPAGE(sv_vaddr, hmeshift);
7960                 hblktag.htag_rehash = hashno;
7961                 hmebp = HME_HASH_FUNCTION(srdp, sv_vaddr, hmeshift);
7962 
7963                 SFMMU_HASH_LOCK(hmebp);
7964                 for (hmeblkp = hmebp->hmeblkp; hmeblkp != NULL;
7965                     hmeblkp = hmeblkp->hblk_next) {
7966                         uint_t rid;
7967                         sf_region_t *rgnp;
7968                         caddr_t rsaddr;
7969                         caddr_t readdr;
7970 
7971                         if (!HTAGS_EQ_SHME(hmeblkp->hblk_tag, hblktag,
7972                             sv_sfmmup->sfmmu_hmeregion_map)) {
7973                                 continue;
7974                         }
7975                         ASSERT(hmeblkp->hblk_shared);
7976                         rid = hmeblkp->hblk_tag.htag_rid;
7977                         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
7978                         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
7979                         rgnp = srdp->srd_hmergnp[rid];
7980                         SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
7981                         HBLKTOHME(sfhmep, hmeblkp, sv_vaddr);
7982                         sfmmu_copytte(&sfhmep->hme_tte, ttep);
7983                         rsaddr = rgnp->rgn_saddr;
7984                         readdr = rsaddr + rgnp->rgn_size;
7985 #ifdef DEBUG
7986                         if (TTE_IS_VALID(ttep) ||
7987                             get_hblk_ttesz(hmeblkp) > TTE8K) {
7988                                 caddr_t eva = tte_to_evaddr(hmeblkp, ttep);
7989                                 ASSERT(eva > sv_vaddr);
7990                                 ASSERT(sv_vaddr >= rsaddr);
7991                                 ASSERT(sv_vaddr < readdr);
7992                                 ASSERT(eva <= readdr);
7993                         }
7994 #endif /* DEBUG */
7995                         /*
7996                          * Continue the search if we
7997                          * found an invalid 8K tte outside of the area
7998                          * covered by this hmeblk's region.
7999                          */
8000                         if (TTE_IS_VALID(ttep)) {
8001                                 SFMMU_HASH_UNLOCK(hmebp);
8002                                 pfn = TTE_TO_PFN(sv_vaddr, ttep);
8003                                 return (pfn);
8004                         } else if (get_hblk_ttesz(hmeblkp) > TTE8K ||
8005                             (sv_vaddr >= rsaddr && sv_vaddr < readdr)) {
8006                                 SFMMU_HASH_UNLOCK(hmebp);
8007                                 pfn = PFN_INVALID;
8008                                 return (pfn);
8009                         }
8010                 }
8011                 SFMMU_HASH_UNLOCK(hmebp);
8012                 hashno++;
8013         } while (hashno <= mmu_hashcnt);
8014         return (PFN_INVALID);
8015 }
8016 
8017 
8018 /*
8019  * For compatability with AT&T and later optimizations
8020  */
8021 /* ARGSUSED */
8022 void
8023 hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
8024 {
8025         ASSERT(hat != NULL);
8026         ASSERT(hat->sfmmu_xhat_provider == NULL);
8027 }
8028 
8029 /*
8030  * Return the number of mappings to a particular page.  This number is an
8031  * approximation of the number of people sharing the page.
8032  *
8033  * shared hmeblks or ism hmeblks are counted as 1 mapping here.
8034  * hat_page_checkshare() can be used to compare threshold to share
8035  * count that reflects the number of region sharers albeit at higher cost.
8036  */
8037 ulong_t
8038 hat_page_getshare(page_t *pp)
8039 {
8040         page_t *spp = pp;       /* start page */
8041         kmutex_t *pml;
8042         ulong_t cnt;
8043         int index, sz = TTE64K;
8044 
8045         /*
8046          * We need to grab the mlist lock to make sure any outstanding
8047          * load/unloads complete.  Otherwise we could return zero
8048          * even though the unload(s) hasn't finished yet.
8049          */
8050         pml = sfmmu_mlist_enter(spp);
8051         cnt = spp->p_share;
8052 
8053 #ifdef VAC
8054         if (kpm_enable)
8055                 cnt += spp->p_kpmref;
8056 #endif
8057         if (vpm_enable && pp->p_vpmref) {
8058                 cnt += 1;
8059         }
8060 
8061         /*
8062          * If we have any large mappings, we count the number of
8063          * mappings that this large page is part of.
8064          */
8065         index = PP_MAPINDEX(spp);
8066         index >>= 1;
8067         while (index) {
8068                 pp = PP_GROUPLEADER(spp, sz);
8069                 if ((index & 0x1) && pp != spp) {
8070                         cnt += pp->p_share;
8071                         spp = pp;
8072                 }
8073                 index >>= 1;
8074                 sz++;
8075         }
8076         sfmmu_mlist_exit(pml);
8077         return (cnt);
8078 }
8079 
8080 /*
8081  * Return 1 if the number of mappings exceeds sh_thresh. Return 0
8082  * otherwise. Count shared hmeblks by region's refcnt.
8083  */
8084 int
8085 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
8086 {
8087         kmutex_t *pml;
8088         ulong_t cnt = 0;
8089         int index, sz = TTE8K;
8090         struct sf_hment *sfhme, *tmphme = NULL;
8091         struct hme_blk *hmeblkp;
8092 
8093         pml = sfmmu_mlist_enter(pp);
8094 
8095 #ifdef VAC
8096         if (kpm_enable)
8097                 cnt = pp->p_kpmref;
8098 #endif
8099 
8100         if (vpm_enable && pp->p_vpmref) {
8101                 cnt += 1;
8102         }
8103 
8104         if (pp->p_share + cnt > sh_thresh) {
8105                 sfmmu_mlist_exit(pml);
8106                 return (1);
8107         }
8108 
8109         index = PP_MAPINDEX(pp);
8110 
8111 again:
8112         for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
8113                 tmphme = sfhme->hme_next;
8114                 if (IS_PAHME(sfhme)) {
8115                         continue;
8116                 }
8117 
8118                 hmeblkp = sfmmu_hmetohblk(sfhme);
8119                 if (hmeblkp->hblk_xhat_bit) {
8120                         cnt++;
8121                         if (cnt > sh_thresh) {
8122                                 sfmmu_mlist_exit(pml);
8123                                 return (1);
8124                         }
8125                         continue;
8126                 }
8127                 if (hme_size(sfhme) != sz) {
8128                         continue;
8129                 }
8130 
8131                 if (hmeblkp->hblk_shared) {
8132                         sf_srd_t *srdp = hblktosrd(hmeblkp);
8133                         uint_t rid = hmeblkp->hblk_tag.htag_rid;
8134                         sf_region_t *rgnp;
8135                         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
8136                         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
8137                         ASSERT(srdp != NULL);
8138                         rgnp = srdp->srd_hmergnp[rid];
8139                         SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp,
8140                             rgnp, rid);
8141                         cnt += rgnp->rgn_refcnt;
8142                 } else {
8143                         cnt++;
8144                 }
8145                 if (cnt > sh_thresh) {
8146                         sfmmu_mlist_exit(pml);
8147                         return (1);
8148                 }
8149         }
8150 
8151         index >>= 1;
8152         sz++;
8153         while (index) {
8154                 pp = PP_GROUPLEADER(pp, sz);
8155                 ASSERT(sfmmu_mlist_held(pp));
8156                 if (index & 0x1) {
8157                         goto again;
8158                 }
8159                 index >>= 1;
8160                 sz++;
8161         }
8162         sfmmu_mlist_exit(pml);
8163         return (0);
8164 }
8165 
8166 /*
8167  * Unload all large mappings to the pp and reset the p_szc field of every
8168  * constituent page according to the remaining mappings.
8169  *
8170  * pp must be locked SE_EXCL. Even though no other constituent pages are
8171  * locked it's legal to unload the large mappings to the pp because all
8172  * constituent pages of large locked mappings have to be locked SE_SHARED.
8173  * This means if we have SE_EXCL lock on one of constituent pages none of the
8174  * large mappings to pp are locked.
8175  *
8176  * Decrease p_szc field starting from the last constituent page and ending
8177  * with the root page. This method is used because other threads rely on the
8178  * root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
8179  * is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
8180  * ensures that p_szc changes of the constituent pages appears atomic for all
8181  * threads that use sfmmu_mlspl_enter() to examine p_szc field.
8182  *
8183  * This mechanism is only used for file system pages where it's not always
8184  * possible to get SE_EXCL locks on all constituent pages to demote the size
8185  * code (as is done for anonymous or kernel large pages).
8186  *
8187  * See more comments in front of sfmmu_mlspl_enter().
8188  */
8189 void
8190 hat_page_demote(page_t *pp)
8191 {
8192         int index;
8193         int sz;
8194         cpuset_t cpuset;
8195         int sync = 0;
8196         page_t *rootpp;
8197         struct sf_hment *sfhme;
8198         struct sf_hment *tmphme = NULL;
8199         struct hme_blk *hmeblkp;
8200         uint_t pszc;
8201         page_t *lastpp;
8202         cpuset_t tset;
8203         pgcnt_t npgs;
8204         kmutex_t *pml;
8205         kmutex_t *pmtx = NULL;
8206 
8207         ASSERT(PAGE_EXCL(pp));
8208         ASSERT(!PP_ISFREE(pp));
8209         ASSERT(!PP_ISKAS(pp));
8210         ASSERT(page_szc_lock_assert(pp));
8211         pml = sfmmu_mlist_enter(pp);
8212 
8213         pszc = pp->p_szc;
8214         if (pszc == 0) {
8215                 goto out;
8216         }
8217 
8218         index = PP_MAPINDEX(pp) >> 1;
8219 
8220         if (index) {
8221                 CPUSET_ZERO(cpuset);
8222                 sz = TTE64K;
8223                 sync = 1;
8224         }
8225 
8226         while (index) {
8227                 if (!(index & 0x1)) {
8228                         index >>= 1;
8229                         sz++;
8230                         continue;
8231                 }
8232                 ASSERT(sz <= pszc);
8233                 rootpp = PP_GROUPLEADER(pp, sz);
8234                 for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
8235                         tmphme = sfhme->hme_next;
8236                         ASSERT(!IS_PAHME(sfhme));
8237                         hmeblkp = sfmmu_hmetohblk(sfhme);
8238                         if (hme_size(sfhme) != sz) {
8239                                 continue;
8240                         }
8241                         if (hmeblkp->hblk_xhat_bit) {
8242                                 cmn_err(CE_PANIC,
8243                                     "hat_page_demote: xhat hmeblk");
8244                         }
8245                         tset = sfmmu_pageunload(rootpp, sfhme, sz);
8246                         CPUSET_OR(cpuset, tset);
8247                 }
8248                 if (index >>= 1) {
8249                         sz++;
8250                 }
8251         }
8252 
8253         ASSERT(!PP_ISMAPPED_LARGE(pp));
8254 
8255         if (sync) {
8256                 xt_sync(cpuset);
8257 #ifdef VAC
8258                 if (PP_ISTNC(pp)) {
8259                         conv_tnc(rootpp, sz);
8260                 }
8261 #endif  /* VAC */
8262         }
8263 
8264         pmtx = sfmmu_page_enter(pp);
8265 
8266         ASSERT(pp->p_szc == pszc);
8267         rootpp = PP_PAGEROOT(pp);
8268         ASSERT(rootpp->p_szc == pszc);
8269         lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
8270 
8271         while (lastpp != rootpp) {
8272                 sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
8273                 ASSERT(sz < pszc);
8274                 npgs = (sz == 0) ? 1 : TTEPAGES(sz);
8275                 ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
8276                 while (--npgs > 0) {
8277                         lastpp->p_szc = (uchar_t)sz;
8278                         lastpp = PP_PAGEPREV(lastpp);
8279                 }
8280                 if (sz) {
8281                         /*
8282                          * make sure before current root's pszc
8283                          * is updated all updates to constituent pages pszc
8284                          * fields are globally visible.
8285                          */
8286                         membar_producer();
8287                 }
8288                 lastpp->p_szc = sz;
8289                 ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
8290                 if (lastpp != rootpp) {
8291                         lastpp = PP_PAGEPREV(lastpp);
8292                 }
8293         }
8294         if (sz == 0) {
8295                 /* the loop above doesn't cover this case */
8296                 rootpp->p_szc = 0;
8297         }
8298 out:
8299         ASSERT(pp->p_szc == 0);
8300         if (pmtx != NULL) {
8301                 sfmmu_page_exit(pmtx);
8302         }
8303         sfmmu_mlist_exit(pml);
8304 }
8305 
8306 /*
8307  * Refresh the HAT ismttecnt[] element for size szc.
8308  * Caller must have set ISM busy flag to prevent mapping
8309  * lists from changing while we're traversing them.
8310  */
8311 pgcnt_t
8312 ism_tsb_entries(sfmmu_t *sfmmup, int szc)
8313 {
8314         ism_blk_t       *ism_blkp = sfmmup->sfmmu_iblk;
8315         ism_map_t       *ism_map;
8316         pgcnt_t         npgs = 0;
8317         pgcnt_t         npgs_scd = 0;
8318         int             j;
8319         sf_scd_t        *scdp;
8320         uchar_t         rid;
8321 
8322         ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
8323         scdp = sfmmup->sfmmu_scdp;
8324 
8325         for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
8326                 ism_map = ism_blkp->iblk_maps;
8327                 for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++) {
8328                         rid = ism_map[j].imap_rid;
8329                         ASSERT(rid == SFMMU_INVALID_ISMRID ||
8330                             rid < sfmmup->sfmmu_srdp->srd_next_ismrid);
8331 
8332                         if (scdp != NULL && rid != SFMMU_INVALID_ISMRID &&
8333                             SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
8334                                 /* ISM is in sfmmup's SCD */
8335                                 npgs_scd +=
8336                                     ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8337                         } else {
8338                                 /* ISMs is not in SCD */
8339                                 npgs +=
8340                                     ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
8341                         }
8342                 }
8343         }
8344         sfmmup->sfmmu_ismttecnt[szc] = npgs;
8345         sfmmup->sfmmu_scdismttecnt[szc] = npgs_scd;
8346         return (npgs);
8347 }
8348 
8349 /*
8350  * Yield the memory claim requirement for an address space.
8351  *
8352  * This is currently implemented as the number of bytes that have active
8353  * hardware translations that have page structures.  Therefore, it can
8354  * underestimate the traditional resident set size, eg, if the
8355  * physical page is present and the hardware translation is missing;
8356  * and it can overestimate the rss, eg, if there are active
8357  * translations to a frame buffer with page structs.
8358  * Also, it does not take sharing into account.
8359  *
8360  * Note that we don't acquire locks here since this function is most often
8361  * called from the clock thread.
8362  */
8363 size_t
8364 hat_get_mapped_size(struct hat *hat)
8365 {
8366         size_t          assize = 0;
8367         int             i;
8368 
8369         if (hat == NULL)
8370                 return (0);
8371 
8372         ASSERT(hat->sfmmu_xhat_provider == NULL);
8373 
8374         for (i = 0; i < mmu_page_sizes; i++)
8375                 assize += ((pgcnt_t)hat->sfmmu_ttecnt[i] +
8376                     (pgcnt_t)hat->sfmmu_scdrttecnt[i]) * TTEBYTES(i);
8377 
8378         if (hat->sfmmu_iblk == NULL)
8379                 return (assize);
8380 
8381         for (i = 0; i < mmu_page_sizes; i++)
8382                 assize += ((pgcnt_t)hat->sfmmu_ismttecnt[i] +
8383                     (pgcnt_t)hat->sfmmu_scdismttecnt[i]) * TTEBYTES(i);
8384 
8385         return (assize);
8386 }
8387 
8388 int
8389 hat_stats_enable(struct hat *hat)
8390 {
8391         hatlock_t       *hatlockp;
8392 
8393         ASSERT(hat->sfmmu_xhat_provider == NULL);
8394 
8395         hatlockp = sfmmu_hat_enter(hat);
8396         hat->sfmmu_rmstat++;
8397         sfmmu_hat_exit(hatlockp);
8398         return (1);
8399 }
8400 
8401 void
8402 hat_stats_disable(struct hat *hat)
8403 {
8404         hatlock_t       *hatlockp;
8405 
8406         ASSERT(hat->sfmmu_xhat_provider == NULL);
8407 
8408         hatlockp = sfmmu_hat_enter(hat);
8409         hat->sfmmu_rmstat--;
8410         sfmmu_hat_exit(hatlockp);
8411 }
8412 
8413 /*
8414  * Routines for entering or removing  ourselves from the
8415  * ism_hat's mapping list. This is used for both private and
8416  * SCD hats.
8417  */
8418 static void
8419 iment_add(struct ism_ment *iment,  struct hat *ism_hat)
8420 {
8421         ASSERT(MUTEX_HELD(&ism_mlist_lock));
8422 
8423         iment->iment_prev = NULL;
8424         iment->iment_next = ism_hat->sfmmu_iment;
8425         if (ism_hat->sfmmu_iment) {
8426                 ism_hat->sfmmu_iment->iment_prev = iment;
8427         }
8428         ism_hat->sfmmu_iment = iment;
8429 }
8430 
8431 static void
8432 iment_sub(struct ism_ment *iment, struct hat *ism_hat)
8433 {
8434         ASSERT(MUTEX_HELD(&ism_mlist_lock));
8435 
8436         if (ism_hat->sfmmu_iment == NULL) {
8437                 panic("ism map entry remove - no entries");
8438         }
8439 
8440         if (iment->iment_prev) {
8441                 ASSERT(ism_hat->sfmmu_iment != iment);
8442                 iment->iment_prev->iment_next = iment->iment_next;
8443         } else {
8444                 ASSERT(ism_hat->sfmmu_iment == iment);
8445                 ism_hat->sfmmu_iment = iment->iment_next;
8446         }
8447 
8448         if (iment->iment_next) {
8449                 iment->iment_next->iment_prev = iment->iment_prev;
8450         }
8451 
8452         /*
8453          * zero out the entry
8454          */
8455         iment->iment_next = NULL;
8456         iment->iment_prev = NULL;
8457         iment->iment_hat =  NULL;
8458         iment->iment_base_va = 0;
8459 }
8460 
8461 /*
8462  * Hat_share()/unshare() return an (non-zero) error
8463  * when saddr and daddr are not properly aligned.
8464  *
8465  * The top level mapping element determines the alignment
8466  * requirement for saddr and daddr, depending on different
8467  * architectures.
8468  *
8469  * When hat_share()/unshare() are not supported,
8470  * HATOP_SHARE()/UNSHARE() return 0
8471  */
8472 int
8473 hat_share(struct hat *sfmmup, caddr_t addr,
8474         struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
8475 {
8476         ism_blk_t       *ism_blkp;
8477         ism_blk_t       *new_iblk;
8478         ism_map_t       *ism_map;
8479         ism_ment_t      *ism_ment;
8480         int             i, added;
8481         hatlock_t       *hatlockp;
8482         int             reload_mmu = 0;
8483         uint_t          ismshift = page_get_shift(ismszc);
8484         size_t          ismpgsz = page_get_pagesize(ismszc);
8485         uint_t          ismmask = (uint_t)ismpgsz - 1;
8486         size_t          sh_size = ISM_SHIFT(ismshift, len);
8487         ushort_t        ismhatflag;
8488         hat_region_cookie_t rcookie;
8489         sf_scd_t        *old_scdp;
8490 
8491 #ifdef DEBUG
8492         caddr_t         eaddr = addr + len;
8493 #endif /* DEBUG */
8494 
8495         ASSERT(ism_hatid != NULL && sfmmup != NULL);
8496         ASSERT(sptaddr == ISMID_STARTADDR);
8497         /*
8498          * Check the alignment.
8499          */
8500         if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
8501                 return (EINVAL);
8502 
8503         /*
8504          * Check size alignment.
8505          */
8506         if (!ISM_ALIGNED(ismshift, len))
8507                 return (EINVAL);
8508 
8509         ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
8510 
8511         /*
8512          * Allocate ism_ment for the ism_hat's mapping list, and an
8513          * ism map blk in case we need one.  We must do our
8514          * allocations before acquiring locks to prevent a deadlock
8515          * in the kmem allocator on the mapping list lock.
8516          */
8517         new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
8518         ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
8519 
8520         /*
8521          * Serialize ISM mappings with the ISM busy flag, and also the
8522          * trap handlers.
8523          */
8524         sfmmu_ismhat_enter(sfmmup, 0);
8525 
8526         /*
8527          * Allocate an ism map blk if necessary.
8528          */
8529         if (sfmmup->sfmmu_iblk == NULL) {
8530                 sfmmup->sfmmu_iblk = new_iblk;
8531                 bzero(new_iblk, sizeof (*new_iblk));
8532                 new_iblk->iblk_nextpa = (uint64_t)-1;
8533                 membar_stst();  /* make sure next ptr visible to all CPUs */
8534                 sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
8535                 reload_mmu = 1;
8536                 new_iblk = NULL;
8537         }
8538 
8539 #ifdef DEBUG
8540         /*
8541          * Make sure mapping does not already exist.
8542          */
8543         ism_blkp = sfmmup->sfmmu_iblk;
8544         while (ism_blkp != NULL) {
8545                 ism_map = ism_blkp->iblk_maps;
8546                 for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
8547                         if ((addr >= ism_start(ism_map[i]) &&
8548                             addr < ism_end(ism_map[i])) ||
8549                             eaddr > ism_start(ism_map[i]) &&
8550                             eaddr <= ism_end(ism_map[i])) {
8551                                 panic("sfmmu_share: Already mapped!");
8552                         }
8553                 }
8554                 ism_blkp = ism_blkp->iblk_next;
8555         }
8556 #endif /* DEBUG */
8557 
8558         ASSERT(ismszc >= TTE4M);
8559         if (ismszc == TTE4M) {
8560                 ismhatflag = HAT_4M_FLAG;
8561         } else if (ismszc == TTE32M) {
8562                 ismhatflag = HAT_32M_FLAG;
8563         } else if (ismszc == TTE256M) {
8564                 ismhatflag = HAT_256M_FLAG;
8565         }
8566         /*
8567          * Add mapping to first available mapping slot.
8568          */
8569         ism_blkp = sfmmup->sfmmu_iblk;
8570         added = 0;
8571         while (!added) {
8572                 ism_map = ism_blkp->iblk_maps;
8573                 for (i = 0; i < ISM_MAP_SLOTS; i++)  {
8574                         if (ism_map[i].imap_ismhat == NULL) {
8575 
8576                                 ism_map[i].imap_ismhat = ism_hatid;
8577                                 ism_map[i].imap_vb_shift = (uchar_t)ismshift;
8578                                 ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8579                                 ism_map[i].imap_hatflags = ismhatflag;
8580                                 ism_map[i].imap_sz_mask = ismmask;
8581                                 /*
8582                                  * imap_seg is checked in ISM_CHECK to see if
8583                                  * non-NULL, then other info assumed valid.
8584                                  */
8585                                 membar_stst();
8586                                 ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
8587                                 ism_map[i].imap_ment = ism_ment;
8588 
8589                                 /*
8590                                  * Now add ourselves to the ism_hat's
8591                                  * mapping list.
8592                                  */
8593                                 ism_ment->iment_hat = sfmmup;
8594                                 ism_ment->iment_base_va = addr;
8595                                 ism_hatid->sfmmu_ismhat = 1;
8596                                 mutex_enter(&ism_mlist_lock);
8597                                 iment_add(ism_ment, ism_hatid);
8598                                 mutex_exit(&ism_mlist_lock);
8599                                 added = 1;
8600                                 break;
8601                         }
8602                 }
8603                 if (!added && ism_blkp->iblk_next == NULL) {
8604                         ism_blkp->iblk_next = new_iblk;
8605                         new_iblk = NULL;
8606                         bzero(ism_blkp->iblk_next,
8607                             sizeof (*ism_blkp->iblk_next));
8608                         ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
8609                         membar_stst();
8610                         ism_blkp->iblk_nextpa =
8611                             va_to_pa((caddr_t)ism_blkp->iblk_next);
8612                 }
8613                 ism_blkp = ism_blkp->iblk_next;
8614         }
8615 
8616         /*
8617          * After calling hat_join_region, sfmmup may join a new SCD or
8618          * move from the old scd to a new scd, in which case, we want to
8619          * shrink the sfmmup's private tsb size, i.e., pass shrink to
8620          * sfmmu_check_page_sizes at the end of this routine.
8621          */
8622         old_scdp = sfmmup->sfmmu_scdp;
8623 
8624         rcookie = hat_join_region(sfmmup, addr, len, (void *)ism_hatid, 0,
8625             PROT_ALL, ismszc, NULL, HAT_REGION_ISM);
8626         if (rcookie != HAT_INVALID_REGION_COOKIE) {
8627                 ism_map[i].imap_rid = (uchar_t)((uint64_t)rcookie);
8628         }
8629         /*
8630          * Update our counters for this sfmmup's ism mappings.
8631          */
8632         for (i = 0; i <= ismszc; i++) {
8633                 if (!(disable_ism_large_pages & (1 << i)))
8634                         (void) ism_tsb_entries(sfmmup, i);
8635         }
8636 
8637         /*
8638          * For ISM and DISM we do not support 512K pages, so we only only
8639          * search the 4M and 8K/64K hashes for 4 pagesize cpus, and search the
8640          * 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
8641          *
8642          * Need to set 32M/256M ISM flags to make sure
8643          * sfmmu_check_page_sizes() enables them on Panther.
8644          */
8645         ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
8646 
8647         switch (ismszc) {
8648         case TTE256M:
8649                 if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_ISM)) {
8650                         hatlockp = sfmmu_hat_enter(sfmmup);
8651                         SFMMU_FLAGS_SET(sfmmup, HAT_256M_ISM);
8652                         sfmmu_hat_exit(hatlockp);
8653                 }
8654                 break;
8655         case TTE32M:
8656                 if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_ISM)) {
8657                         hatlockp = sfmmu_hat_enter(sfmmup);
8658                         SFMMU_FLAGS_SET(sfmmup, HAT_32M_ISM);
8659                         sfmmu_hat_exit(hatlockp);
8660                 }
8661                 break;
8662         default:
8663                 break;
8664         }
8665 
8666         /*
8667          * If we updated the ismblkpa for this HAT we must make
8668          * sure all CPUs running this process reload their tsbmiss area.
8669          * Otherwise they will fail to load the mappings in the tsbmiss
8670          * handler and will loop calling pagefault().
8671          */
8672         if (reload_mmu) {
8673                 hatlockp = sfmmu_hat_enter(sfmmup);
8674                 sfmmu_sync_mmustate(sfmmup);
8675                 sfmmu_hat_exit(hatlockp);
8676         }
8677 
8678         sfmmu_ismhat_exit(sfmmup, 0);
8679 
8680         /*
8681          * Free up ismblk if we didn't use it.
8682          */
8683         if (new_iblk != NULL)
8684                 kmem_cache_free(ism_blk_cache, new_iblk);
8685 
8686         /*
8687          * Check TSB and TLB page sizes.
8688          */
8689         if (sfmmup->sfmmu_scdp != NULL && old_scdp != sfmmup->sfmmu_scdp) {
8690                 sfmmu_check_page_sizes(sfmmup, 0);
8691         } else {
8692                 sfmmu_check_page_sizes(sfmmup, 1);
8693         }
8694         return (0);
8695 }
8696 
8697 /*
8698  * hat_unshare removes exactly one ism_map from
8699  * this process's as.  It expects multiple calls
8700  * to hat_unshare for multiple shm segments.
8701  */
8702 void
8703 hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
8704 {
8705         ism_map_t       *ism_map;
8706         ism_ment_t      *free_ment = NULL;
8707         ism_blk_t       *ism_blkp;
8708         struct hat      *ism_hatid;
8709         int             found, i;
8710         hatlock_t       *hatlockp;
8711         struct tsb_info *tsbinfo;
8712         uint_t          ismshift = page_get_shift(ismszc);
8713         size_t          sh_size = ISM_SHIFT(ismshift, len);
8714         uchar_t         ism_rid;
8715         sf_scd_t        *old_scdp;
8716 
8717         ASSERT(ISM_ALIGNED(ismshift, addr));
8718         ASSERT(ISM_ALIGNED(ismshift, len));
8719         ASSERT(sfmmup != NULL);
8720         ASSERT(sfmmup != ksfmmup);
8721 
8722         if (sfmmup->sfmmu_xhat_provider) {
8723                 XHAT_UNSHARE(sfmmup, addr, len);
8724                 return;
8725         } else {
8726                 /*
8727                  * This must be a CPU HAT. If the address space has
8728                  * XHATs attached, inform all XHATs that ISM segment
8729                  * is going away
8730                  */
8731                 ASSERT(sfmmup->sfmmu_as != NULL);
8732                 if (sfmmup->sfmmu_as->a_xhat != NULL)
8733                         xhat_unshare_all(sfmmup->sfmmu_as, addr, len);
8734         }
8735 
8736         /*
8737          * Make sure that during the entire time ISM mappings are removed,
8738          * the trap handlers serialize behind us, and that no one else
8739          * can be mucking with ISM mappings.  This also lets us get away
8740          * with not doing expensive cross calls to flush the TLB -- we
8741          * just discard the context, flush the entire TSB, and call it
8742          * a day.
8743          */
8744         sfmmu_ismhat_enter(sfmmup, 0);
8745 
8746         /*
8747          * Remove the mapping.
8748          *
8749          * We can't have any holes in the ism map.
8750          * The tsb miss code while searching the ism map will
8751          * stop on an empty map slot.  So we must move
8752          * everyone past the hole up 1 if any.
8753          *
8754          * Also empty ism map blks are not freed until the
8755          * process exits. This is to prevent a MT race condition
8756          * between sfmmu_unshare() and sfmmu_tsbmiss_exception().
8757          */
8758         found = 0;
8759         ism_blkp = sfmmup->sfmmu_iblk;
8760         while (!found && ism_blkp != NULL) {
8761                 ism_map = ism_blkp->iblk_maps;
8762                 for (i = 0; i < ISM_MAP_SLOTS; i++) {
8763                         if (addr == ism_start(ism_map[i]) &&
8764                             sh_size == (size_t)(ism_size(ism_map[i]))) {
8765                                 found = 1;
8766                                 break;
8767                         }
8768                 }
8769                 if (!found)
8770                         ism_blkp = ism_blkp->iblk_next;
8771         }
8772 
8773         if (found) {
8774                 ism_hatid = ism_map[i].imap_ismhat;
8775                 ism_rid = ism_map[i].imap_rid;
8776                 ASSERT(ism_hatid != NULL);
8777                 ASSERT(ism_hatid->sfmmu_ismhat == 1);
8778 
8779                 /*
8780                  * After hat_leave_region, the sfmmup may leave SCD,
8781                  * in which case, we want to grow the private tsb size when
8782                  * calling sfmmu_check_page_sizes at the end of the routine.
8783                  */
8784                 old_scdp = sfmmup->sfmmu_scdp;
8785                 /*
8786                  * Then remove ourselves from the region.
8787                  */
8788                 if (ism_rid != SFMMU_INVALID_ISMRID) {
8789                         hat_leave_region(sfmmup, (void *)((uint64_t)ism_rid),
8790                             HAT_REGION_ISM);
8791                 }
8792 
8793                 /*
8794                  * And now guarantee that any other cpu
8795                  * that tries to process an ISM miss
8796                  * will go to tl=0.
8797                  */
8798                 hatlockp = sfmmu_hat_enter(sfmmup);
8799                 sfmmu_invalidate_ctx(sfmmup);
8800                 sfmmu_hat_exit(hatlockp);
8801 
8802                 /*
8803                  * Remove ourselves from the ism mapping list.
8804                  */
8805                 mutex_enter(&ism_mlist_lock);
8806                 iment_sub(ism_map[i].imap_ment, ism_hatid);
8807                 mutex_exit(&ism_mlist_lock);
8808                 free_ment = ism_map[i].imap_ment;
8809 
8810                 /*
8811                  * We delete the ism map by copying
8812                  * the next map over the current one.
8813                  * We will take the next one in the maps
8814                  * array or from the next ism_blk.
8815                  */
8816                 while (ism_blkp != NULL) {
8817                         ism_map = ism_blkp->iblk_maps;
8818                         while (i < (ISM_MAP_SLOTS - 1)) {
8819                                 ism_map[i] = ism_map[i + 1];
8820                                 i++;
8821                         }
8822                         /* i == (ISM_MAP_SLOTS - 1) */
8823                         ism_blkp = ism_blkp->iblk_next;
8824                         if (ism_blkp != NULL) {
8825                                 ism_map[i] = ism_blkp->iblk_maps[0];
8826                                 i = 0;
8827                         } else {
8828                                 ism_map[i].imap_seg = 0;
8829                                 ism_map[i].imap_vb_shift = 0;
8830                                 ism_map[i].imap_rid = SFMMU_INVALID_ISMRID;
8831                                 ism_map[i].imap_hatflags = 0;
8832                                 ism_map[i].imap_sz_mask = 0;
8833                                 ism_map[i].imap_ismhat = NULL;
8834                                 ism_map[i].imap_ment = NULL;
8835                         }
8836                 }
8837 
8838                 /*
8839                  * Now flush entire TSB for the process, since
8840                  * demapping page by page can be too expensive.
8841                  * We don't have to flush the TLB here anymore
8842                  * since we switch to a new TLB ctx instead.
8843                  * Also, there is no need to flush if the process
8844                  * is exiting since the TSB will be freed later.
8845                  */
8846                 if (!sfmmup->sfmmu_free) {
8847                         hatlockp = sfmmu_hat_enter(sfmmup);
8848                         for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
8849                             tsbinfo = tsbinfo->tsb_next) {
8850                                 if (tsbinfo->tsb_flags & TSB_SWAPPED)
8851                                         continue;
8852                                 if (tsbinfo->tsb_flags & TSB_RELOC_FLAG) {
8853                                         tsbinfo->tsb_flags |=
8854                                             TSB_FLUSH_NEEDED;
8855                                         continue;
8856                                 }
8857 
8858                                 sfmmu_inv_tsb(tsbinfo->tsb_va,
8859                                     TSB_BYTES(tsbinfo->tsb_szc));
8860                         }
8861                         sfmmu_hat_exit(hatlockp);
8862                 }
8863         }
8864 
8865         /*
8866          * Update our counters for this sfmmup's ism mappings.
8867          */
8868         for (i = 0; i <= ismszc; i++) {
8869                 if (!(disable_ism_large_pages & (1 << i)))
8870                         (void) ism_tsb_entries(sfmmup, i);
8871         }
8872 
8873         sfmmu_ismhat_exit(sfmmup, 0);
8874 
8875         /*
8876          * We must do our freeing here after dropping locks
8877          * to prevent a deadlock in the kmem allocator on the
8878          * mapping list lock.
8879          */
8880         if (free_ment != NULL)
8881                 kmem_cache_free(ism_ment_cache, free_ment);
8882 
8883         /*
8884          * Check TSB and TLB page sizes if the process isn't exiting.
8885          */
8886         if (!sfmmup->sfmmu_free) {
8887                 if (found && old_scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
8888                         sfmmu_check_page_sizes(sfmmup, 1);
8889                 } else {
8890                         sfmmu_check_page_sizes(sfmmup, 0);
8891                 }
8892         }
8893 }
8894 
8895 /* ARGSUSED */
8896 static int
8897 sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
8898 {
8899         /* void *buf is sfmmu_t pointer */
8900         bzero(buf, sizeof (sfmmu_t));
8901 
8902         return (0);
8903 }
8904 
8905 /* ARGSUSED */
8906 static void
8907 sfmmu_idcache_destructor(void *buf, void *cdrarg)
8908 {
8909         /* void *buf is sfmmu_t pointer */
8910 }
8911 
8912 /*
8913  * setup kmem hmeblks by bzeroing all members and initializing the nextpa
8914  * field to be the pa of this hmeblk
8915  */
8916 /* ARGSUSED */
8917 static int
8918 sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
8919 {
8920         struct hme_blk *hmeblkp;
8921 
8922         bzero(buf, (size_t)cdrarg);
8923         hmeblkp = (struct hme_blk *)buf;
8924         hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
8925 
8926 #ifdef  HBLK_TRACE
8927         mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
8928 #endif  /* HBLK_TRACE */
8929 
8930         return (0);
8931 }
8932 
8933 /* ARGSUSED */
8934 static void
8935 sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
8936 {
8937 
8938 #ifdef  HBLK_TRACE
8939 
8940         struct hme_blk *hmeblkp;
8941 
8942         hmeblkp = (struct hme_blk *)buf;
8943         mutex_destroy(&hmeblkp->hblk_audit_lock);
8944 
8945 #endif  /* HBLK_TRACE */
8946 }
8947 
8948 #define SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
8949 static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
8950 /*
8951  * The kmem allocator will callback into our reclaim routine when the system
8952  * is running low in memory.  We traverse the hash and free up all unused but
8953  * still cached hme_blks.  We also traverse the free list and free them up
8954  * as well.
8955  */
8956 /*ARGSUSED*/
8957 static void
8958 sfmmu_hblkcache_reclaim(void *cdrarg)
8959 {
8960         int i;
8961         struct hmehash_bucket *hmebp;
8962         struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
8963         static struct hmehash_bucket *uhmehash_reclaim_hand;
8964         static struct hmehash_bucket *khmehash_reclaim_hand;
8965         struct hme_blk *list = NULL, *last_hmeblkp;
8966         cpuset_t cpuset = cpu_ready_set;
8967         cpu_hme_pend_t *cpuhp;
8968 
8969         /* Free up hmeblks on the cpu pending lists */
8970         for (i = 0; i < NCPU; i++) {
8971                 cpuhp = &cpu_hme_pend[i];
8972                 if (cpuhp->chp_listp != NULL)  {
8973                         mutex_enter(&cpuhp->chp_mutex);
8974                         if (cpuhp->chp_listp == NULL) {
8975                                 mutex_exit(&cpuhp->chp_mutex);
8976                                 continue;
8977                         }
8978                         for (last_hmeblkp = cpuhp->chp_listp;
8979                             last_hmeblkp->hblk_next != NULL;
8980                             last_hmeblkp = last_hmeblkp->hblk_next)
8981                                 ;
8982                         last_hmeblkp->hblk_next = list;
8983                         list = cpuhp->chp_listp;
8984                         cpuhp->chp_listp = NULL;
8985                         cpuhp->chp_count = 0;
8986                         mutex_exit(&cpuhp->chp_mutex);
8987                 }
8988 
8989         }
8990 
8991         if (list != NULL) {
8992                 kpreempt_disable();
8993                 CPUSET_DEL(cpuset, CPU->cpu_id);
8994                 xt_sync(cpuset);
8995                 xt_sync(cpuset);
8996                 kpreempt_enable();
8997                 sfmmu_hblk_free(&list);
8998                 list = NULL;
8999         }
9000 
9001         hmebp = uhmehash_reclaim_hand;
9002         if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
9003                 uhmehash_reclaim_hand = hmebp = uhme_hash;
9004         uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
9005 
9006         for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
9007                 if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
9008                         hmeblkp = hmebp->hmeblkp;
9009                         pr_hblk = NULL;
9010                         while (hmeblkp) {
9011                                 nx_hblk = hmeblkp->hblk_next;
9012                                 if (!hmeblkp->hblk_vcnt &&
9013                                     !hmeblkp->hblk_hmecnt) {
9014                                         sfmmu_hblk_hash_rm(hmebp, hmeblkp,
9015                                             pr_hblk, &list, 0);
9016                                 } else {
9017                                         pr_hblk = hmeblkp;
9018                                 }
9019                                 hmeblkp = nx_hblk;
9020                         }
9021                         SFMMU_HASH_UNLOCK(hmebp);
9022                 }
9023                 if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
9024                         hmebp = uhme_hash;
9025         }
9026 
9027         hmebp = khmehash_reclaim_hand;
9028         if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
9029                 khmehash_reclaim_hand = hmebp = khme_hash;
9030         khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
9031 
9032         for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
9033                 if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
9034                         hmeblkp = hmebp->hmeblkp;
9035                         pr_hblk = NULL;
9036                         while (hmeblkp) {
9037                                 nx_hblk = hmeblkp->hblk_next;
9038                                 if (!hmeblkp->hblk_vcnt &&
9039                                     !hmeblkp->hblk_hmecnt) {
9040                                         sfmmu_hblk_hash_rm(hmebp, hmeblkp,
9041                                             pr_hblk, &list, 0);
9042                                 } else {
9043                                         pr_hblk = hmeblkp;
9044                                 }
9045                                 hmeblkp = nx_hblk;
9046                         }
9047                         SFMMU_HASH_UNLOCK(hmebp);
9048                 }
9049                 if (hmebp++ == &khme_hash[KHMEHASH_SZ])
9050                         hmebp = khme_hash;
9051         }
9052         sfmmu_hblks_list_purge(&list, 0);
9053 }
9054 
9055 /*
9056  * sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
9057  * same goes for sfmmu_get_addrvcolor().
9058  *
9059  * This function will return the virtual color for the specified page. The
9060  * virtual color corresponds to this page current mapping or its last mapping.
9061  * It is used by memory allocators to choose addresses with the correct
9062  * alignment so vac consistency is automatically maintained.  If the page
9063  * has no color it returns -1.
9064  */
9065 /*ARGSUSED*/
9066 int
9067 sfmmu_get_ppvcolor(struct page *pp)
9068 {
9069 #ifdef VAC
9070         int color;
9071 
9072         if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
9073                 return (-1);
9074         }
9075         color = PP_GET_VCOLOR(pp);
9076         ASSERT(color < mmu_btop(shm_alignment));
9077         return (color);
9078 #else
9079         return (-1);
9080 #endif  /* VAC */
9081 }
9082 
9083 /*
9084  * This function will return the desired alignment for vac consistency
9085  * (vac color) given a virtual address.  If no vac is present it returns -1.
9086  */
9087 /*ARGSUSED*/
9088 int
9089 sfmmu_get_addrvcolor(caddr_t vaddr)
9090 {
9091 #ifdef VAC
9092         if (cache & CACHE_VAC) {
9093                 return (addr_to_vcolor(vaddr));
9094         } else {
9095                 return (-1);
9096         }
9097 #else
9098         return (-1);
9099 #endif  /* VAC */
9100 }
9101 
9102 #ifdef VAC
9103 /*
9104  * Check for conflicts.
9105  * A conflict exists if the new and existent mappings do not match in
9106  * their "shm_alignment fields. If conflicts exist, the existant mappings
9107  * are flushed unless one of them is locked. If one of them is locked, then
9108  * the mappings are flushed and converted to non-cacheable mappings.
9109  */
9110 static void
9111 sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
9112 {
9113         struct hat *tmphat;
9114         struct sf_hment *sfhmep, *tmphme = NULL;
9115         struct hme_blk *hmeblkp;
9116         int vcolor;
9117         tte_t tte;
9118 
9119         ASSERT(sfmmu_mlist_held(pp));
9120         ASSERT(!PP_ISNC(pp));           /* page better be cacheable */
9121 
9122         vcolor = addr_to_vcolor(addr);
9123         if (PP_NEWPAGE(pp)) {
9124                 PP_SET_VCOLOR(pp, vcolor);
9125                 return;
9126         }
9127 
9128         if (PP_GET_VCOLOR(pp) == vcolor) {
9129                 return;
9130         }
9131 
9132         if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
9133                 /*
9134                  * Previous user of page had a different color
9135                  * but since there are no current users
9136                  * we just flush the cache and change the color.
9137                  */
9138                 SFMMU_STAT(sf_pgcolor_conflict);
9139                 sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9140                 PP_SET_VCOLOR(pp, vcolor);
9141                 return;
9142         }
9143 
9144         /*
9145          * If we get here we have a vac conflict with a current
9146          * mapping.  VAC conflict policy is as follows.
9147          * - The default is to unload the other mappings unless:
9148          * - If we have a large mapping we uncache the page.
9149          * We need to uncache the rest of the large page too.
9150          * - If any of the mappings are locked we uncache the page.
9151          * - If the requested mapping is inconsistent
9152          * with another mapping and that mapping
9153          * is in the same address space we have to
9154          * make it non-cached.  The default thing
9155          * to do is unload the inconsistent mapping
9156          * but if they are in the same address space
9157          * we run the risk of unmapping the pc or the
9158          * stack which we will use as we return to the user,
9159          * in which case we can then fault on the thing
9160          * we just unloaded and get into an infinite loop.
9161          */
9162         if (PP_ISMAPPED_LARGE(pp)) {
9163                 int sz;
9164 
9165                 /*
9166                  * Existing mapping is for big pages. We don't unload
9167                  * existing big mappings to satisfy new mappings.
9168                  * Always convert all mappings to TNC.
9169                  */
9170                 sz = fnd_mapping_sz(pp);
9171                 pp = PP_GROUPLEADER(pp, sz);
9172                 SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
9173                 sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
9174                     TTEPAGES(sz));
9175 
9176                 return;
9177         }
9178 
9179         /*
9180          * check if any mapping is in same as or if it is locked
9181          * since in that case we need to uncache.
9182          */
9183         for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9184                 tmphme = sfhmep->hme_next;
9185                 if (IS_PAHME(sfhmep))
9186                         continue;
9187                 hmeblkp = sfmmu_hmetohblk(sfhmep);
9188                 if (hmeblkp->hblk_xhat_bit)
9189                         continue;
9190                 tmphat = hblktosfmmu(hmeblkp);
9191                 sfmmu_copytte(&sfhmep->hme_tte, &tte);
9192                 ASSERT(TTE_IS_VALID(&tte));
9193                 if (hmeblkp->hblk_shared || tmphat == hat ||
9194                     hmeblkp->hblk_lckcnt) {
9195                         /*
9196                          * We have an uncache conflict
9197                          */
9198                         SFMMU_STAT(sf_uncache_conflict);
9199                         sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
9200                         return;
9201                 }
9202         }
9203 
9204         /*
9205          * We have an unload conflict
9206          * We have already checked for LARGE mappings, therefore
9207          * the remaining mapping(s) must be TTE8K.
9208          */
9209         SFMMU_STAT(sf_unload_conflict);
9210 
9211         for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
9212                 tmphme = sfhmep->hme_next;
9213                 if (IS_PAHME(sfhmep))
9214                         continue;
9215                 hmeblkp = sfmmu_hmetohblk(sfhmep);
9216                 if (hmeblkp->hblk_xhat_bit)
9217                         continue;
9218                 ASSERT(!hmeblkp->hblk_shared);
9219                 (void) sfmmu_pageunload(pp, sfhmep, TTE8K);
9220         }
9221 
9222         if (PP_ISMAPPED_KPM(pp))
9223                 sfmmu_kpm_vac_unload(pp, addr);
9224 
9225         /*
9226          * Unloads only do TLB flushes so we need to flush the
9227          * cache here.
9228          */
9229         sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
9230         PP_SET_VCOLOR(pp, vcolor);
9231 }
9232 
9233 /*
9234  * Whenever a mapping is unloaded and the page is in TNC state,
9235  * we see if the page can be made cacheable again. 'pp' is
9236  * the page that we just unloaded a mapping from, the size
9237  * of mapping that was unloaded is 'ottesz'.
9238  * Remark:
9239  * The recache policy for mpss pages can leave a performance problem
9240  * under the following circumstances:
9241  * . A large page in uncached mode has just been unmapped.
9242  * . All constituent pages are TNC due to a conflicting small mapping.
9243  * . There are many other, non conflicting, small mappings around for
9244  *   a lot of the constituent pages.
9245  * . We're called w/ the "old" groupleader page and the old ottesz,
9246  *   but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
9247  *   we end up w/ TTE8K or npages == 1.
9248  * . We call tst_tnc w/ the old groupleader only, and if there is no
9249  *   conflict, we re-cache only this page.
9250  * . All other small mappings are not checked and will be left in TNC mode.
9251  * The problem is not very serious because:
9252  * . mpss is actually only defined for heap and stack, so the probability
9253  *   is not very high that a large page mapping exists in parallel to a small
9254  *   one (this is possible, but seems to be bad programming style in the
9255  *   appl).
9256  * . The problem gets a little bit more serious, when those TNC pages
9257  *   have to be mapped into kernel space, e.g. for networking.
9258  * . When VAC alias conflicts occur in applications, this is regarded
9259  *   as an application bug. So if kstat's show them, the appl should
9260  *   be changed anyway.
9261  */
9262 void
9263 conv_tnc(page_t *pp, int ottesz)
9264 {
9265         int cursz, dosz;
9266         pgcnt_t curnpgs, dopgs;
9267         pgcnt_t pg64k;
9268         page_t *pp2;
9269 
9270         /*
9271          * Determine how big a range we check for TNC and find
9272          * leader page. cursz is the size of the biggest
9273          * mapping that still exist on 'pp'.
9274          */
9275         if (PP_ISMAPPED_LARGE(pp)) {
9276                 cursz = fnd_mapping_sz(pp);
9277         } else {
9278                 cursz = TTE8K;
9279         }
9280 
9281         if (ottesz >= cursz) {
9282                 dosz = ottesz;
9283                 pp2 = pp;
9284         } else {
9285                 dosz = cursz;
9286                 pp2 = PP_GROUPLEADER(pp, dosz);
9287         }
9288 
9289         pg64k = TTEPAGES(TTE64K);
9290         dopgs = TTEPAGES(dosz);
9291 
9292         ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
9293 
9294         while (dopgs != 0) {
9295                 curnpgs = TTEPAGES(cursz);
9296                 if (tst_tnc(pp2, curnpgs)) {
9297                         SFMMU_STAT_ADD(sf_recache, curnpgs);
9298                         sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
9299                             curnpgs);
9300                 }
9301 
9302                 ASSERT(dopgs >= curnpgs);
9303                 dopgs -= curnpgs;
9304 
9305                 if (dopgs == 0) {
9306                         break;
9307                 }
9308 
9309                 pp2 = PP_PAGENEXT_N(pp2, curnpgs);
9310                 if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
9311                         cursz = fnd_mapping_sz(pp2);
9312                 } else {
9313                         cursz = TTE8K;
9314                 }
9315         }
9316 }
9317 
9318 /*
9319  * Returns 1 if page(s) can be converted from TNC to cacheable setting,
9320  * returns 0 otherwise. Note that oaddr argument is valid for only
9321  * 8k pages.
9322  */
9323 int
9324 tst_tnc(page_t *pp, pgcnt_t npages)
9325 {
9326         struct  sf_hment *sfhme;
9327         struct  hme_blk *hmeblkp;
9328         tte_t   tte;
9329         caddr_t vaddr;
9330         int     clr_valid = 0;
9331         int     color, color1, bcolor;
9332         int     i, ncolors;
9333 
9334         ASSERT(pp != NULL);
9335         ASSERT(!(cache & CACHE_WRITEBACK));
9336 
9337         if (npages > 1) {
9338                 ncolors = CACHE_NUM_COLOR;
9339         }
9340 
9341         for (i = 0; i < npages; i++) {
9342                 ASSERT(sfmmu_mlist_held(pp));
9343                 ASSERT(PP_ISTNC(pp));
9344                 ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
9345 
9346                 if (PP_ISPNC(pp)) {
9347                         return (0);
9348                 }
9349 
9350                 clr_valid = 0;
9351                 if (PP_ISMAPPED_KPM(pp)) {
9352                         caddr_t kpmvaddr;
9353 
9354                         ASSERT(kpm_enable);
9355                         kpmvaddr = hat_kpm_page2va(pp, 1);
9356                         ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
9357                         color1 = addr_to_vcolor(kpmvaddr);
9358                         clr_valid = 1;
9359                 }
9360 
9361                 for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9362                         if (IS_PAHME(sfhme))
9363                                 continue;
9364                         hmeblkp = sfmmu_hmetohblk(sfhme);
9365                         if (hmeblkp->hblk_xhat_bit)
9366                                 continue;
9367 
9368                         sfmmu_copytte(&sfhme->hme_tte, &tte);
9369                         ASSERT(TTE_IS_VALID(&tte));
9370 
9371                         vaddr = tte_to_vaddr(hmeblkp, tte);
9372                         color = addr_to_vcolor(vaddr);
9373 
9374                         if (npages > 1) {
9375                                 /*
9376                                  * If there is a big mapping, make sure
9377                                  * 8K mapping is consistent with the big
9378                                  * mapping.
9379                                  */
9380                                 bcolor = i % ncolors;
9381                                 if (color != bcolor) {
9382                                         return (0);
9383                                 }
9384                         }
9385                         if (!clr_valid) {
9386                                 clr_valid = 1;
9387                                 color1 = color;
9388                         }
9389 
9390                         if (color1 != color) {
9391                                 return (0);
9392                         }
9393                 }
9394 
9395                 pp = PP_PAGENEXT(pp);
9396         }
9397 
9398         return (1);
9399 }
9400 
9401 void
9402 sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
9403         pgcnt_t npages)
9404 {
9405         kmutex_t *pmtx;
9406         int i, ncolors, bcolor;
9407         kpm_hlk_t *kpmp;
9408         cpuset_t cpuset;
9409 
9410         ASSERT(pp != NULL);
9411         ASSERT(!(cache & CACHE_WRITEBACK));
9412 
9413         kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
9414         pmtx = sfmmu_page_enter(pp);
9415 
9416         /*
9417          * Fast path caching single unmapped page
9418          */
9419         if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
9420             flags == HAT_CACHE) {
9421                 PP_CLRTNC(pp);
9422                 PP_CLRPNC(pp);
9423                 sfmmu_page_exit(pmtx);
9424                 sfmmu_kpm_kpmp_exit(kpmp);
9425                 return;
9426         }
9427 
9428         /*
9429          * We need to capture all cpus in order to change cacheability
9430          * because we can't allow one cpu to access the same physical
9431          * page using a cacheable and a non-cachebale mapping at the same
9432          * time. Since we may end up walking the ism mapping list
9433          * have to grab it's lock now since we can't after all the
9434          * cpus have been captured.
9435          */
9436         sfmmu_hat_lock_all();
9437         mutex_enter(&ism_mlist_lock);
9438         kpreempt_disable();
9439         cpuset = cpu_ready_set;
9440         xc_attention(cpuset);
9441 
9442         if (npages > 1) {
9443                 /*
9444                  * Make sure all colors are flushed since the
9445                  * sfmmu_page_cache() only flushes one color-
9446                  * it does not know big pages.
9447                  */
9448                 ncolors = CACHE_NUM_COLOR;
9449                 if (flags & HAT_TMPNC) {
9450                         for (i = 0; i < ncolors; i++) {
9451                                 sfmmu_cache_flushcolor(i, pp->p_pagenum);
9452                         }
9453                         cache_flush_flag = CACHE_NO_FLUSH;
9454                 }
9455         }
9456 
9457         for (i = 0; i < npages; i++) {
9458 
9459                 ASSERT(sfmmu_mlist_held(pp));
9460 
9461                 if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
9462 
9463                         if (npages > 1) {
9464                                 bcolor = i % ncolors;
9465                         } else {
9466                                 bcolor = NO_VCOLOR;
9467                         }
9468 
9469                         sfmmu_page_cache(pp, flags, cache_flush_flag,
9470                             bcolor);
9471                 }
9472 
9473                 pp = PP_PAGENEXT(pp);
9474         }
9475 
9476         xt_sync(cpuset);
9477         xc_dismissed(cpuset);
9478         mutex_exit(&ism_mlist_lock);
9479         sfmmu_hat_unlock_all();
9480         sfmmu_page_exit(pmtx);
9481         sfmmu_kpm_kpmp_exit(kpmp);
9482         kpreempt_enable();
9483 }
9484 
9485 /*
9486  * This function changes the virtual cacheability of all mappings to a
9487  * particular page.  When changing from uncache to cacheable the mappings will
9488  * only be changed if all of them have the same virtual color.
9489  * We need to flush the cache in all cpus.  It is possible that
9490  * a process referenced a page as cacheable but has sinced exited
9491  * and cleared the mapping list.  We still to flush it but have no
9492  * state so all cpus is the only alternative.
9493  */
9494 static void
9495 sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
9496 {
9497         struct  sf_hment *sfhme;
9498         struct  hme_blk *hmeblkp;
9499         sfmmu_t *sfmmup;
9500         tte_t   tte, ttemod;
9501         caddr_t vaddr;
9502         int     ret, color;
9503         pfn_t   pfn;
9504 
9505         color = bcolor;
9506         pfn = pp->p_pagenum;
9507 
9508         for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
9509 
9510                 if (IS_PAHME(sfhme))
9511                         continue;
9512                 hmeblkp = sfmmu_hmetohblk(sfhme);
9513 
9514                 if (hmeblkp->hblk_xhat_bit)
9515                         continue;
9516 
9517                 sfmmu_copytte(&sfhme->hme_tte, &tte);
9518                 ASSERT(TTE_IS_VALID(&tte));
9519                 vaddr = tte_to_vaddr(hmeblkp, tte);
9520                 color = addr_to_vcolor(vaddr);
9521 
9522 #ifdef DEBUG
9523                 if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
9524                         ASSERT(color == bcolor);
9525                 }
9526 #endif
9527 
9528                 ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
9529 
9530                 ttemod = tte;
9531                 if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
9532                         TTE_CLR_VCACHEABLE(&ttemod);
9533                 } else {        /* flags & HAT_CACHE */
9534                         TTE_SET_VCACHEABLE(&ttemod);
9535                 }
9536                 ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
9537                 if (ret < 0) {
9538                         /*
9539                          * Since all cpus are captured modifytte should not
9540                          * fail.
9541                          */
9542                         panic("sfmmu_page_cache: write to tte failed");
9543                 }
9544 
9545                 sfmmup = hblktosfmmu(hmeblkp);
9546                 if (cache_flush_flag == CACHE_FLUSH) {
9547                         /*
9548                          * Flush TSBs, TLBs and caches
9549                          */
9550                         if (hmeblkp->hblk_shared) {
9551                                 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9552                                 uint_t rid = hmeblkp->hblk_tag.htag_rid;
9553                                 sf_region_t *rgnp;
9554                                 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9555                                 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9556                                 ASSERT(srdp != NULL);
9557                                 rgnp = srdp->srd_hmergnp[rid];
9558                                 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9559                                     srdp, rgnp, rid);
9560                                 (void) sfmmu_rgntlb_demap(vaddr, rgnp,
9561                                     hmeblkp, 0);
9562                                 sfmmu_cache_flush(pfn, addr_to_vcolor(vaddr));
9563                         } else if (sfmmup->sfmmu_ismhat) {
9564                                 if (flags & HAT_CACHE) {
9565                                         SFMMU_STAT(sf_ism_recache);
9566                                 } else {
9567                                         SFMMU_STAT(sf_ism_uncache);
9568                                 }
9569                                 sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9570                                     pfn, CACHE_FLUSH);
9571                         } else {
9572                                 sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
9573                                     pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
9574                         }
9575 
9576                         /*
9577                          * all cache entries belonging to this pfn are
9578                          * now flushed.
9579                          */
9580                         cache_flush_flag = CACHE_NO_FLUSH;
9581                 } else {
9582                         /*
9583                          * Flush only TSBs and TLBs.
9584                          */
9585                         if (hmeblkp->hblk_shared) {
9586                                 sf_srd_t *srdp = (sf_srd_t *)sfmmup;
9587                                 uint_t rid = hmeblkp->hblk_tag.htag_rid;
9588                                 sf_region_t *rgnp;
9589                                 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
9590                                 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
9591                                 ASSERT(srdp != NULL);
9592                                 rgnp = srdp->srd_hmergnp[rid];
9593                                 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp,
9594                                     srdp, rgnp, rid);
9595                                 (void) sfmmu_rgntlb_demap(vaddr, rgnp,
9596                                     hmeblkp, 0);
9597                         } else if (sfmmup->sfmmu_ismhat) {
9598                                 if (flags & HAT_CACHE) {
9599                                         SFMMU_STAT(sf_ism_recache);
9600                                 } else {
9601                                         SFMMU_STAT(sf_ism_uncache);
9602                                 }
9603                                 sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
9604                                     pfn, CACHE_NO_FLUSH);
9605                         } else {
9606                                 sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
9607                         }
9608                 }
9609         }
9610 
9611         if (PP_ISMAPPED_KPM(pp))
9612                 sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
9613 
9614         switch (flags) {
9615 
9616                 default:
9617                         panic("sfmmu_pagecache: unknown flags");
9618                         break;
9619 
9620                 case HAT_CACHE:
9621                         PP_CLRTNC(pp);
9622                         PP_CLRPNC(pp);
9623                         PP_SET_VCOLOR(pp, color);
9624                         break;
9625 
9626                 case HAT_TMPNC:
9627                         PP_SETTNC(pp);
9628                         PP_SET_VCOLOR(pp, NO_VCOLOR);
9629                         break;
9630 
9631                 case HAT_UNCACHE:
9632                         PP_SETPNC(pp);
9633                         PP_CLRTNC(pp);
9634                         PP_SET_VCOLOR(pp, NO_VCOLOR);
9635                         break;
9636         }
9637 }
9638 #endif  /* VAC */
9639 
9640 
9641 /*
9642  * Wrapper routine used to return a context.
9643  *
9644  * It's the responsibility of the caller to guarantee that the
9645  * process serializes on calls here by taking the HAT lock for
9646  * the hat.
9647  *
9648  */
9649 static void
9650 sfmmu_get_ctx(sfmmu_t *sfmmup)
9651 {
9652         mmu_ctx_t *mmu_ctxp;
9653         uint_t pstate_save;
9654         int ret;
9655 
9656         ASSERT(sfmmu_hat_lock_held(sfmmup));
9657         ASSERT(sfmmup != ksfmmup);
9658 
9659         if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID)) {
9660                 sfmmu_setup_tsbinfo(sfmmup);
9661                 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ALLCTX_INVALID);
9662         }
9663 
9664         kpreempt_disable();
9665 
9666         mmu_ctxp = CPU_MMU_CTXP(CPU);
9667         ASSERT(mmu_ctxp);
9668         ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
9669         ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
9670 
9671         /*
9672          * Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
9673          */
9674         if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
9675                 sfmmu_ctx_wrap_around(mmu_ctxp, B_TRUE);
9676 
9677         /*
9678          * Let the MMU set up the page sizes to use for
9679          * this context in the TLB. Don't program 2nd dtlb for ism hat.
9680          */
9681         if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
9682                 mmu_set_ctx_page_sizes(sfmmup);
9683         }
9684 
9685         /*
9686          * sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
9687          * interrupts disabled to prevent race condition with wrap-around
9688          * ctx invalidatation. In sun4v, ctx invalidation also involves
9689          * a HV call to set the number of TSBs to 0. If interrupts are not
9690          * disabled until after sfmmu_load_mmustate is complete TSBs may
9691          * become assigned to INVALID_CONTEXT. This is not allowed.
9692          */
9693         pstate_save = sfmmu_disable_intrs();
9694 
9695         if (sfmmu_alloc_ctx(sfmmup, 1, CPU, SFMMU_PRIVATE) &&
9696             sfmmup->sfmmu_scdp != NULL) {
9697                 sf_scd_t *scdp = sfmmup->sfmmu_scdp;
9698                 sfmmu_t *scsfmmup = scdp->scd_sfmmup;
9699                 ret = sfmmu_alloc_ctx(scsfmmup, 1, CPU, SFMMU_SHARED);
9700                 /* debug purpose only */
9701                 ASSERT(!ret || scsfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
9702                     != INVALID_CONTEXT);
9703         }
9704         sfmmu_load_mmustate(sfmmup);
9705 
9706         sfmmu_enable_intrs(pstate_save);
9707 
9708         kpreempt_enable();
9709 }
9710 
9711 /*
9712  * When all cnums are used up in a MMU, cnum will wrap around to the
9713  * next generation and start from 2.
9714  */
9715 static void
9716 sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp, boolean_t reset_cnum)
9717 {
9718 
9719         /* caller must have disabled the preemption */
9720         ASSERT(curthread->t_preempt >= 1);
9721         ASSERT(mmu_ctxp != NULL);
9722 
9723         /* acquire Per-MMU (PM) spin lock */
9724         mutex_enter(&mmu_ctxp->mmu_lock);
9725 
9726         /* re-check to see if wrap-around is needed */
9727         if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
9728                 goto done;
9729 
9730         SFMMU_MMU_STAT(mmu_wrap_around);
9731 
9732         /* update gnum */
9733         ASSERT(mmu_ctxp->mmu_gnum != 0);
9734         mmu_ctxp->mmu_gnum++;
9735         if (mmu_ctxp->mmu_gnum == 0 ||
9736             mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
9737                 cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
9738                     (void *)mmu_ctxp);
9739         }
9740 
9741         if (mmu_ctxp->mmu_ncpus > 1) {
9742                 cpuset_t cpuset;
9743 
9744                 membar_enter(); /* make sure updated gnum visible */
9745 
9746                 SFMMU_XCALL_STATS(NULL);
9747 
9748                 /* xcall to others on the same MMU to invalidate ctx */
9749                 cpuset = mmu_ctxp->mmu_cpuset;
9750                 ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id) || !reset_cnum);
9751                 CPUSET_DEL(cpuset, CPU->cpu_id);
9752                 CPUSET_AND(cpuset, cpu_ready_set);
9753 
9754                 /*
9755                  * Pass in INVALID_CONTEXT as the first parameter to
9756                  * sfmmu_raise_tsb_exception, which invalidates the context
9757                  * of any process running on the CPUs in the MMU.
9758                  */
9759                 xt_some(cpuset, sfmmu_raise_tsb_exception,
9760                     INVALID_CONTEXT, INVALID_CONTEXT);
9761                 xt_sync(cpuset);
9762 
9763                 SFMMU_MMU_STAT(mmu_tsb_raise_exception);
9764         }
9765 
9766         if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
9767                 sfmmu_setctx_sec(INVALID_CONTEXT);
9768                 sfmmu_clear_utsbinfo();
9769         }
9770 
9771         /*
9772          * No xcall is needed here. For sun4u systems all CPUs in context
9773          * domain share a single physical MMU therefore it's enough to flush
9774          * TLB on local CPU. On sun4v systems we use 1 global context
9775          * domain and flush all remote TLBs in sfmmu_raise_tsb_exception
9776          * handler. Note that vtag_flushall_uctxs() is called
9777          * for Ultra II machine, where the equivalent flushall functionality
9778          * is implemented in SW, and only user ctx TLB entries are flushed.
9779          */
9780         if (&vtag_flushall_uctxs != NULL) {
9781                 vtag_flushall_uctxs();
9782         } else {
9783                 vtag_flushall();
9784         }
9785 
9786         /* reset mmu cnum, skips cnum 0 and 1 */
9787         if (reset_cnum == B_TRUE)
9788                 mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
9789 
9790 done:
9791         mutex_exit(&mmu_ctxp->mmu_lock);
9792 }
9793 
9794 
9795 /*
9796  * For multi-threaded process, set the process context to INVALID_CONTEXT
9797  * so that it faults and reloads the MMU state from TL=0. For single-threaded
9798  * process, we can just load the MMU state directly without having to
9799  * set context invalid. Caller must hold the hat lock since we don't
9800  * acquire it here.
9801  */
9802 static void
9803 sfmmu_sync_mmustate(sfmmu_t *sfmmup)
9804 {
9805         uint_t cnum;
9806         uint_t pstate_save;
9807 
9808         ASSERT(sfmmup != ksfmmup);
9809         ASSERT(sfmmu_hat_lock_held(sfmmup));
9810 
9811         kpreempt_disable();
9812 
9813         /*
9814          * We check whether the pass'ed-in sfmmup is the same as the
9815          * current running proc. This is to makes sure the current proc
9816          * stays single-threaded if it already is.
9817          */
9818         if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
9819             (curthread->t_procp->p_lwpcnt == 1)) {
9820                 /* single-thread */
9821                 cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
9822                 if (cnum != INVALID_CONTEXT) {
9823                         uint_t curcnum;
9824                         /*
9825                          * Disable interrupts to prevent race condition
9826                          * with sfmmu_ctx_wrap_around ctx invalidation.
9827                          * In sun4v, ctx invalidation involves setting
9828                          * TSB to NULL, hence, interrupts should be disabled
9829                          * untill after sfmmu_load_mmustate is completed.
9830                          */
9831                         pstate_save = sfmmu_disable_intrs();
9832                         curcnum = sfmmu_getctx_sec();
9833                         if (curcnum == cnum)
9834                                 sfmmu_load_mmustate(sfmmup);
9835                         sfmmu_enable_intrs(pstate_save);
9836                         ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
9837                 }
9838         } else {
9839                 /*
9840                  * multi-thread
9841                  * or when sfmmup is not the same as the curproc.
9842                  */
9843                 sfmmu_invalidate_ctx(sfmmup);
9844         }
9845 
9846         kpreempt_enable();
9847 }
9848 
9849 
9850 /*
9851  * Replace the specified TSB with a new TSB.  This function gets called when
9852  * we grow, or shrink a TSB.  When swapping in a TSB (TSB_SWAPIN), the
9853  * TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
9854  * (8K).
9855  *
9856  * Caller must hold the HAT lock, but should assume any tsb_info
9857  * pointers it has are no longer valid after calling this function.
9858  *
9859  * Return values:
9860  *      TSB_ALLOCFAIL   Failed to allocate a TSB, due to memory constraints
9861  *      TSB_LOSTRACE    HAT is busy, i.e. another thread is already doing
9862  *                      something to this tsbinfo/TSB
9863  *      TSB_SUCCESS     Operation succeeded
9864  */
9865 static tsb_replace_rc_t
9866 sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
9867     hatlock_t *hatlockp, uint_t flags)
9868 {
9869         struct tsb_info *new_tsbinfo = NULL;
9870         struct tsb_info *curtsb, *prevtsb;
9871         uint_t tte_sz_mask;
9872         int i;
9873 
9874         ASSERT(sfmmup != ksfmmup);
9875         ASSERT(sfmmup->sfmmu_ismhat == 0);
9876         ASSERT(sfmmu_hat_lock_held(sfmmup));
9877         ASSERT(szc <= tsb_max_growsize);
9878 
9879         if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
9880                 return (TSB_LOSTRACE);
9881 
9882         /*
9883          * Find the tsb_info ahead of this one in the list, and
9884          * also make sure that the tsb_info passed in really
9885          * exists!
9886          */
9887         for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
9888             curtsb != old_tsbinfo && curtsb != NULL;
9889             prevtsb = curtsb, curtsb = curtsb->tsb_next)
9890                 ;
9891         ASSERT(curtsb != NULL);
9892 
9893         if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
9894                 /*
9895                  * The process is swapped out, so just set the new size
9896                  * code.  When it swaps back in, we'll allocate a new one
9897                  * of the new chosen size.
9898                  */
9899                 curtsb->tsb_szc = szc;
9900                 return (TSB_SUCCESS);
9901         }
9902         SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
9903 
9904         tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
9905 
9906         /*
9907          * All initialization is done inside of sfmmu_tsbinfo_alloc().
9908          * If we fail to allocate a TSB, exit.
9909          *
9910          * If tsb grows with new tsb size > 4M and old tsb size < 4M,
9911          * then try 4M slab after the initial alloc fails.
9912          *
9913          * If tsb swapin with tsb size > 4M, then try 4M after the
9914          * initial alloc fails.
9915          */
9916         sfmmu_hat_exit(hatlockp);
9917         if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc,
9918             tte_sz_mask, flags, sfmmup) &&
9919             (!(flags & (TSB_GROW | TSB_SWAPIN)) || (szc <= TSB_4M_SZCODE) ||
9920             (!(flags & TSB_SWAPIN) &&
9921             (old_tsbinfo->tsb_szc >= TSB_4M_SZCODE)) ||
9922             sfmmu_tsbinfo_alloc(&new_tsbinfo, TSB_4M_SZCODE,
9923             tte_sz_mask, flags, sfmmup))) {
9924                 (void) sfmmu_hat_enter(sfmmup);
9925                 if (!(flags & TSB_SWAPIN))
9926                         SFMMU_STAT(sf_tsb_resize_failures);
9927                 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9928                 return (TSB_ALLOCFAIL);
9929         }
9930         (void) sfmmu_hat_enter(sfmmup);
9931 
9932         /*
9933          * Re-check to make sure somebody else didn't muck with us while we
9934          * didn't hold the HAT lock.  If the process swapped out, fine, just
9935          * exit; this can happen if we try to shrink the TSB from the context
9936          * of another process (such as on an ISM unmap), though it is rare.
9937          */
9938         if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
9939                 SFMMU_STAT(sf_tsb_resize_failures);
9940                 SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
9941                 sfmmu_hat_exit(hatlockp);
9942                 sfmmu_tsbinfo_free(new_tsbinfo);
9943                 (void) sfmmu_hat_enter(sfmmup);
9944                 return (TSB_LOSTRACE);
9945         }
9946 
9947 #ifdef  DEBUG
9948         /* Reverify that the tsb_info still exists.. for debugging only */
9949         for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
9950             curtsb != old_tsbinfo && curtsb != NULL;
9951             prevtsb = curtsb, curtsb = curtsb->tsb_next)
9952                 ;
9953         ASSERT(curtsb != NULL);
9954 #endif  /* DEBUG */
9955 
9956         /*
9957          * Quiesce any CPUs running this process on their next TLB miss
9958          * so they atomically see the new tsb_info.  We temporarily set the
9959          * context to invalid context so new threads that come on processor
9960          * after we do the xcall to cpusran will also serialize behind the
9961          * HAT lock on TLB miss and will see the new TSB.  Since this short
9962          * race with a new thread coming on processor is relatively rare,
9963          * this synchronization mechanism should be cheaper than always
9964          * pausing all CPUs for the duration of the setup, which is what
9965          * the old implementation did.  This is particuarly true if we are
9966          * copying a huge chunk of memory around during that window.
9967          *
9968          * The memory barriers are to make sure things stay consistent
9969          * with resume() since it does not hold the HAT lock while
9970          * walking the list of tsb_info structures.
9971          */
9972         if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
9973                 /* The TSB is either growing or shrinking. */
9974                 sfmmu_invalidate_ctx(sfmmup);
9975         } else {
9976                 /*
9977                  * It is illegal to swap in TSBs from a process other
9978                  * than a process being swapped in.  This in turn
9979                  * implies we do not have a valid MMU context here
9980                  * since a process needs one to resolve translation
9981                  * misses.
9982                  */
9983                 ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
9984         }
9985 
9986 #ifdef DEBUG
9987         ASSERT(max_mmu_ctxdoms > 0);
9988 
9989         /*
9990          * Process should have INVALID_CONTEXT on all MMUs
9991          */
9992         for (i = 0; i < max_mmu_ctxdoms; i++) {
9993 
9994                 ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
9995         }
9996 #endif
9997 
9998         new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
9999         membar_stst();  /* strict ordering required */
10000         if (prevtsb)
10001                 prevtsb->tsb_next = new_tsbinfo;
10002         else
10003                 sfmmup->sfmmu_tsb = new_tsbinfo;
10004         membar_enter(); /* make sure new TSB globally visible */
10005 
10006         /*
10007          * We need to migrate TSB entries from the old TSB to the new TSB
10008          * if tsb_remap_ttes is set and the TSB is growing.
10009          */
10010         if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
10011                 sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
10012 
10013         SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
10014 
10015         /*
10016          * Drop the HAT lock to free our old tsb_info.
10017          */
10018         sfmmu_hat_exit(hatlockp);
10019 
10020         if ((flags & TSB_GROW) == TSB_GROW) {
10021                 SFMMU_STAT(sf_tsb_grow);
10022         } else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
10023                 SFMMU_STAT(sf_tsb_shrink);
10024         }
10025 
10026         sfmmu_tsbinfo_free(old_tsbinfo);
10027 
10028         (void) sfmmu_hat_enter(sfmmup);
10029         return (TSB_SUCCESS);
10030 }
10031 
10032 /*
10033  * This function will re-program hat pgsz array, and invalidate the
10034  * process' context, forcing the process to switch to another
10035  * context on the next TLB miss, and therefore start using the
10036  * TLB that is reprogrammed for the new page sizes.
10037  */
10038 void
10039 sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
10040 {
10041         int i;
10042         hatlock_t *hatlockp = NULL;
10043 
10044         hatlockp = sfmmu_hat_enter(sfmmup);
10045         /* USIII+-IV+ optimization, requires hat lock */
10046         if (tmp_pgsz) {
10047                 for (i = 0; i < mmu_page_sizes; i++)
10048                         sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
10049         }
10050         SFMMU_STAT(sf_tlb_reprog_pgsz);
10051 
10052         sfmmu_invalidate_ctx(sfmmup);
10053 
10054         sfmmu_hat_exit(hatlockp);
10055 }
10056 
10057 /*
10058  * The scd_rttecnt field in the SCD must be updated to take account of the
10059  * regions which it contains.
10060  */
10061 static void
10062 sfmmu_set_scd_rttecnt(sf_srd_t *srdp, sf_scd_t *scdp)
10063 {
10064         uint_t rid;
10065         uint_t i, j;
10066         ulong_t w;
10067         sf_region_t *rgnp;
10068 
10069         ASSERT(srdp != NULL);
10070 
10071         for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
10072                 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
10073                         continue;
10074                 }
10075 
10076                 j = 0;
10077                 while (w) {
10078                         if (!(w & 0x1)) {
10079                                 j++;
10080                                 w >>= 1;
10081                                 continue;
10082                         }
10083                         rid = (i << BT_ULSHIFT) | j;
10084                         j++;
10085                         w >>= 1;
10086 
10087                         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
10088                         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
10089                         rgnp = srdp->srd_hmergnp[rid];
10090                         ASSERT(rgnp->rgn_refcnt > 0);
10091                         ASSERT(rgnp->rgn_id == rid);
10092 
10093                         scdp->scd_rttecnt[rgnp->rgn_pgszc] +=
10094                             rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
10095 
10096                         /*
10097                          * Maintain the tsb0 inflation cnt for the regions
10098                          * in the SCD.
10099                          */
10100                         if (rgnp->rgn_pgszc >= TTE4M) {
10101                                 scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt +=
10102                                     rgnp->rgn_size >>
10103                                     (TTE_PAGE_SHIFT(TTE8K) + 2);
10104                         }
10105                 }
10106         }
10107 }
10108 
10109 /*
10110  * This function assumes that there are either four or six supported page
10111  * sizes and at most two programmable TLBs, so we need to decide which
10112  * page sizes are most important and then tell the MMU layer so it
10113  * can adjust the TLB page sizes accordingly (if supported).
10114  *
10115  * If these assumptions change, this function will need to be
10116  * updated to support whatever the new limits are.
10117  *
10118  * The growing flag is nonzero if we are growing the address space,
10119  * and zero if it is shrinking.  This allows us to decide whether
10120  * to grow or shrink our TSB, depending upon available memory
10121  * conditions.
10122  */
10123 static void
10124 sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
10125 {
10126         uint64_t ttecnt[MMU_PAGE_SIZES];
10127         uint64_t tte8k_cnt, tte4m_cnt;
10128         uint8_t i;
10129         int sectsb_thresh;
10130 
10131         /*
10132          * Kernel threads, processes with small address spaces not using
10133          * large pages, and dummy ISM HATs need not apply.
10134          */
10135         if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
10136                 return;
10137 
10138         if (!SFMMU_LGPGS_INUSE(sfmmup) &&
10139             sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
10140                 return;
10141 
10142         for (i = 0; i < mmu_page_sizes; i++) {
10143                 ttecnt[i] = sfmmup->sfmmu_ttecnt[i] +
10144                     sfmmup->sfmmu_ismttecnt[i];
10145         }
10146 
10147         /* Check pagesizes in use, and possibly reprogram DTLB. */
10148         if (&mmu_check_page_sizes)
10149                 mmu_check_page_sizes(sfmmup, ttecnt);
10150 
10151         /*
10152          * Calculate the number of 8k ttes to represent the span of these
10153          * pages.
10154          */
10155         tte8k_cnt = ttecnt[TTE8K] +
10156             (ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
10157             (ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
10158         if (mmu_page_sizes == max_mmu_page_sizes) {
10159                 tte4m_cnt = ttecnt[TTE4M] +
10160                     (ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
10161                     (ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
10162         } else {
10163                 tte4m_cnt = ttecnt[TTE4M];
10164         }
10165 
10166         /*
10167          * Inflate tte8k_cnt to allow for region large page allocation failure.
10168          */
10169         tte8k_cnt += sfmmup->sfmmu_tsb0_4minflcnt;
10170 
10171         /*
10172          * Inflate TSB sizes by a factor of 2 if this process
10173          * uses 4M text pages to minimize extra conflict misses
10174          * in the first TSB since without counting text pages
10175          * 8K TSB may become too small.
10176          *
10177          * Also double the size of the second TSB to minimize
10178          * extra conflict misses due to competition between 4M text pages
10179          * and data pages.
10180          *
10181          * We need to adjust the second TSB allocation threshold by the
10182          * inflation factor, since there is no point in creating a second
10183          * TSB when we know all the mappings can fit in the I/D TLBs.
10184          */
10185         sectsb_thresh = tsb_sectsb_threshold;
10186         if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
10187                 tte8k_cnt <<= 1;
10188                 tte4m_cnt <<= 1;
10189                 sectsb_thresh <<= 1;
10190         }
10191 
10192         /*
10193          * Check to see if our TSB is the right size; we may need to
10194          * grow or shrink it.  If the process is small, our work is
10195          * finished at this point.
10196          */
10197         if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
10198                 return;
10199         }
10200         sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
10201 }
10202 
10203 static void
10204 sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
10205         uint64_t tte4m_cnt, int sectsb_thresh)
10206 {
10207         int tsb_bits;
10208         uint_t tsb_szc;
10209         struct tsb_info *tsbinfop;
10210         hatlock_t *hatlockp = NULL;
10211 
10212         hatlockp = sfmmu_hat_enter(sfmmup);
10213         ASSERT(hatlockp != NULL);
10214         tsbinfop = sfmmup->sfmmu_tsb;
10215         ASSERT(tsbinfop != NULL);
10216 
10217         /*
10218          * If we're growing, select the size based on RSS.  If we're
10219          * shrinking, leave some room so we don't have to turn around and
10220          * grow again immediately.
10221          */
10222         if (growing)
10223                 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
10224         else
10225                 tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
10226 
10227         if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10228             (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10229                 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10230                     hatlockp, TSB_SHRINK);
10231         } else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
10232                 (void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
10233                     hatlockp, TSB_GROW);
10234         }
10235         tsbinfop = sfmmup->sfmmu_tsb;
10236 
10237         /*
10238          * With the TLB and first TSB out of the way, we need to see if
10239          * we need a second TSB for 4M pages.  If we managed to reprogram
10240          * the TLB page sizes above, the process will start using this new
10241          * TSB right away; otherwise, it will start using it on the next
10242          * context switch.  Either way, it's no big deal so there's no
10243          * synchronization with the trap handlers here unless we grow the
10244          * TSB (in which case it's required to prevent using the old one
10245          * after it's freed). Note: second tsb is required for 32M/256M
10246          * page sizes.
10247          */
10248         if (tte4m_cnt > sectsb_thresh) {
10249                 /*
10250                  * If we're growing, select the size based on RSS.  If we're
10251                  * shrinking, leave some room so we don't have to turn
10252                  * around and grow again immediately.
10253                  */
10254                 if (growing)
10255                         tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
10256                 else
10257                         tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
10258                 if (tsbinfop->tsb_next == NULL) {
10259                         struct tsb_info *newtsb;
10260                         int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
10261                             0 : TSB_ALLOC;
10262 
10263                         sfmmu_hat_exit(hatlockp);
10264 
10265                         /*
10266                          * Try to allocate a TSB for 4[32|256]M pages.  If we
10267                          * can't get the size we want, retry w/a minimum sized
10268                          * TSB.  If that still didn't work, give up; we can
10269                          * still run without one.
10270                          */
10271                         tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
10272                             TSB4M|TSB32M|TSB256M:TSB4M;
10273                         if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
10274                             allocflags, sfmmup)) &&
10275                             (tsb_szc <= TSB_4M_SZCODE ||
10276                             sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
10277                             tsb_bits, allocflags, sfmmup)) &&
10278                             sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
10279                             tsb_bits, allocflags, sfmmup)) {
10280                                 return;
10281                         }
10282 
10283                         hatlockp = sfmmu_hat_enter(sfmmup);
10284 
10285                         sfmmu_invalidate_ctx(sfmmup);
10286 
10287                         if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
10288                                 sfmmup->sfmmu_tsb->tsb_next = newtsb;
10289                                 SFMMU_STAT(sf_tsb_sectsb_create);
10290                                 sfmmu_hat_exit(hatlockp);
10291                                 return;
10292                         } else {
10293                                 /*
10294                                  * It's annoying, but possible for us
10295                                  * to get here.. we dropped the HAT lock
10296                                  * because of locking order in the kmem
10297                                  * allocator, and while we were off getting
10298                                  * our memory, some other thread decided to
10299                                  * do us a favor and won the race to get a
10300                                  * second TSB for this process.  Sigh.
10301                                  */
10302                                 sfmmu_hat_exit(hatlockp);
10303                                 sfmmu_tsbinfo_free(newtsb);
10304                                 return;
10305                         }
10306                 }
10307 
10308                 /*
10309                  * We have a second TSB, see if it's big enough.
10310                  */
10311                 tsbinfop = tsbinfop->tsb_next;
10312 
10313                 /*
10314                  * Check to see if our second TSB is the right size;
10315                  * we may need to grow or shrink it.
10316                  * To prevent thrashing (e.g. growing the TSB on a
10317                  * subsequent map operation), only try to shrink if
10318                  * the TSB reach exceeds twice the virtual address
10319                  * space size.
10320                  */
10321                 if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
10322                     (tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
10323                         (void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10324                             tsb_szc, hatlockp, TSB_SHRINK);
10325                 } else if (growing && tsb_szc > tsbinfop->tsb_szc &&
10326                     TSB_OK_GROW()) {
10327                         (void) sfmmu_replace_tsb(sfmmup, tsbinfop,
10328                             tsb_szc, hatlockp, TSB_GROW);
10329                 }
10330         }
10331 
10332         sfmmu_hat_exit(hatlockp);
10333 }
10334 
10335 /*
10336  * Free up a sfmmu
10337  * Since the sfmmu is currently embedded in the hat struct we simply zero
10338  * out our fields and free up the ism map blk list if any.
10339  */
10340 static void
10341 sfmmu_free_sfmmu(sfmmu_t *sfmmup)
10342 {
10343         ism_blk_t       *blkp, *nx_blkp;
10344 #ifdef  DEBUG
10345         ism_map_t       *map;
10346         int             i;
10347 #endif
10348 
10349         ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
10350         ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
10351         ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
10352         ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
10353         ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
10354         ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
10355         ASSERT(SF_RGNMAP_ISNULL(sfmmup));
10356 
10357         sfmmup->sfmmu_free = 0;
10358         sfmmup->sfmmu_ismhat = 0;
10359 
10360         blkp = sfmmup->sfmmu_iblk;
10361         sfmmup->sfmmu_iblk = NULL;
10362 
10363         while (blkp) {
10364 #ifdef  DEBUG
10365                 map = blkp->iblk_maps;
10366                 for (i = 0; i < ISM_MAP_SLOTS; i++) {
10367                         ASSERT(map[i].imap_seg == 0);
10368                         ASSERT(map[i].imap_ismhat == NULL);
10369                         ASSERT(map[i].imap_ment == NULL);
10370                 }
10371 #endif
10372                 nx_blkp = blkp->iblk_next;
10373                 blkp->iblk_next = NULL;
10374                 blkp->iblk_nextpa = (uint64_t)-1;
10375                 kmem_cache_free(ism_blk_cache, blkp);
10376                 blkp = nx_blkp;
10377         }
10378 }
10379 
10380 /*
10381  * Locking primitves accessed by HATLOCK macros
10382  */
10383 
10384 #define SFMMU_SPL_MTX   (0x0)
10385 #define SFMMU_ML_MTX    (0x1)
10386 
10387 #define SFMMU_MLSPL_MTX(type, pg)       (((type) == SFMMU_SPL_MTX) ? \
10388                                             SPL_HASH(pg) : MLIST_HASH(pg))
10389 
10390 kmutex_t *
10391 sfmmu_page_enter(struct page *pp)
10392 {
10393         return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
10394 }
10395 
10396 void
10397 sfmmu_page_exit(kmutex_t *spl)
10398 {
10399         mutex_exit(spl);
10400 }
10401 
10402 int
10403 sfmmu_page_spl_held(struct page *pp)
10404 {
10405         return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
10406 }
10407 
10408 kmutex_t *
10409 sfmmu_mlist_enter(struct page *pp)
10410 {
10411         return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
10412 }
10413 
10414 void
10415 sfmmu_mlist_exit(kmutex_t *mml)
10416 {
10417         mutex_exit(mml);
10418 }
10419 
10420 int
10421 sfmmu_mlist_held(struct page *pp)
10422 {
10423 
10424         return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
10425 }
10426 
10427 /*
10428  * Common code for sfmmu_mlist_enter() and sfmmu_page_enter().  For
10429  * sfmmu_mlist_enter() case mml_table lock array is used and for
10430  * sfmmu_page_enter() sfmmu_page_lock lock array is used.
10431  *
10432  * The lock is taken on a root page so that it protects an operation on all
10433  * constituent pages of a large page pp belongs to.
10434  *
10435  * The routine takes a lock from the appropriate array. The lock is determined
10436  * by hashing the root page. After taking the lock this routine checks if the
10437  * root page has the same size code that was used to determine the root (i.e
10438  * that root hasn't changed).  If root page has the expected p_szc field we
10439  * have the right lock and it's returned to the caller. If root's p_szc
10440  * decreased we release the lock and retry from the beginning.  This case can
10441  * happen due to hat_page_demote() decreasing p_szc between our load of p_szc
10442  * value and taking the lock. The number of retries due to p_szc decrease is
10443  * limited by the maximum p_szc value. If p_szc is 0 we return the lock
10444  * determined by hashing pp itself.
10445  *
10446  * If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
10447  * possible that p_szc can increase. To increase p_szc a thread has to lock
10448  * all constituent pages EXCL and do hat_pageunload() on all of them. All the
10449  * callers that don't hold a page locked recheck if hmeblk through which pp
10450  * was found still maps this pp.  If it doesn't map it anymore returned lock
10451  * is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
10452  * p_szc increase after taking the lock it returns this lock without further
10453  * retries because in this case the caller doesn't care about which lock was
10454  * taken. The caller will drop it right away.
10455  *
10456  * After the routine returns it's guaranteed that hat_page_demote() can't
10457  * change p_szc field of any of constituent pages of a large page pp belongs
10458  * to as long as pp was either locked at least SHARED prior to this call or
10459  * the caller finds that hment that pointed to this pp still references this
10460  * pp (this also assumes that the caller holds hme hash bucket lock so that
10461  * the same pp can't be remapped into the same hmeblk after it was unmapped by
10462  * hat_pageunload()).
10463  */
10464 static kmutex_t *
10465 sfmmu_mlspl_enter(struct page *pp, int type)
10466 {
10467         kmutex_t        *mtx;
10468         uint_t          prev_rszc = UINT_MAX;
10469         page_t          *rootpp;
10470         uint_t          szc;
10471         uint_t          rszc;
10472         uint_t          pszc = pp->p_szc;
10473 
10474         ASSERT(pp != NULL);
10475 
10476 again:
10477         if (pszc == 0) {
10478                 mtx = SFMMU_MLSPL_MTX(type, pp);
10479                 mutex_enter(mtx);
10480                 return (mtx);
10481         }
10482 
10483         /* The lock lives in the root page */
10484         rootpp = PP_GROUPLEADER(pp, pszc);
10485         mtx = SFMMU_MLSPL_MTX(type, rootpp);
10486         mutex_enter(mtx);
10487 
10488         /*
10489          * Return mml in the following 3 cases:
10490          *
10491          * 1) If pp itself is root since if its p_szc decreased before we took
10492          * the lock pp is still the root of smaller szc page. And if its p_szc
10493          * increased it doesn't matter what lock we return (see comment in
10494          * front of this routine).
10495          *
10496          * 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
10497          * large page we have the right lock since any previous potential
10498          * hat_page_demote() is done demoting from greater than current root's
10499          * p_szc because hat_page_demote() changes root's p_szc last. No
10500          * further hat_page_demote() can start or be in progress since it
10501          * would need the same lock we currently hold.
10502          *
10503          * 3) If rootpp's p_szc increased since previous iteration it doesn't
10504          * matter what lock we return (see comment in front of this routine).
10505          */
10506         if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
10507             rszc >= prev_rszc) {
10508                 return (mtx);
10509         }
10510 
10511         /*
10512          * hat_page_demote() could have decreased root's p_szc.
10513          * In this case pp's p_szc must also be smaller than pszc.
10514          * Retry.
10515          */
10516         if (rszc < pszc) {
10517                 szc = pp->p_szc;
10518                 if (szc < pszc) {
10519                         mutex_exit(mtx);
10520                         pszc = szc;
10521                         goto again;
10522                 }
10523                 /*
10524                  * pp's p_szc increased after it was decreased.
10525                  * page cannot be mapped. Return current lock. The caller
10526                  * will drop it right away.
10527                  */
10528                 return (mtx);
10529         }
10530 
10531         /*
10532          * root's p_szc is greater than pp's p_szc.
10533          * hat_page_demote() is not done with all pages
10534          * yet. Wait for it to complete.
10535          */
10536         mutex_exit(mtx);
10537         rootpp = PP_GROUPLEADER(rootpp, rszc);
10538         mtx = SFMMU_MLSPL_MTX(type, rootpp);
10539         mutex_enter(mtx);
10540         mutex_exit(mtx);
10541         prev_rszc = rszc;
10542         goto again;
10543 }
10544 
10545 static int
10546 sfmmu_mlspl_held(struct page *pp, int type)
10547 {
10548         kmutex_t        *mtx;
10549 
10550         ASSERT(pp != NULL);
10551         /* The lock lives in the root page */
10552         pp = PP_PAGEROOT(pp);
10553         ASSERT(pp != NULL);
10554 
10555         mtx = SFMMU_MLSPL_MTX(type, pp);
10556         return (MUTEX_HELD(mtx));
10557 }
10558 
10559 static uint_t
10560 sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
10561 {
10562         struct  hme_blk *hblkp;
10563 
10564 
10565         if (freehblkp != NULL) {
10566                 mutex_enter(&freehblkp_lock);
10567                 if (freehblkp != NULL) {
10568                         /*
10569                          * If the current thread is owning hblk_reserve OR
10570                          * critical request from sfmmu_hblk_steal()
10571                          * let it succeed even if freehblkcnt is really low.
10572                          */
10573                         if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
10574                                 SFMMU_STAT(sf_get_free_throttle);
10575                                 mutex_exit(&freehblkp_lock);
10576                                 return (0);
10577                         }
10578                         freehblkcnt--;
10579                         *hmeblkpp = freehblkp;
10580                         hblkp = *hmeblkpp;
10581                         freehblkp = hblkp->hblk_next;
10582                         mutex_exit(&freehblkp_lock);
10583                         hblkp->hblk_next = NULL;
10584                         SFMMU_STAT(sf_get_free_success);
10585 
10586                         ASSERT(hblkp->hblk_hmecnt == 0);
10587                         ASSERT(hblkp->hblk_vcnt == 0);
10588                         ASSERT(hblkp->hblk_nextpa == va_to_pa((caddr_t)hblkp));
10589 
10590                         return (1);
10591                 }
10592                 mutex_exit(&freehblkp_lock);
10593         }
10594 
10595         /* Check cpu hblk pending queues */
10596         if ((*hmeblkpp = sfmmu_check_pending_hblks(TTE8K)) != NULL) {
10597                 hblkp = *hmeblkpp;
10598                 hblkp->hblk_next = NULL;
10599                 hblkp->hblk_nextpa = va_to_pa((caddr_t)hblkp);
10600 
10601                 ASSERT(hblkp->hblk_hmecnt == 0);
10602                 ASSERT(hblkp->hblk_vcnt == 0);
10603 
10604                 return (1);
10605         }
10606 
10607         SFMMU_STAT(sf_get_free_fail);
10608         return (0);
10609 }
10610 
10611 static uint_t
10612 sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
10613 {
10614         struct  hme_blk *hblkp;
10615 
10616         ASSERT(hmeblkp->hblk_hmecnt == 0);
10617         ASSERT(hmeblkp->hblk_vcnt == 0);
10618         ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
10619 
10620         /*
10621          * If the current thread is mapping into kernel space,
10622          * let it succede even if freehblkcnt is max
10623          * so that it will avoid freeing it to kmem.
10624          * This will prevent stack overflow due to
10625          * possible recursion since kmem_cache_free()
10626          * might require creation of a slab which
10627          * in turn needs an hmeblk to map that slab;
10628          * let's break this vicious chain at the first
10629          * opportunity.
10630          */
10631         if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10632                 mutex_enter(&freehblkp_lock);
10633                 if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
10634                         SFMMU_STAT(sf_put_free_success);
10635                         freehblkcnt++;
10636                         hmeblkp->hblk_next = freehblkp;
10637                         freehblkp = hmeblkp;
10638                         mutex_exit(&freehblkp_lock);
10639                         return (1);
10640                 }
10641                 mutex_exit(&freehblkp_lock);
10642         }
10643 
10644         /*
10645          * Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
10646          * only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
10647          * we are not in the process of mapping into kernel space.
10648          */
10649         ASSERT(!critical);
10650         while (freehblkcnt > HBLK_RESERVE_CNT) {
10651                 mutex_enter(&freehblkp_lock);
10652                 if (freehblkcnt > HBLK_RESERVE_CNT) {
10653                         freehblkcnt--;
10654                         hblkp = freehblkp;
10655                         freehblkp = hblkp->hblk_next;
10656                         mutex_exit(&freehblkp_lock);
10657                         ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
10658                         kmem_cache_free(sfmmu8_cache, hblkp);
10659                         continue;
10660                 }
10661                 mutex_exit(&freehblkp_lock);
10662         }
10663         SFMMU_STAT(sf_put_free_fail);
10664         return (0);
10665 }
10666 
10667 static void
10668 sfmmu_hblk_swap(struct hme_blk *new)
10669 {
10670         struct hme_blk *old, *hblkp, *prev;
10671         uint64_t newpa;
10672         caddr_t base, vaddr, endaddr;
10673         struct hmehash_bucket *hmebp;
10674         struct sf_hment *osfhme, *nsfhme;
10675         page_t *pp;
10676         kmutex_t *pml;
10677         tte_t tte;
10678         struct hme_blk *list = NULL;
10679 
10680 #ifdef  DEBUG
10681         hmeblk_tag              hblktag;
10682         struct hme_blk          *found;
10683 #endif
10684         old = HBLK_RESERVE;
10685         ASSERT(!old->hblk_shared);
10686 
10687         /*
10688          * save pa before bcopy clobbers it
10689          */
10690         newpa = new->hblk_nextpa;
10691 
10692         base = (caddr_t)get_hblk_base(old);
10693         endaddr = base + get_hblk_span(old);
10694 
10695         /*
10696          * acquire hash bucket lock.
10697          */
10698         hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K,
10699             SFMMU_INVALID_SHMERID);
10700 
10701         /*
10702          * copy contents from old to new
10703          */
10704         bcopy((void *)old, (void *)new, HME8BLK_SZ);
10705 
10706         /*
10707          * add new to hash chain
10708          */
10709         sfmmu_hblk_hash_add(hmebp, new, newpa);
10710 
10711         /*
10712          * search hash chain for hblk_reserve; this needs to be performed
10713          * after adding new, otherwise prev won't correspond to the hblk which
10714          * is prior to old in hash chain when we call sfmmu_hblk_hash_rm to
10715          * remove old later.
10716          */
10717         for (prev = NULL,
10718             hblkp = hmebp->hmeblkp; hblkp != NULL && hblkp != old;
10719             prev = hblkp, hblkp = hblkp->hblk_next)
10720                 ;
10721 
10722         if (hblkp != old)
10723                 panic("sfmmu_hblk_swap: hblk_reserve not found");
10724 
10725         /*
10726          * p_mapping list is still pointing to hments in hblk_reserve;
10727          * fix up p_mapping list so that they point to hments in new.
10728          *
10729          * Since all these mappings are created by hblk_reserve_thread
10730          * on the way and it's using at least one of the buffers from each of
10731          * the newly minted slabs, there is no danger of any of these
10732          * mappings getting unloaded by another thread.
10733          *
10734          * tsbmiss could only modify ref/mod bits of hments in old/new.
10735          * Since all of these hments hold mappings established by segkmem
10736          * and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
10737          * have no meaning for the mappings in hblk_reserve.  hments in
10738          * old and new are identical except for ref/mod bits.
10739          */
10740         for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
10741 
10742                 HBLKTOHME(osfhme, old, vaddr);
10743                 sfmmu_copytte(&osfhme->hme_tte, &tte);
10744 
10745                 if (TTE_IS_VALID(&tte)) {
10746                         if ((pp = osfhme->hme_page) == NULL)
10747                                 panic("sfmmu_hblk_swap: page not mapped");
10748 
10749                         pml = sfmmu_mlist_enter(pp);
10750 
10751                         if (pp != osfhme->hme_page)
10752                                 panic("sfmmu_hblk_swap: mapping changed");
10753 
10754                         HBLKTOHME(nsfhme, new, vaddr);
10755 
10756                         HME_ADD(nsfhme, pp);
10757                         HME_SUB(osfhme, pp);
10758 
10759                         sfmmu_mlist_exit(pml);
10760                 }
10761         }
10762 
10763         /*
10764          * remove old from hash chain
10765          */
10766         sfmmu_hblk_hash_rm(hmebp, old, prev, &list, 1);
10767 
10768 #ifdef  DEBUG
10769 
10770         hblktag.htag_id = ksfmmup;
10771         hblktag.htag_rid = SFMMU_INVALID_SHMERID;
10772         hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
10773         hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
10774         HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
10775 
10776         if (found != new)
10777                 panic("sfmmu_hblk_swap: new hblk not found");
10778 #endif
10779 
10780         SFMMU_HASH_UNLOCK(hmebp);
10781 
10782         /*
10783          * Reset hblk_reserve
10784          */
10785         bzero((void *)old, HME8BLK_SZ);
10786         old->hblk_nextpa = va_to_pa((caddr_t)old);
10787 }
10788 
10789 /*
10790  * Grab the mlist mutex for both pages passed in.
10791  *
10792  * low and high will be returned as pointers to the mutexes for these pages.
10793  * low refers to the mutex residing in the lower bin of the mlist hash, while
10794  * high refers to the mutex residing in the higher bin of the mlist hash.  This
10795  * is due to the locking order restrictions on the same thread grabbing
10796  * multiple mlist mutexes.  The low lock must be acquired before the high lock.
10797  *
10798  * If both pages hash to the same mutex, only grab that single mutex, and
10799  * high will be returned as NULL
10800  * If the pages hash to different bins in the hash, grab the lower addressed
10801  * lock first and then the higher addressed lock in order to follow the locking
10802  * rules involved with the same thread grabbing multiple mlist mutexes.
10803  * low and high will both have non-NULL values.
10804  */
10805 static void
10806 sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
10807     kmutex_t **low, kmutex_t **high)
10808 {
10809         kmutex_t        *mml_targ, *mml_repl;
10810 
10811         /*
10812          * no need to do the dance around szc as in sfmmu_mlist_enter()
10813          * because this routine is only called by hat_page_relocate() and all
10814          * targ and repl pages are already locked EXCL so szc can't change.
10815          */
10816 
10817         mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
10818         mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
10819 
10820         if (mml_targ == mml_repl) {
10821                 *low = mml_targ;
10822                 *high = NULL;
10823         } else {
10824                 if (mml_targ < mml_repl) {
10825                         *low = mml_targ;
10826                         *high = mml_repl;
10827                 } else {
10828                         *low = mml_repl;
10829                         *high = mml_targ;
10830                 }
10831         }
10832 
10833         mutex_enter(*low);
10834         if (*high)
10835                 mutex_enter(*high);
10836 }
10837 
10838 static void
10839 sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
10840 {
10841         if (high)
10842                 mutex_exit(high);
10843         mutex_exit(low);
10844 }
10845 
10846 static hatlock_t *
10847 sfmmu_hat_enter(sfmmu_t *sfmmup)
10848 {
10849         hatlock_t       *hatlockp;
10850 
10851         if (sfmmup != ksfmmup) {
10852                 hatlockp = TSB_HASH(sfmmup);
10853                 mutex_enter(HATLOCK_MUTEXP(hatlockp));
10854                 return (hatlockp);
10855         }
10856         return (NULL);
10857 }
10858 
10859 static hatlock_t *
10860 sfmmu_hat_tryenter(sfmmu_t *sfmmup)
10861 {
10862         hatlock_t       *hatlockp;
10863 
10864         if (sfmmup != ksfmmup) {
10865                 hatlockp = TSB_HASH(sfmmup);
10866                 if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
10867                         return (NULL);
10868                 return (hatlockp);
10869         }
10870         return (NULL);
10871 }
10872 
10873 static void
10874 sfmmu_hat_exit(hatlock_t *hatlockp)
10875 {
10876         if (hatlockp != NULL)
10877                 mutex_exit(HATLOCK_MUTEXP(hatlockp));
10878 }
10879 
10880 static void
10881 sfmmu_hat_lock_all(void)
10882 {
10883         int i;
10884         for (i = 0; i < SFMMU_NUM_LOCK; i++)
10885                 mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
10886 }
10887 
10888 static void
10889 sfmmu_hat_unlock_all(void)
10890 {
10891         int i;
10892         for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
10893                 mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
10894 }
10895 
10896 int
10897 sfmmu_hat_lock_held(sfmmu_t *sfmmup)
10898 {
10899         ASSERT(sfmmup != ksfmmup);
10900         return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
10901 }
10902 
10903 /*
10904  * Locking primitives to provide consistency between ISM unmap
10905  * and other operations.  Since ISM unmap can take a long time, we
10906  * use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
10907  * contention on the hatlock buckets while ISM segments are being
10908  * unmapped.  The tradeoff is that the flags don't prevent priority
10909  * inversion from occurring, so we must request kernel priority in
10910  * case we have to sleep to keep from getting buried while holding
10911  * the HAT_ISMBUSY flag set, which in turn could block other kernel
10912  * threads from running (for example, in sfmmu_uvatopfn()).
10913  */
10914 static void
10915 sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
10916 {
10917         hatlock_t *hatlockp;
10918 
10919         THREAD_KPRI_REQUEST();
10920         if (!hatlock_held)
10921                 hatlockp = sfmmu_hat_enter(sfmmup);
10922         while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
10923                 cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
10924         SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
10925         if (!hatlock_held)
10926                 sfmmu_hat_exit(hatlockp);
10927 }
10928 
10929 static void
10930 sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
10931 {
10932         hatlock_t *hatlockp;
10933 
10934         if (!hatlock_held)
10935                 hatlockp = sfmmu_hat_enter(sfmmup);
10936         ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
10937         SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
10938         cv_broadcast(&sfmmup->sfmmu_tsb_cv);
10939         if (!hatlock_held)
10940                 sfmmu_hat_exit(hatlockp);
10941         THREAD_KPRI_RELEASE();
10942 }
10943 
10944 /*
10945  *
10946  * Algorithm:
10947  *
10948  * (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
10949  *      hblks.
10950  *
10951  * (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
10952  *
10953  *              (a) try to return an hblk from reserve pool of free hblks;
10954  *              (b) if the reserve pool is empty, acquire hblk_reserve_lock
10955  *                  and return hblk_reserve.
10956  *
10957  * (3) call kmem_cache_alloc() to allocate hblk;
10958  *
10959  *              (a) if hblk_reserve_lock is held by the current thread,
10960  *                  atomically replace hblk_reserve by the hblk that is
10961  *                  returned by kmem_cache_alloc; release hblk_reserve_lock
10962  *                  and call kmem_cache_alloc() again.
10963  *              (b) if reserve pool is not full, add the hblk that is
10964  *                  returned by kmem_cache_alloc to reserve pool and
10965  *                  call kmem_cache_alloc again.
10966  *
10967  */
10968 static struct hme_blk *
10969 sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
10970         struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
10971         uint_t flags, uint_t rid)
10972 {
10973         struct hme_blk *hmeblkp = NULL;
10974         struct hme_blk *newhblkp;
10975         struct hme_blk *shw_hblkp = NULL;
10976         struct kmem_cache *sfmmu_cache = NULL;
10977         uint64_t hblkpa;
10978         ulong_t index;
10979         uint_t owner;           /* set to 1 if using hblk_reserve */
10980         uint_t forcefree;
10981         int sleep;
10982         sf_srd_t *srdp;
10983         sf_region_t *rgnp;
10984 
10985         ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
10986         ASSERT(hblktag.htag_rid == rid);
10987         SFMMU_VALIDATE_HMERID(sfmmup, rid, vaddr, TTEBYTES(size));
10988         ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
10989             IS_P2ALIGNED(vaddr, TTEBYTES(size)));
10990 
10991         /*
10992          * If segkmem is not created yet, allocate from static hmeblks
10993          * created at the end of startup_modules().  See the block comment
10994          * in startup_modules() describing how we estimate the number of
10995          * static hmeblks that will be needed during re-map.
10996          */
10997         if (!hblk_alloc_dynamic) {
10998 
10999                 ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
11000 
11001                 if (size == TTE8K) {
11002                         index = nucleus_hblk8.index;
11003                         if (index >= nucleus_hblk8.len) {
11004                                 /*
11005                                  * If we panic here, see startup_modules() to
11006                                  * make sure that we are calculating the
11007                                  * number of hblk8's that we need correctly.
11008                                  */
11009                                 prom_panic("no nucleus hblk8 to allocate");
11010                         }
11011                         hmeblkp =
11012                             (struct hme_blk *)&nucleus_hblk8.list[index];
11013                         nucleus_hblk8.index++;
11014                         SFMMU_STAT(sf_hblk8_nalloc);
11015                 } else {
11016                         index = nucleus_hblk1.index;
11017                         if (nucleus_hblk1.index >= nucleus_hblk1.len) {
11018                                 /*
11019                                  * If we panic here, see startup_modules().
11020                                  * Most likely you need to update the
11021                                  * calculation of the number of hblk1 elements
11022                                  * that the kernel needs to boot.
11023                                  */
11024                                 prom_panic("no nucleus hblk1 to allocate");
11025                         }
11026                         hmeblkp =
11027                             (struct hme_blk *)&nucleus_hblk1.list[index];
11028                         nucleus_hblk1.index++;
11029                         SFMMU_STAT(sf_hblk1_nalloc);
11030                 }
11031 
11032                 goto hblk_init;
11033         }
11034 
11035         SFMMU_HASH_UNLOCK(hmebp);
11036 
11037         if (sfmmup != KHATID && !SFMMU_IS_SHMERID_VALID(rid)) {
11038                 if (mmu_page_sizes == max_mmu_page_sizes) {
11039                         if (size < TTE256M)
11040                                 shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
11041                                     size, flags);
11042                 } else {
11043                         if (size < TTE4M)
11044                                 shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
11045                                     size, flags);
11046                 }
11047         } else if (SFMMU_IS_SHMERID_VALID(rid)) {
11048                 /*
11049                  * Shared hmes use per region bitmaps in rgn_hmeflag
11050                  * rather than shadow hmeblks to keep track of the
11051                  * mapping sizes which have been allocated for the region.
11052                  * Here we cleanup old invalid hmeblks with this rid,
11053                  * which may be left around by pageunload().
11054                  */
11055                 int ttesz;
11056                 caddr_t va;
11057                 caddr_t eva = vaddr + TTEBYTES(size);
11058 
11059                 ASSERT(sfmmup != KHATID);
11060 
11061                 srdp = sfmmup->sfmmu_srdp;
11062                 ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11063                 rgnp = srdp->srd_hmergnp[rid];
11064                 ASSERT(rgnp != NULL && rgnp->rgn_id == rid);
11065                 ASSERT(rgnp->rgn_refcnt != 0);
11066                 ASSERT(size <= rgnp->rgn_pgszc);
11067 
11068                 ttesz = HBLK_MIN_TTESZ;
11069                 do {
11070                         if (!(rgnp->rgn_hmeflags & (0x1 << ttesz))) {
11071                                 continue;
11072                         }
11073 
11074                         if (ttesz > size && ttesz != HBLK_MIN_TTESZ) {
11075                                 sfmmu_cleanup_rhblk(srdp, vaddr, rid, ttesz);
11076                         } else if (ttesz < size) {
11077                                 for (va = vaddr; va < eva;
11078                                     va += TTEBYTES(ttesz)) {
11079                                         sfmmu_cleanup_rhblk(srdp, va, rid,
11080                                             ttesz);
11081                                 }
11082                         }
11083                 } while (++ttesz <= rgnp->rgn_pgszc);
11084         }
11085 
11086 fill_hblk:
11087         owner = (hblk_reserve_thread == curthread) ? 1 : 0;
11088 
11089         if (owner && size == TTE8K) {
11090 
11091                 ASSERT(!SFMMU_IS_SHMERID_VALID(rid));
11092                 /*
11093                  * We are really in a tight spot. We already own
11094                  * hblk_reserve and we need another hblk.  In anticipation
11095                  * of this kind of scenario, we specifically set aside
11096                  * HBLK_RESERVE_MIN number of hblks to be used exclusively
11097                  * by owner of hblk_reserve.
11098                  */
11099                 SFMMU_STAT(sf_hblk_recurse_cnt);
11100 
11101                 if (!sfmmu_get_free_hblk(&hmeblkp, 1))
11102                         panic("sfmmu_hblk_alloc: reserve list is empty");
11103 
11104                 goto hblk_verify;
11105         }
11106 
11107         ASSERT(!owner);
11108 
11109         if ((flags & HAT_NO_KALLOC) == 0) {
11110 
11111                 sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
11112                 sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
11113 
11114                 if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
11115                         hmeblkp = sfmmu_hblk_steal(size);
11116                 } else {
11117                         /*
11118                          * if we are the owner of hblk_reserve,
11119                          * swap hblk_reserve with hmeblkp and
11120                          * start a fresh life.  Hope things go
11121                          * better this time.
11122                          */
11123                         if (hblk_reserve_thread == curthread) {
11124                                 ASSERT(sfmmu_cache == sfmmu8_cache);
11125                                 sfmmu_hblk_swap(hmeblkp);
11126                                 hblk_reserve_thread = NULL;
11127                                 mutex_exit(&hblk_reserve_lock);
11128                                 goto fill_hblk;
11129                         }
11130                         /*
11131                          * let's donate this hblk to our reserve list if
11132                          * we are not mapping kernel range
11133                          */
11134                         if (size == TTE8K && sfmmup != KHATID) {
11135                                 if (sfmmu_put_free_hblk(hmeblkp, 0))
11136                                         goto fill_hblk;
11137                         }
11138                 }
11139         } else {
11140                 /*
11141                  * We are here to map the slab in sfmmu8_cache; let's
11142                  * check if we could tap our reserve list; if successful,
11143                  * this will avoid the pain of going thru sfmmu_hblk_swap
11144                  */
11145                 SFMMU_STAT(sf_hblk_slab_cnt);
11146                 if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
11147                         /*
11148                          * let's start hblk_reserve dance
11149                          */
11150                         SFMMU_STAT(sf_hblk_reserve_cnt);
11151                         owner = 1;
11152                         mutex_enter(&hblk_reserve_lock);
11153                         hmeblkp = HBLK_RESERVE;
11154                         hblk_reserve_thread = curthread;
11155                 }
11156         }
11157 
11158 hblk_verify:
11159         ASSERT(hmeblkp != NULL);
11160         set_hblk_sz(hmeblkp, size);
11161         ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
11162         SFMMU_HASH_LOCK(hmebp);
11163         HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11164         if (newhblkp != NULL) {
11165                 SFMMU_HASH_UNLOCK(hmebp);
11166                 if (hmeblkp != HBLK_RESERVE) {
11167                         /*
11168                          * This is really tricky!
11169                          *
11170                          * vmem_alloc(vmem_seg_arena)
11171                          *  vmem_alloc(vmem_internal_arena)
11172                          *   segkmem_alloc(heap_arena)
11173                          *    vmem_alloc(heap_arena)
11174                          *    page_create()
11175                          *    hat_memload()
11176                          *      kmem_cache_free()
11177                          *       kmem_cache_alloc()
11178                          *        kmem_slab_create()
11179                          *         vmem_alloc(kmem_internal_arena)
11180                          *          segkmem_alloc(heap_arena)
11181                          *              vmem_alloc(heap_arena)
11182                          *              page_create()
11183                          *              hat_memload()
11184                          *                kmem_cache_free()
11185                          *              ...
11186                          *
11187                          * Thus, hat_memload() could call kmem_cache_free
11188                          * for enough number of times that we could easily
11189                          * hit the bottom of the stack or run out of reserve
11190                          * list of vmem_seg structs.  So, we must donate
11191                          * this hblk to reserve list if it's allocated
11192                          * from sfmmu8_cache *and* mapping kernel range.
11193                          * We don't need to worry about freeing hmeblk1's
11194                          * to kmem since they don't map any kmem slabs.
11195                          *
11196                          * Note: When segkmem supports largepages, we must
11197                          * free hmeblk1's to reserve list as well.
11198                          */
11199                         forcefree = (sfmmup == KHATID) ? 1 : 0;
11200                         if (size == TTE8K &&
11201                             sfmmu_put_free_hblk(hmeblkp, forcefree)) {
11202                                 goto re_verify;
11203                         }
11204                         ASSERT(sfmmup != KHATID);
11205                         kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
11206                 } else {
11207                         /*
11208                          * Hey! we don't need hblk_reserve any more.
11209                          */
11210                         ASSERT(owner);
11211                         hblk_reserve_thread = NULL;
11212                         mutex_exit(&hblk_reserve_lock);
11213                         owner = 0;
11214                 }
11215 re_verify:
11216                 /*
11217                  * let's check if the goodies are still present
11218                  */
11219                 SFMMU_HASH_LOCK(hmebp);
11220                 HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
11221                 if (newhblkp != NULL) {
11222                         /*
11223                          * return newhblkp if it's not hblk_reserve;
11224                          * if newhblkp is hblk_reserve, return it
11225                          * _only if_ we are the owner of hblk_reserve.
11226                          */
11227                         if (newhblkp != HBLK_RESERVE || owner) {
11228                                 ASSERT(!SFMMU_IS_SHMERID_VALID(rid) ||
11229                                     newhblkp->hblk_shared);
11230                                 ASSERT(SFMMU_IS_SHMERID_VALID(rid) ||
11231                                     !newhblkp->hblk_shared);
11232                                 return (newhblkp);
11233                         } else {
11234                                 /*
11235                                  * we just hit hblk_reserve in the hash and
11236                                  * we are not the owner of that;
11237                                  *
11238                                  * block until hblk_reserve_thread completes
11239                                  * swapping hblk_reserve and try the dance
11240                                  * once again.
11241                                  */
11242                                 SFMMU_HASH_UNLOCK(hmebp);
11243                                 mutex_enter(&hblk_reserve_lock);
11244                                 mutex_exit(&hblk_reserve_lock);
11245                                 SFMMU_STAT(sf_hblk_reserve_hit);
11246                                 goto fill_hblk;
11247                         }
11248                 } else {
11249                         /*
11250                          * it's no more! try the dance once again.
11251                          */
11252                         SFMMU_HASH_UNLOCK(hmebp);
11253                         goto fill_hblk;
11254                 }
11255         }
11256 
11257 hblk_init:
11258         if (SFMMU_IS_SHMERID_VALID(rid)) {
11259                 uint16_t tteflag = 0x1 <<
11260                     ((size < HBLK_MIN_TTESZ) ? HBLK_MIN_TTESZ : size);
11261 
11262                 if (!(rgnp->rgn_hmeflags & tteflag)) {
11263                         atomic_or_16(&rgnp->rgn_hmeflags, tteflag);
11264                 }
11265                 hmeblkp->hblk_shared = 1;
11266         } else {
11267                 hmeblkp->hblk_shared = 0;
11268         }
11269         set_hblk_sz(hmeblkp, size);
11270         ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11271         hmeblkp->hblk_next = (struct hme_blk *)NULL;
11272         hmeblkp->hblk_tag = hblktag;
11273         hmeblkp->hblk_shadow = shw_hblkp;
11274         hblkpa = hmeblkp->hblk_nextpa;
11275         hmeblkp->hblk_nextpa = HMEBLK_ENDPA;
11276 
11277         ASSERT(get_hblk_ttesz(hmeblkp) == size);
11278         ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
11279         ASSERT(hmeblkp->hblk_hmecnt == 0);
11280         ASSERT(hmeblkp->hblk_vcnt == 0);
11281         ASSERT(hmeblkp->hblk_lckcnt == 0);
11282         ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
11283         sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
11284         return (hmeblkp);
11285 }
11286 
11287 /*
11288  * This function cleans up the hme_blk and returns it to the free list.
11289  */
11290 /* ARGSUSED */
11291 static void
11292 sfmmu_hblk_free(struct hme_blk **listp)
11293 {
11294         struct hme_blk *hmeblkp, *next_hmeblkp;
11295         int             size;
11296         uint_t          critical;
11297         uint64_t        hblkpa;
11298 
11299         ASSERT(*listp != NULL);
11300 
11301         hmeblkp = *listp;
11302         while (hmeblkp != NULL) {
11303                 next_hmeblkp = hmeblkp->hblk_next;
11304                 ASSERT(!hmeblkp->hblk_hmecnt);
11305                 ASSERT(!hmeblkp->hblk_vcnt);
11306                 ASSERT(!hmeblkp->hblk_lckcnt);
11307                 ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
11308                 ASSERT(hmeblkp->hblk_shared == 0);
11309                 ASSERT(hmeblkp->hblk_shw_bit == 0);
11310                 ASSERT(hmeblkp->hblk_shadow == NULL);
11311 
11312                 hblkpa = va_to_pa((caddr_t)hmeblkp);
11313                 ASSERT(hblkpa != (uint64_t)-1);
11314                 critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
11315 
11316                 size = get_hblk_ttesz(hmeblkp);
11317                 hmeblkp->hblk_next = NULL;
11318                 hmeblkp->hblk_nextpa = hblkpa;
11319 
11320                 if (hmeblkp->hblk_nuc_bit == 0) {
11321 
11322                         if (size != TTE8K ||
11323                             !sfmmu_put_free_hblk(hmeblkp, critical))
11324                                 kmem_cache_free(get_hblk_cache(hmeblkp),
11325                                     hmeblkp);
11326                 }
11327                 hmeblkp = next_hmeblkp;
11328         }
11329 }
11330 
11331 #define BUCKETS_TO_SEARCH_BEFORE_UNLOAD 30
11332 #define SFMMU_HBLK_STEAL_THRESHOLD 5
11333 
11334 static uint_t sfmmu_hblk_steal_twice;
11335 static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
11336 
11337 /*
11338  * Steal a hmeblk from user or kernel hme hash lists.
11339  * For 8K tte grab one from reserve pool (freehblkp) before proceeding to
11340  * steal and if we fail to steal after SFMMU_HBLK_STEAL_THRESHOLD attempts
11341  * tap into critical reserve of freehblkp.
11342  * Note: We remain looping in this routine until we find one.
11343  */
11344 static struct hme_blk *
11345 sfmmu_hblk_steal(int size)
11346 {
11347         static struct hmehash_bucket *uhmehash_steal_hand = NULL;
11348         struct hmehash_bucket *hmebp;
11349         struct hme_blk *hmeblkp = NULL, *pr_hblk;
11350         uint64_t hblkpa;
11351         int i;
11352         uint_t loop_cnt = 0, critical;
11353 
11354         for (;;) {
11355                 /* Check cpu hblk pending queues */
11356                 if ((hmeblkp = sfmmu_check_pending_hblks(size)) != NULL) {
11357                         hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
11358                         ASSERT(hmeblkp->hblk_hmecnt == 0);
11359                         ASSERT(hmeblkp->hblk_vcnt == 0);
11360                         return (hmeblkp);
11361                 }
11362 
11363                 if (size == TTE8K) {
11364                         critical =
11365                             (++loop_cnt > SFMMU_HBLK_STEAL_THRESHOLD) ? 1 : 0;
11366                         if (sfmmu_get_free_hblk(&hmeblkp, critical))
11367                                 return (hmeblkp);
11368                 }
11369 
11370                 hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
11371                     uhmehash_steal_hand;
11372                 ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
11373 
11374                 for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
11375                     BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
11376                         SFMMU_HASH_LOCK(hmebp);
11377                         hmeblkp = hmebp->hmeblkp;
11378                         hblkpa = hmebp->hmeh_nextpa;
11379                         pr_hblk = NULL;
11380                         while (hmeblkp) {
11381                                 /*
11382                                  * check if it is a hmeblk that is not locked
11383                                  * and not shared. skip shadow hmeblks with
11384                                  * shadow_mask set i.e valid count non zero.
11385                                  */
11386                                 if ((get_hblk_ttesz(hmeblkp) == size) &&
11387                                     (hmeblkp->hblk_shw_bit == 0 ||
11388                                     hmeblkp->hblk_vcnt == 0) &&
11389                                     (hmeblkp->hblk_lckcnt == 0)) {
11390                                         /*
11391                                          * there is a high probability that we
11392                                          * will find a free one. search some
11393                                          * buckets for a free hmeblk initially
11394                                          * before unloading a valid hmeblk.
11395                                          */
11396                                         if ((hmeblkp->hblk_vcnt == 0 &&
11397                                             hmeblkp->hblk_hmecnt == 0) || (i >=
11398                                             BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
11399                                                 if (sfmmu_steal_this_hblk(hmebp,
11400                                                     hmeblkp, hblkpa, pr_hblk)) {
11401                                                         /*
11402                                                          * Hblk is unloaded
11403                                                          * successfully
11404                                                          */
11405                                                         break;
11406                                                 }
11407                                         }
11408                                 }
11409                                 pr_hblk = hmeblkp;
11410                                 hblkpa = hmeblkp->hblk_nextpa;
11411                                 hmeblkp = hmeblkp->hblk_next;
11412                         }
11413 
11414                         SFMMU_HASH_UNLOCK(hmebp);
11415                         if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
11416                                 hmebp = uhme_hash;
11417                 }
11418                 uhmehash_steal_hand = hmebp;
11419 
11420                 if (hmeblkp != NULL)
11421                         break;
11422 
11423                 /*
11424                  * in the worst case, look for a free one in the kernel
11425                  * hash table.
11426                  */
11427                 for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
11428                         SFMMU_HASH_LOCK(hmebp);
11429                         hmeblkp = hmebp->hmeblkp;
11430                         hblkpa = hmebp->hmeh_nextpa;
11431                         pr_hblk = NULL;
11432                         while (hmeblkp) {
11433                                 /*
11434                                  * check if it is free hmeblk
11435                                  */
11436                                 if ((get_hblk_ttesz(hmeblkp) == size) &&
11437                                     (hmeblkp->hblk_lckcnt == 0) &&
11438                                     (hmeblkp->hblk_vcnt == 0) &&
11439                                     (hmeblkp->hblk_hmecnt == 0)) {
11440                                         if (sfmmu_steal_this_hblk(hmebp,
11441                                             hmeblkp, hblkpa, pr_hblk)) {
11442                                                 break;
11443                                         } else {
11444                                                 /*
11445                                                  * Cannot fail since we have
11446                                                  * hash lock.
11447                                                  */
11448                                                 panic("fail to steal?");
11449                                         }
11450                                 }
11451 
11452                                 pr_hblk = hmeblkp;
11453                                 hblkpa = hmeblkp->hblk_nextpa;
11454                                 hmeblkp = hmeblkp->hblk_next;
11455                         }
11456 
11457                         SFMMU_HASH_UNLOCK(hmebp);
11458                         if (hmebp++ == &khme_hash[KHMEHASH_SZ])
11459                                 hmebp = khme_hash;
11460                 }
11461 
11462                 if (hmeblkp != NULL)
11463                         break;
11464                 sfmmu_hblk_steal_twice++;
11465         }
11466         return (hmeblkp);
11467 }
11468 
11469 /*
11470  * This routine does real work to prepare a hblk to be "stolen" by
11471  * unloading the mappings, updating shadow counts ....
11472  * It returns 1 if the block is ready to be reused (stolen), or 0
11473  * means the block cannot be stolen yet- pageunload is still working
11474  * on this hblk.
11475  */
11476 static int
11477 sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
11478         uint64_t hblkpa, struct hme_blk *pr_hblk)
11479 {
11480         int shw_size, vshift;
11481         struct hme_blk *shw_hblkp;
11482         caddr_t vaddr;
11483         uint_t shw_mask, newshw_mask;
11484         struct hme_blk *list = NULL;
11485 
11486         ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
11487 
11488         /*
11489          * check if the hmeblk is free, unload if necessary
11490          */
11491         if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11492                 sfmmu_t *sfmmup;
11493                 demap_range_t dmr;
11494 
11495                 sfmmup = hblktosfmmu(hmeblkp);
11496                 if (hmeblkp->hblk_shared || sfmmup->sfmmu_ismhat) {
11497                         return (0);
11498                 }
11499                 DEMAP_RANGE_INIT(sfmmup, &dmr);
11500                 (void) sfmmu_hblk_unload(sfmmup, hmeblkp,
11501                     (caddr_t)get_hblk_base(hmeblkp),
11502                     get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
11503                 DEMAP_RANGE_FLUSH(&dmr);
11504                 if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
11505                         /*
11506                          * Pageunload is working on the same hblk.
11507                          */
11508                         return (0);
11509                 }
11510 
11511                 sfmmu_hblk_steal_unload_count++;
11512         }
11513 
11514         ASSERT(hmeblkp->hblk_lckcnt == 0);
11515         ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
11516 
11517         sfmmu_hblk_hash_rm(hmebp, hmeblkp, pr_hblk, &list, 1);
11518         hmeblkp->hblk_nextpa = hblkpa;
11519 
11520         shw_hblkp = hmeblkp->hblk_shadow;
11521         if (shw_hblkp) {
11522                 ASSERT(!hmeblkp->hblk_shared);
11523                 shw_size = get_hblk_ttesz(shw_hblkp);
11524                 vaddr = (caddr_t)get_hblk_base(hmeblkp);
11525                 vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
11526                 ASSERT(vshift < 8);
11527                 /*
11528                  * Atomically clear shadow mask bit
11529                  */
11530                 do {
11531                         shw_mask = shw_hblkp->hblk_shw_mask;
11532                         ASSERT(shw_mask & (1 << vshift));
11533                         newshw_mask = shw_mask & ~(1 << vshift);
11534                         newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
11535                             shw_mask, newshw_mask);
11536                 } while (newshw_mask != shw_mask);
11537                 hmeblkp->hblk_shadow = NULL;
11538         }
11539 
11540         /*
11541          * remove shadow bit if we are stealing an unused shadow hmeblk.
11542          * sfmmu_hblk_alloc needs it that way, will set shadow bit later if
11543          * we are indeed allocating a shadow hmeblk.
11544          */
11545         hmeblkp->hblk_shw_bit = 0;
11546 
11547         if (hmeblkp->hblk_shared) {
11548                 sf_srd_t        *srdp;
11549                 sf_region_t     *rgnp;
11550                 uint_t          rid;
11551 
11552                 srdp = hblktosrd(hmeblkp);
11553                 ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
11554                 rid = hmeblkp->hblk_tag.htag_rid;
11555                 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11556                 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11557                 rgnp = srdp->srd_hmergnp[rid];
11558                 ASSERT(rgnp != NULL);
11559                 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
11560                 hmeblkp->hblk_shared = 0;
11561         }
11562 
11563         sfmmu_hblk_steal_count++;
11564         SFMMU_STAT(sf_steal_count);
11565 
11566         return (1);
11567 }
11568 
11569 struct hme_blk *
11570 sfmmu_hmetohblk(struct sf_hment *sfhme)
11571 {
11572         struct hme_blk *hmeblkp;
11573         struct sf_hment *sfhme0;
11574         struct hme_blk *hblk_dummy = 0;
11575 
11576         /*
11577          * No dummy sf_hments, please.
11578          */
11579         ASSERT(sfhme->hme_tte.ll != 0);
11580 
11581         sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
11582         hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
11583             (uintptr_t)&hblk_dummy->hblk_hme[0]);
11584 
11585         return (hmeblkp);
11586 }
11587 
11588 /*
11589  * On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
11590  * If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
11591  * KM_SLEEP allocation.
11592  *
11593  * Return 0 on success, -1 otherwise.
11594  */
11595 static void
11596 sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11597 {
11598         struct tsb_info *tsbinfop, *next;
11599         tsb_replace_rc_t rc;
11600         boolean_t gotfirst = B_FALSE;
11601 
11602         ASSERT(sfmmup != ksfmmup);
11603         ASSERT(sfmmu_hat_lock_held(sfmmup));
11604 
11605         while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
11606                 cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
11607         }
11608 
11609         if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11610                 SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
11611         } else {
11612                 return;
11613         }
11614 
11615         ASSERT(sfmmup->sfmmu_tsb != NULL);
11616 
11617         /*
11618          * Loop over all tsbinfo's replacing them with ones that actually have
11619          * a TSB.  If any of the replacements ever fail, bail out of the loop.
11620          */
11621         for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
11622                 ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
11623                 next = tsbinfop->tsb_next;
11624                 rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
11625                     hatlockp, TSB_SWAPIN);
11626                 if (rc != TSB_SUCCESS) {
11627                         break;
11628                 }
11629                 gotfirst = B_TRUE;
11630         }
11631 
11632         switch (rc) {
11633         case TSB_SUCCESS:
11634                 SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11635                 cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11636                 return;
11637         case TSB_LOSTRACE:
11638                 break;
11639         case TSB_ALLOCFAIL:
11640                 break;
11641         default:
11642                 panic("sfmmu_replace_tsb returned unrecognized failure code "
11643                     "%d", rc);
11644         }
11645 
11646         /*
11647          * In this case, we failed to get one of our TSBs.  If we failed to
11648          * get the first TSB, get one of minimum size (8KB).  Walk the list
11649          * and throw away the tsbinfos, starting where the allocation failed;
11650          * we can get by with just one TSB as long as we don't leave the
11651          * SWAPPED tsbinfo structures lying around.
11652          */
11653         tsbinfop = sfmmup->sfmmu_tsb;
11654         next = tsbinfop->tsb_next;
11655         tsbinfop->tsb_next = NULL;
11656 
11657         sfmmu_hat_exit(hatlockp);
11658         for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
11659                 next = tsbinfop->tsb_next;
11660                 sfmmu_tsbinfo_free(tsbinfop);
11661         }
11662         hatlockp = sfmmu_hat_enter(sfmmup);
11663 
11664         /*
11665          * If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
11666          * pages.
11667          */
11668         if (!gotfirst) {
11669                 tsbinfop = sfmmup->sfmmu_tsb;
11670                 rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
11671                     hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
11672                 ASSERT(rc == TSB_SUCCESS);
11673         }
11674 
11675         SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
11676         cv_broadcast(&sfmmup->sfmmu_tsb_cv);
11677 }
11678 
11679 static int
11680 sfmmu_is_rgnva(sf_srd_t *srdp, caddr_t addr, ulong_t w, ulong_t bmw)
11681 {
11682         ulong_t bix = 0;
11683         uint_t rid;
11684         sf_region_t *rgnp;
11685 
11686         ASSERT(srdp != NULL);
11687         ASSERT(srdp->srd_refcnt != 0);
11688 
11689         w <<= BT_ULSHIFT;
11690         while (bmw) {
11691                 if (!(bmw & 0x1)) {
11692                         bix++;
11693                         bmw >>= 1;
11694                         continue;
11695                 }
11696                 rid = w | bix;
11697                 rgnp = srdp->srd_hmergnp[rid];
11698                 ASSERT(rgnp->rgn_refcnt > 0);
11699                 ASSERT(rgnp->rgn_id == rid);
11700                 if (addr < rgnp->rgn_saddr ||
11701                     addr >= (rgnp->rgn_saddr + rgnp->rgn_size)) {
11702                         bix++;
11703                         bmw >>= 1;
11704                 } else {
11705                         return (1);
11706                 }
11707         }
11708         return (0);
11709 }
11710 
11711 /*
11712  * Handle exceptions for low level tsb_handler.
11713  *
11714  * There are many scenarios that could land us here:
11715  *
11716  * If the context is invalid we land here. The context can be invalid
11717  * for 3 reasons: 1) we couldn't allocate a new context and now need to
11718  * perform a wrap around operation in order to allocate a new context.
11719  * 2) Context was invalidated to change pagesize programming 3) ISMs or
11720  * TSBs configuration is changeing for this process and we are forced into
11721  * here to do a syncronization operation. If the context is valid we can
11722  * be here from window trap hanlder. In this case just call trap to handle
11723  * the fault.
11724  *
11725  * Note that the process will run in INVALID_CONTEXT before
11726  * faulting into here and subsequently loading the MMU registers
11727  * (including the TSB base register) associated with this process.
11728  * For this reason, the trap handlers must all test for
11729  * INVALID_CONTEXT before attempting to access any registers other
11730  * than the context registers.
11731  */
11732 void
11733 sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
11734 {
11735         sfmmu_t *sfmmup, *shsfmmup;
11736         uint_t ctxtype;
11737         klwp_id_t lwp;
11738         char lwp_save_state;
11739         hatlock_t *hatlockp, *shatlockp;
11740         struct tsb_info *tsbinfop;
11741         struct tsbmiss *tsbmp;
11742         sf_scd_t *scdp;
11743 
11744         SFMMU_STAT(sf_tsb_exceptions);
11745         SFMMU_MMU_STAT(mmu_tsb_exceptions);
11746         sfmmup = astosfmmu(curthread->t_procp->p_as);
11747         /*
11748          * note that in sun4u, tagacces register contains ctxnum
11749          * while sun4v passes ctxtype in the tagaccess register.
11750          */
11751         ctxtype = tagaccess & TAGACC_CTX_MASK;
11752 
11753         ASSERT(sfmmup != ksfmmup && ctxtype != KCONTEXT);
11754         ASSERT(sfmmup->sfmmu_ismhat == 0);
11755         ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
11756             ctxtype == INVALID_CONTEXT);
11757 
11758         if (ctxtype != INVALID_CONTEXT && traptype != T_DATA_PROT) {
11759                 /*
11760                  * We may land here because shme bitmap and pagesize
11761                  * flags are updated lazily in tsbmiss area on other cpus.
11762                  * If we detect here that tsbmiss area is out of sync with
11763                  * sfmmu update it and retry the trapped instruction.
11764                  * Otherwise call trap().
11765                  */
11766                 int ret = 0;
11767                 uchar_t tteflag_mask = (1 << TTE64K) | (1 << TTE8K);
11768                 caddr_t addr = (caddr_t)(tagaccess & TAGACC_VADDR_MASK);
11769 
11770                 /*
11771                  * Must set lwp state to LWP_SYS before
11772                  * trying to acquire any adaptive lock
11773                  */
11774                 lwp = ttolwp(curthread);
11775                 ASSERT(lwp);
11776                 lwp_save_state = lwp->lwp_state;
11777                 lwp->lwp_state = LWP_SYS;
11778 
11779                 hatlockp = sfmmu_hat_enter(sfmmup);
11780                 kpreempt_disable();
11781                 tsbmp = &tsbmiss_area[CPU->cpu_id];
11782                 ASSERT(sfmmup == tsbmp->usfmmup);
11783                 if (((tsbmp->uhat_tteflags ^ sfmmup->sfmmu_tteflags) &
11784                     ~tteflag_mask) ||
11785                     ((tsbmp->uhat_rtteflags ^  sfmmup->sfmmu_rtteflags) &
11786                     ~tteflag_mask)) {
11787                         tsbmp->uhat_tteflags = sfmmup->sfmmu_tteflags;
11788                         tsbmp->uhat_rtteflags = sfmmup->sfmmu_rtteflags;
11789                         ret = 1;
11790                 }
11791                 if (sfmmup->sfmmu_srdp != NULL) {
11792                         ulong_t *sm = sfmmup->sfmmu_hmeregion_map.bitmap;
11793                         ulong_t *tm = tsbmp->shmermap;
11794                         ulong_t i;
11795                         for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
11796                                 ulong_t d = tm[i] ^ sm[i];
11797                                 if (d) {
11798                                         if (d & sm[i]) {
11799                                                 if (!ret && sfmmu_is_rgnva(
11800                                                     sfmmup->sfmmu_srdp,
11801                                                     addr, i, d & sm[i])) {
11802                                                         ret = 1;
11803                                                 }
11804                                         }
11805                                         tm[i] = sm[i];
11806                                 }
11807                         }
11808                 }
11809                 kpreempt_enable();
11810                 sfmmu_hat_exit(hatlockp);
11811                 lwp->lwp_state = lwp_save_state;
11812                 if (ret) {
11813                         return;
11814                 }
11815         } else if (ctxtype == INVALID_CONTEXT) {
11816                 /*
11817                  * First, make sure we come out of here with a valid ctx,
11818                  * since if we don't get one we'll simply loop on the
11819                  * faulting instruction.
11820                  *
11821                  * If the ISM mappings are changing, the TSB is relocated,
11822                  * the process is swapped, the process is joining SCD or
11823                  * leaving SCD or shared regions we serialize behind the
11824                  * controlling thread with hat lock, sfmmu_flags and
11825                  * sfmmu_tsb_cv condition variable.
11826                  */
11827 
11828                 /*
11829                  * Must set lwp state to LWP_SYS before
11830                  * trying to acquire any adaptive lock
11831                  */
11832                 lwp = ttolwp(curthread);
11833                 ASSERT(lwp);
11834                 lwp_save_state = lwp->lwp_state;
11835                 lwp->lwp_state = LWP_SYS;
11836 
11837                 hatlockp = sfmmu_hat_enter(sfmmup);
11838 retry:
11839                 if ((scdp = sfmmup->sfmmu_scdp) != NULL) {
11840                         shsfmmup = scdp->scd_sfmmup;
11841                         ASSERT(shsfmmup != NULL);
11842 
11843                         for (tsbinfop = shsfmmup->sfmmu_tsb; tsbinfop != NULL;
11844                             tsbinfop = tsbinfop->tsb_next) {
11845                                 if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
11846                                         /* drop the private hat lock */
11847                                         sfmmu_hat_exit(hatlockp);
11848                                         /* acquire the shared hat lock */
11849                                         shatlockp = sfmmu_hat_enter(shsfmmup);
11850                                         /*
11851                                          * recheck to see if anything changed
11852                                          * after we drop the private hat lock.
11853                                          */
11854                                         if (sfmmup->sfmmu_scdp == scdp &&
11855                                             shsfmmup == scdp->scd_sfmmup) {
11856                                                 sfmmu_tsb_chk_reloc(shsfmmup,
11857                                                     shatlockp);
11858                                         }
11859                                         sfmmu_hat_exit(shatlockp);
11860                                         hatlockp = sfmmu_hat_enter(sfmmup);
11861                                         goto retry;
11862                                 }
11863                         }
11864                 }
11865 
11866                 for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
11867                     tsbinfop = tsbinfop->tsb_next) {
11868                         if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
11869                                 cv_wait(&sfmmup->sfmmu_tsb_cv,
11870                                     HATLOCK_MUTEXP(hatlockp));
11871                                 goto retry;
11872                         }
11873                 }
11874 
11875                 /*
11876                  * Wait for ISM maps to be updated.
11877                  */
11878                 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
11879                         cv_wait(&sfmmup->sfmmu_tsb_cv,
11880                             HATLOCK_MUTEXP(hatlockp));
11881                         goto retry;
11882                 }
11883 
11884                 /* Is this process joining an SCD? */
11885                 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
11886                         /*
11887                          * Flush private TSB and setup shared TSB.
11888                          * sfmmu_finish_join_scd() does not drop the
11889                          * hat lock.
11890                          */
11891                         sfmmu_finish_join_scd(sfmmup);
11892                         SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
11893                 }
11894 
11895                 /*
11896                  * If we're swapping in, get TSB(s).  Note that we must do
11897                  * this before we get a ctx or load the MMU state.  Once
11898                  * we swap in we have to recheck to make sure the TSB(s) and
11899                  * ISM mappings didn't change while we slept.
11900                  */
11901                 if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
11902                         sfmmu_tsb_swapin(sfmmup, hatlockp);
11903                         goto retry;
11904                 }
11905 
11906                 sfmmu_get_ctx(sfmmup);
11907 
11908                 sfmmu_hat_exit(hatlockp);
11909                 /*
11910                  * Must restore lwp_state if not calling
11911                  * trap() for further processing. Restore
11912                  * it anyway.
11913                  */
11914                 lwp->lwp_state = lwp_save_state;
11915                 return;
11916         }
11917         trap(rp, (caddr_t)tagaccess, traptype, 0);
11918 }
11919 
11920 static void
11921 sfmmu_tsb_chk_reloc(sfmmu_t *sfmmup, hatlock_t *hatlockp)
11922 {
11923         struct tsb_info *tp;
11924 
11925         ASSERT(sfmmu_hat_lock_held(sfmmup));
11926 
11927         for (tp = sfmmup->sfmmu_tsb; tp != NULL; tp = tp->tsb_next) {
11928                 if (tp->tsb_flags & TSB_RELOC_FLAG) {
11929                         cv_wait(&sfmmup->sfmmu_tsb_cv,
11930                             HATLOCK_MUTEXP(hatlockp));
11931                         break;
11932                 }
11933         }
11934 }
11935 
11936 /*
11937  * sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
11938  * TTE_SUSPENDED bit set in tte we block on aquiring a page lock
11939  * rather than spinning to avoid send mondo timeouts with
11940  * interrupts enabled. When the lock is acquired it is immediately
11941  * released and we return back to sfmmu_vatopfn just after
11942  * the GET_TTE call.
11943  */
11944 void
11945 sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
11946 {
11947         struct page     **pp;
11948 
11949         (void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
11950         as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
11951 }
11952 
11953 /*
11954  * sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
11955  * TTE_SUSPENDED bit set in tte. We do this so that we can handle
11956  * cross traps which cannot be handled while spinning in the
11957  * trap handlers. Simply enter and exit the kpr_suspendlock spin
11958  * mutex, which is held by the holder of the suspend bit, and then
11959  * retry the trapped instruction after unwinding.
11960  */
11961 /*ARGSUSED*/
11962 void
11963 sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
11964 {
11965         ASSERT(curthread != kreloc_thread);
11966         mutex_enter(&kpr_suspendlock);
11967         mutex_exit(&kpr_suspendlock);
11968 }
11969 
11970 /*
11971  * This routine could be optimized to reduce the number of xcalls by flushing
11972  * the entire TLBs if region reference count is above some threshold but the
11973  * tradeoff will depend on the size of the TLB. So for now flush the specific
11974  * page a context at a time.
11975  *
11976  * If uselocks is 0 then it's called after all cpus were captured and all the
11977  * hat locks were taken. In this case don't take the region lock by relying on
11978  * the order of list region update operations in hat_join_region(),
11979  * hat_leave_region() and hat_dup_region(). The ordering in those routines
11980  * guarantees that list is always forward walkable and reaches active sfmmus
11981  * regardless of where xc_attention() captures a cpu.
11982  */
11983 cpuset_t
11984 sfmmu_rgntlb_demap(caddr_t addr, sf_region_t *rgnp,
11985     struct hme_blk *hmeblkp, int uselocks)
11986 {
11987         sfmmu_t *sfmmup;
11988         cpuset_t cpuset;
11989         cpuset_t rcpuset;
11990         hatlock_t *hatlockp;
11991         uint_t rid = rgnp->rgn_id;
11992         sf_rgn_link_t *rlink;
11993         sf_scd_t *scdp;
11994 
11995         ASSERT(hmeblkp->hblk_shared);
11996         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
11997         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
11998 
11999         CPUSET_ZERO(rcpuset);
12000         if (uselocks) {
12001                 mutex_enter(&rgnp->rgn_mutex);
12002         }
12003         sfmmup = rgnp->rgn_sfmmu_head;
12004         while (sfmmup != NULL) {
12005                 if (uselocks) {
12006                         hatlockp = sfmmu_hat_enter(sfmmup);
12007                 }
12008 
12009                 /*
12010                  * When an SCD is created the SCD hat is linked on the sfmmu
12011                  * region lists for each hme region which is part of the
12012                  * SCD. If we find an SCD hat, when walking these lists,
12013                  * then we flush the shared TSBs, if we find a private hat,
12014                  * which is part of an SCD, but where the region
12015                  * is not part of the SCD then we flush the private TSBs.
12016                  */
12017                 if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
12018                     !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
12019                         scdp = sfmmup->sfmmu_scdp;
12020                         if (SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
12021                                 if (uselocks) {
12022                                         sfmmu_hat_exit(hatlockp);
12023                                 }
12024                                 goto next;
12025                         }
12026                 }
12027 
12028                 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12029 
12030                 kpreempt_disable();
12031                 cpuset = sfmmup->sfmmu_cpusran;
12032                 CPUSET_AND(cpuset, cpu_ready_set);
12033                 CPUSET_DEL(cpuset, CPU->cpu_id);
12034                 SFMMU_XCALL_STATS(sfmmup);
12035                 xt_some(cpuset, vtag_flushpage_tl1,
12036                     (uint64_t)addr, (uint64_t)sfmmup);
12037                 vtag_flushpage(addr, (uint64_t)sfmmup);
12038                 if (uselocks) {
12039                         sfmmu_hat_exit(hatlockp);
12040                 }
12041                 kpreempt_enable();
12042                 CPUSET_OR(rcpuset, cpuset);
12043 
12044 next:
12045                 /* LINTED: constant in conditional context */
12046                 SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
12047                 ASSERT(rlink != NULL);
12048                 sfmmup = rlink->next;
12049         }
12050         if (uselocks) {
12051                 mutex_exit(&rgnp->rgn_mutex);
12052         }
12053         return (rcpuset);
12054 }
12055 
12056 /*
12057  * This routine takes an sfmmu pointer and the va for an adddress in an
12058  * ISM region as input and returns the corresponding region id in ism_rid.
12059  * The return value of 1 indicates that a region has been found and ism_rid
12060  * is valid, otherwise 0 is returned.
12061  */
12062 static int
12063 find_ism_rid(sfmmu_t *sfmmup, sfmmu_t *ism_sfmmup, caddr_t va, uint_t *ism_rid)
12064 {
12065         ism_blk_t       *ism_blkp;
12066         int             i;
12067         ism_map_t       *ism_map;
12068 #ifdef DEBUG
12069         struct hat      *ism_hatid;
12070 #endif
12071         ASSERT(sfmmu_hat_lock_held(sfmmup));
12072 
12073         ism_blkp = sfmmup->sfmmu_iblk;
12074         while (ism_blkp != NULL) {
12075                 ism_map = ism_blkp->iblk_maps;
12076                 for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
12077                         if ((va >= ism_start(ism_map[i])) &&
12078                             (va < ism_end(ism_map[i]))) {
12079 
12080                                 *ism_rid = ism_map[i].imap_rid;
12081 #ifdef DEBUG
12082                                 ism_hatid = ism_map[i].imap_ismhat;
12083                                 ASSERT(ism_hatid == ism_sfmmup);
12084                                 ASSERT(ism_hatid->sfmmu_ismhat);
12085 #endif
12086                                 return (1);
12087                         }
12088                 }
12089                 ism_blkp = ism_blkp->iblk_next;
12090         }
12091         return (0);
12092 }
12093 
12094 /*
12095  * Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
12096  * This routine may be called with all cpu's captured. Therefore, the
12097  * caller is responsible for holding all locks and disabling kernel
12098  * preemption.
12099  */
12100 /* ARGSUSED */
12101 static void
12102 sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
12103         struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
12104 {
12105         cpuset_t        cpuset;
12106         caddr_t         va;
12107         ism_ment_t      *ment;
12108         sfmmu_t         *sfmmup;
12109 #ifdef VAC
12110         int             vcolor;
12111 #endif
12112 
12113         sf_scd_t        *scdp;
12114         uint_t          ism_rid;
12115 
12116         ASSERT(!hmeblkp->hblk_shared);
12117         /*
12118          * Walk the ism_hat's mapping list and flush the page
12119          * from every hat sharing this ism_hat. This routine
12120          * may be called while all cpu's have been captured.
12121          * Therefore we can't attempt to grab any locks. For now
12122          * this means we will protect the ism mapping list under
12123          * a single lock which will be grabbed by the caller.
12124          * If hat_share/unshare scalibility becomes a performance
12125          * problem then we may need to re-think ism mapping list locking.
12126          */
12127         ASSERT(ism_sfmmup->sfmmu_ismhat);
12128         ASSERT(MUTEX_HELD(&ism_mlist_lock));
12129         addr = addr - ISMID_STARTADDR;
12130 
12131         for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
12132 
12133                 sfmmup = ment->iment_hat;
12134 
12135                 va = ment->iment_base_va;
12136                 va = (caddr_t)((uintptr_t)va  + (uintptr_t)addr);
12137 
12138                 /*
12139                  * When an SCD is created the SCD hat is linked on the ism
12140                  * mapping lists for each ISM segment which is part of the
12141                  * SCD. If we find an SCD hat, when walking these lists,
12142                  * then we flush the shared TSBs, if we find a private hat,
12143                  * which is part of an SCD, but where the region
12144                  * corresponding to this va is not part of the SCD then we
12145                  * flush the private TSBs.
12146                  */
12147                 if (!sfmmup->sfmmu_scdhat && sfmmup->sfmmu_scdp != NULL &&
12148                     !SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD) &&
12149                     !SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
12150                         if (!find_ism_rid(sfmmup, ism_sfmmup, va,
12151                             &ism_rid)) {
12152                                 cmn_err(CE_PANIC,
12153                                     "can't find matching ISM rid!");
12154                         }
12155 
12156                         scdp = sfmmup->sfmmu_scdp;
12157                         if (SFMMU_IS_ISMRID_VALID(ism_rid) &&
12158                             SF_RGNMAP_TEST(scdp->scd_ismregion_map,
12159                             ism_rid)) {
12160                                 continue;
12161                         }
12162                 }
12163                 SFMMU_UNLOAD_TSB(va, sfmmup, hmeblkp, 1);
12164 
12165                 cpuset = sfmmup->sfmmu_cpusran;
12166                 CPUSET_AND(cpuset, cpu_ready_set);
12167                 CPUSET_DEL(cpuset, CPU->cpu_id);
12168                 SFMMU_XCALL_STATS(sfmmup);
12169                 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
12170                     (uint64_t)sfmmup);
12171                 vtag_flushpage(va, (uint64_t)sfmmup);
12172 
12173 #ifdef VAC
12174                 /*
12175                  * Flush D$
12176                  * When flushing D$ we must flush all
12177                  * cpu's. See sfmmu_cache_flush().
12178                  */
12179                 if (cache_flush_flag == CACHE_FLUSH) {
12180                         cpuset = cpu_ready_set;
12181                         CPUSET_DEL(cpuset, CPU->cpu_id);
12182 
12183                         SFMMU_XCALL_STATS(sfmmup);
12184                         vcolor = addr_to_vcolor(va);
12185                         xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12186                         vac_flushpage(pfnum, vcolor);
12187                 }
12188 #endif  /* VAC */
12189         }
12190 }
12191 
12192 /*
12193  * Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
12194  * a particular virtual address and ctx.  If noflush is set we do not
12195  * flush the TLB/TSB.  This function may or may not be called with the
12196  * HAT lock held.
12197  */
12198 static void
12199 sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12200         pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
12201         int hat_lock_held)
12202 {
12203 #ifdef VAC
12204         int vcolor;
12205 #endif
12206         cpuset_t cpuset;
12207         hatlock_t *hatlockp;
12208 
12209         ASSERT(!hmeblkp->hblk_shared);
12210 
12211 #if defined(lint) && !defined(VAC)
12212         pfnum = pfnum;
12213         cpu_flag = cpu_flag;
12214         cache_flush_flag = cache_flush_flag;
12215 #endif
12216 
12217         /*
12218          * There is no longer a need to protect against ctx being
12219          * stolen here since we don't store the ctx in the TSB anymore.
12220          */
12221 #ifdef VAC
12222         vcolor = addr_to_vcolor(addr);
12223 #endif
12224 
12225         /*
12226          * We must hold the hat lock during the flush of TLB,
12227          * to avoid a race with sfmmu_invalidate_ctx(), where
12228          * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12229          * causing TLB demap routine to skip flush on that MMU.
12230          * If the context on a MMU has already been set to
12231          * INVALID_CONTEXT, we just get an extra flush on
12232          * that MMU.
12233          */
12234         if (!hat_lock_held && !tlb_noflush)
12235                 hatlockp = sfmmu_hat_enter(sfmmup);
12236 
12237         kpreempt_disable();
12238         if (!tlb_noflush) {
12239                 /*
12240                  * Flush the TSB and TLB.
12241                  */
12242                 SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12243 
12244                 cpuset = sfmmup->sfmmu_cpusran;
12245                 CPUSET_AND(cpuset, cpu_ready_set);
12246                 CPUSET_DEL(cpuset, CPU->cpu_id);
12247 
12248                 SFMMU_XCALL_STATS(sfmmup);
12249 
12250                 xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
12251                     (uint64_t)sfmmup);
12252 
12253                 vtag_flushpage(addr, (uint64_t)sfmmup);
12254         }
12255 
12256         if (!hat_lock_held && !tlb_noflush)
12257                 sfmmu_hat_exit(hatlockp);
12258 
12259 #ifdef VAC
12260         /*
12261          * Flush the D$
12262          *
12263          * Even if the ctx is stolen, we need to flush the
12264          * cache. Our ctx stealer only flushes the TLBs.
12265          */
12266         if (cache_flush_flag == CACHE_FLUSH) {
12267                 if (cpu_flag & FLUSH_ALL_CPUS) {
12268                         cpuset = cpu_ready_set;
12269                 } else {
12270                         cpuset = sfmmup->sfmmu_cpusran;
12271                         CPUSET_AND(cpuset, cpu_ready_set);
12272                 }
12273                 CPUSET_DEL(cpuset, CPU->cpu_id);
12274                 SFMMU_XCALL_STATS(sfmmup);
12275                 xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12276                 vac_flushpage(pfnum, vcolor);
12277         }
12278 #endif  /* VAC */
12279         kpreempt_enable();
12280 }
12281 
12282 /*
12283  * Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
12284  * address and ctx.  If noflush is set we do not currently do anything.
12285  * This function may or may not be called with the HAT lock held.
12286  */
12287 static void
12288 sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
12289         int tlb_noflush, int hat_lock_held)
12290 {
12291         cpuset_t cpuset;
12292         hatlock_t *hatlockp;
12293 
12294         ASSERT(!hmeblkp->hblk_shared);
12295 
12296         /*
12297          * If the process is exiting we have nothing to do.
12298          */
12299         if (tlb_noflush)
12300                 return;
12301 
12302         /*
12303          * Flush TSB.
12304          */
12305         if (!hat_lock_held)
12306                 hatlockp = sfmmu_hat_enter(sfmmup);
12307         SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp, 0);
12308 
12309         kpreempt_disable();
12310 
12311         cpuset = sfmmup->sfmmu_cpusran;
12312         CPUSET_AND(cpuset, cpu_ready_set);
12313         CPUSET_DEL(cpuset, CPU->cpu_id);
12314 
12315         SFMMU_XCALL_STATS(sfmmup);
12316         xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
12317 
12318         vtag_flushpage(addr, (uint64_t)sfmmup);
12319 
12320         if (!hat_lock_held)
12321                 sfmmu_hat_exit(hatlockp);
12322 
12323         kpreempt_enable();
12324 
12325 }
12326 
12327 /*
12328  * Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
12329  * call handler that can flush a range of pages to save on xcalls.
12330  */
12331 static int sfmmu_xcall_save;
12332 
12333 /*
12334  * this routine is never used for demaping addresses backed by SRD hmeblks.
12335  */
12336 static void
12337 sfmmu_tlb_range_demap(demap_range_t *dmrp)
12338 {
12339         sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
12340         hatlock_t *hatlockp;
12341         cpuset_t cpuset;
12342         uint64_t sfmmu_pgcnt;
12343         pgcnt_t pgcnt = 0;
12344         int pgunload = 0;
12345         int dirtypg = 0;
12346         caddr_t addr = dmrp->dmr_addr;
12347         caddr_t eaddr;
12348         uint64_t bitvec = dmrp->dmr_bitvec;
12349 
12350         ASSERT(bitvec & 1);
12351 
12352         /*
12353          * Flush TSB and calculate number of pages to flush.
12354          */
12355         while (bitvec != 0) {
12356                 dirtypg = 0;
12357                 /*
12358                  * Find the first page to flush and then count how many
12359                  * pages there are after it that also need to be flushed.
12360                  * This way the number of TSB flushes is minimized.
12361                  */
12362                 while ((bitvec & 1) == 0) {
12363                         pgcnt++;
12364                         addr += MMU_PAGESIZE;
12365                         bitvec >>= 1;
12366                 }
12367                 while (bitvec & 1) {
12368                         dirtypg++;
12369                         bitvec >>= 1;
12370                 }
12371                 eaddr = addr + ptob(dirtypg);
12372                 hatlockp = sfmmu_hat_enter(sfmmup);
12373                 sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
12374                 sfmmu_hat_exit(hatlockp);
12375                 pgunload += dirtypg;
12376                 addr = eaddr;
12377                 pgcnt += dirtypg;
12378         }
12379 
12380         ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
12381         if (sfmmup->sfmmu_free == 0) {
12382                 addr = dmrp->dmr_addr;
12383                 bitvec = dmrp->dmr_bitvec;
12384 
12385                 /*
12386                  * make sure it has SFMMU_PGCNT_SHIFT bits only,
12387                  * as it will be used to pack argument for xt_some
12388                  */
12389                 ASSERT((pgcnt > 0) &&
12390                     (pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
12391 
12392                 /*
12393                  * Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
12394                  * the low 6 bits of sfmmup. This is doable since pgcnt
12395                  * always >= 1.
12396                  */
12397                 ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
12398                 sfmmu_pgcnt = (uint64_t)sfmmup |
12399                     ((pgcnt - 1) & SFMMU_PGCNT_MASK);
12400 
12401                 /*
12402                  * We must hold the hat lock during the flush of TLB,
12403                  * to avoid a race with sfmmu_invalidate_ctx(), where
12404                  * sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
12405                  * causing TLB demap routine to skip flush on that MMU.
12406                  * If the context on a MMU has already been set to
12407                  * INVALID_CONTEXT, we just get an extra flush on
12408                  * that MMU.
12409                  */
12410                 hatlockp = sfmmu_hat_enter(sfmmup);
12411                 kpreempt_disable();
12412 
12413                 cpuset = sfmmup->sfmmu_cpusran;
12414                 CPUSET_AND(cpuset, cpu_ready_set);
12415                 CPUSET_DEL(cpuset, CPU->cpu_id);
12416 
12417                 SFMMU_XCALL_STATS(sfmmup);
12418                 xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
12419                     sfmmu_pgcnt);
12420 
12421                 for (; bitvec != 0; bitvec >>= 1) {
12422                         if (bitvec & 1)
12423                                 vtag_flushpage(addr, (uint64_t)sfmmup);
12424                         addr += MMU_PAGESIZE;
12425                 }
12426                 kpreempt_enable();
12427                 sfmmu_hat_exit(hatlockp);
12428 
12429                 sfmmu_xcall_save += (pgunload-1);
12430         }
12431         dmrp->dmr_bitvec = 0;
12432 }
12433 
12434 /*
12435  * In cases where we need to synchronize with TLB/TSB miss trap
12436  * handlers, _and_ need to flush the TLB, it's a lot easier to
12437  * throw away the context from the process than to do a
12438  * special song and dance to keep things consistent for the
12439  * handlers.
12440  *
12441  * Since the process suddenly ends up without a context and our caller
12442  * holds the hat lock, threads that fault after this function is called
12443  * will pile up on the lock.  We can then do whatever we need to
12444  * atomically from the context of the caller.  The first blocked thread
12445  * to resume executing will get the process a new context, and the
12446  * process will resume executing.
12447  *
12448  * One added advantage of this approach is that on MMUs that
12449  * support a "flush all" operation, we will delay the flush until
12450  * cnum wrap-around, and then flush the TLB one time.  This
12451  * is rather rare, so it's a lot less expensive than making 8000
12452  * x-calls to flush the TLB 8000 times.
12453  *
12454  * A per-process (PP) lock is used to synchronize ctx allocations in
12455  * resume() and ctx invalidations here.
12456  */
12457 static void
12458 sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
12459 {
12460         cpuset_t cpuset;
12461         int cnum, currcnum;
12462         mmu_ctx_t *mmu_ctxp;
12463         int i;
12464         uint_t pstate_save;
12465 
12466         SFMMU_STAT(sf_ctx_inv);
12467 
12468         ASSERT(sfmmu_hat_lock_held(sfmmup));
12469         ASSERT(sfmmup != ksfmmup);
12470 
12471         kpreempt_disable();
12472 
12473         mmu_ctxp = CPU_MMU_CTXP(CPU);
12474         ASSERT(mmu_ctxp);
12475         ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
12476         ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
12477 
12478         currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
12479 
12480         pstate_save = sfmmu_disable_intrs();
12481 
12482         lock_set(&sfmmup->sfmmu_ctx_lock);       /* acquire PP lock */
12483         /* set HAT cnum invalid across all context domains. */
12484         for (i = 0; i < max_mmu_ctxdoms; i++) {
12485 
12486                 cnum =  sfmmup->sfmmu_ctxs[i].cnum;
12487                 if (cnum == INVALID_CONTEXT) {
12488                         continue;
12489                 }
12490 
12491                 sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
12492         }
12493         membar_enter(); /* make sure globally visible to all CPUs */
12494         lock_clear(&sfmmup->sfmmu_ctx_lock);     /* release PP lock */
12495 
12496         sfmmu_enable_intrs(pstate_save);
12497 
12498         cpuset = sfmmup->sfmmu_cpusran;
12499         CPUSET_DEL(cpuset, CPU->cpu_id);
12500         CPUSET_AND(cpuset, cpu_ready_set);
12501         if (!CPUSET_ISNULL(cpuset)) {
12502                 SFMMU_XCALL_STATS(sfmmup);
12503                 xt_some(cpuset, sfmmu_raise_tsb_exception,
12504                     (uint64_t)sfmmup, INVALID_CONTEXT);
12505                 xt_sync(cpuset);
12506                 SFMMU_STAT(sf_tsb_raise_exception);
12507                 SFMMU_MMU_STAT(mmu_tsb_raise_exception);
12508         }
12509 
12510         /*
12511          * If the hat to-be-invalidated is the same as the current
12512          * process on local CPU we need to invalidate
12513          * this CPU context as well.
12514          */
12515         if ((sfmmu_getctx_sec() == currcnum) &&
12516             (currcnum != INVALID_CONTEXT)) {
12517                 /* sets shared context to INVALID too */
12518                 sfmmu_setctx_sec(INVALID_CONTEXT);
12519                 sfmmu_clear_utsbinfo();
12520         }
12521 
12522         SFMMU_FLAGS_SET(sfmmup, HAT_ALLCTX_INVALID);
12523 
12524         kpreempt_enable();
12525 
12526         /*
12527          * we hold the hat lock, so nobody should allocate a context
12528          * for us yet
12529          */
12530         ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
12531 }
12532 
12533 #ifdef VAC
12534 /*
12535  * We need to flush the cache in all cpus.  It is possible that
12536  * a process referenced a page as cacheable but has sinced exited
12537  * and cleared the mapping list.  We still to flush it but have no
12538  * state so all cpus is the only alternative.
12539  */
12540 void
12541 sfmmu_cache_flush(pfn_t pfnum, int vcolor)
12542 {
12543         cpuset_t cpuset;
12544 
12545         kpreempt_disable();
12546         cpuset = cpu_ready_set;
12547         CPUSET_DEL(cpuset, CPU->cpu_id);
12548         SFMMU_XCALL_STATS(NULL);        /* account to any ctx */
12549         xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
12550         xt_sync(cpuset);
12551         vac_flushpage(pfnum, vcolor);
12552         kpreempt_enable();
12553 }
12554 
12555 void
12556 sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
12557 {
12558         cpuset_t cpuset;
12559 
12560         ASSERT(vcolor >= 0);
12561 
12562         kpreempt_disable();
12563         cpuset = cpu_ready_set;
12564         CPUSET_DEL(cpuset, CPU->cpu_id);
12565         SFMMU_XCALL_STATS(NULL);        /* account to any ctx */
12566         xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
12567         xt_sync(cpuset);
12568         vac_flushcolor(vcolor, pfnum);
12569         kpreempt_enable();
12570 }
12571 #endif  /* VAC */
12572 
12573 /*
12574  * We need to prevent processes from accessing the TSB using a cached physical
12575  * address.  It's alright if they try to access the TSB via virtual address
12576  * since they will just fault on that virtual address once the mapping has
12577  * been suspended.
12578  */
12579 #pragma weak sendmondo_in_recover
12580 
12581 /* ARGSUSED */
12582 static int
12583 sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
12584 {
12585         struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12586         sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
12587         hatlock_t *hatlockp;
12588         sf_scd_t *scdp;
12589 
12590         if (flags != HAT_PRESUSPEND)
12591                 return (0);
12592 
12593         /*
12594          * If tsb is a shared TSB with TSB_SHAREDCTX set, sfmmup must
12595          * be a shared hat, then set SCD's tsbinfo's flag.
12596          * If tsb is not shared, sfmmup is a private hat, then set
12597          * its private tsbinfo's flag.
12598          */
12599         hatlockp = sfmmu_hat_enter(sfmmup);
12600         tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
12601 
12602         if (!(tsbinfop->tsb_flags & TSB_SHAREDCTX)) {
12603                 sfmmu_tsb_inv_ctx(sfmmup);
12604                 sfmmu_hat_exit(hatlockp);
12605         } else {
12606                 /* release lock on the shared hat */
12607                 sfmmu_hat_exit(hatlockp);
12608                 /* sfmmup is a shared hat */
12609                 ASSERT(sfmmup->sfmmu_scdhat);
12610                 scdp = sfmmup->sfmmu_scdp;
12611                 ASSERT(scdp != NULL);
12612                 /* get private hat from the scd list */
12613                 mutex_enter(&scdp->scd_mutex);
12614                 sfmmup = scdp->scd_sf_list;
12615                 while (sfmmup != NULL) {
12616                         hatlockp = sfmmu_hat_enter(sfmmup);
12617                         /*
12618                          * We do not call sfmmu_tsb_inv_ctx here because
12619                          * sendmondo_in_recover check is only needed for
12620                          * sun4u.
12621                          */
12622                         sfmmu_invalidate_ctx(sfmmup);
12623                         sfmmu_hat_exit(hatlockp);
12624                         sfmmup = sfmmup->sfmmu_scd_link.next;
12625 
12626                 }
12627                 mutex_exit(&scdp->scd_mutex);
12628         }
12629         return (0);
12630 }
12631 
12632 static void
12633 sfmmu_tsb_inv_ctx(sfmmu_t *sfmmup)
12634 {
12635         extern uint32_t sendmondo_in_recover;
12636 
12637         ASSERT(sfmmu_hat_lock_held(sfmmup));
12638 
12639         /*
12640          * For Cheetah+ Erratum 25:
12641          * Wait for any active recovery to finish.  We can't risk
12642          * relocating the TSB of the thread running mondo_recover_proc()
12643          * since, if we did that, we would deadlock.  The scenario we are
12644          * trying to avoid is as follows:
12645          *
12646          * THIS CPU                     RECOVER CPU
12647          * --------                     -----------
12648          *                              Begins recovery, walking through TSB
12649          * hat_pagesuspend() TSB TTE
12650          *                              TLB miss on TSB TTE, spins at TL1
12651          * xt_sync()
12652          *      send_mondo_timeout()
12653          *      mondo_recover_proc()
12654          *      ((deadlocked))
12655          *
12656          * The second half of the workaround is that mondo_recover_proc()
12657          * checks to see if the tsb_info has the RELOC flag set, and if it
12658          * does, it skips over that TSB without ever touching tsbinfop->tsb_va
12659          * and hence avoiding the TLB miss that could result in a deadlock.
12660          */
12661         if (&sendmondo_in_recover) {
12662                 membar_enter(); /* make sure RELOC flag visible */
12663                 while (sendmondo_in_recover) {
12664                         drv_usecwait(1);
12665                         membar_consumer();
12666                 }
12667         }
12668 
12669         sfmmu_invalidate_ctx(sfmmup);
12670 }
12671 
12672 /* ARGSUSED */
12673 static int
12674 sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
12675         void *tsbinfo, pfn_t newpfn)
12676 {
12677         hatlock_t *hatlockp;
12678         struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
12679         sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
12680 
12681         if (flags != HAT_POSTUNSUSPEND)
12682                 return (0);
12683 
12684         hatlockp = sfmmu_hat_enter(sfmmup);
12685 
12686         SFMMU_STAT(sf_tsb_reloc);
12687 
12688         /*
12689          * The process may have swapped out while we were relocating one
12690          * of its TSBs.  If so, don't bother doing the setup since the
12691          * process can't be using the memory anymore.
12692          */
12693         if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
12694                 ASSERT(va == tsbinfop->tsb_va);
12695                 sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
12696 
12697                 if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
12698                         sfmmu_inv_tsb(tsbinfop->tsb_va,
12699                             TSB_BYTES(tsbinfop->tsb_szc));
12700                         tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
12701                 }
12702         }
12703 
12704         membar_exit();
12705         tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
12706         cv_broadcast(&sfmmup->sfmmu_tsb_cv);
12707 
12708         sfmmu_hat_exit(hatlockp);
12709 
12710         return (0);
12711 }
12712 
12713 /*
12714  * Allocate and initialize a tsb_info structure.  Note that we may or may not
12715  * allocate a TSB here, depending on the flags passed in.
12716  */
12717 static int
12718 sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
12719         uint_t flags, sfmmu_t *sfmmup)
12720 {
12721         int err;
12722 
12723         *tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
12724             sfmmu_tsbinfo_cache, KM_SLEEP);
12725 
12726         if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
12727             tsb_szc, flags, sfmmup)) != 0) {
12728                 kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
12729                 SFMMU_STAT(sf_tsb_allocfail);
12730                 *tsbinfopp = NULL;
12731                 return (err);
12732         }
12733         SFMMU_STAT(sf_tsb_alloc);
12734 
12735         /*
12736          * Bump the TSB size counters for this TSB size.
12737          */
12738         (*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
12739         return (0);
12740 }
12741 
12742 static void
12743 sfmmu_tsb_free(struct tsb_info *tsbinfo)
12744 {
12745         caddr_t tsbva = tsbinfo->tsb_va;
12746         uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
12747         struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
12748         vmem_t  *vmp = tsbinfo->tsb_vmp;
12749 
12750         /*
12751          * If we allocated this TSB from relocatable kernel memory, then we
12752          * need to uninstall the callback handler.
12753          */
12754         if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
12755                 uintptr_t slab_mask;
12756                 caddr_t slab_vaddr;
12757                 page_t **ppl;
12758                 int ret;
12759 
12760                 ASSERT(tsb_size <= MMU_PAGESIZE4M || use_bigtsb_arena);
12761                 if (tsb_size > MMU_PAGESIZE4M)
12762                         slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12763                 else
12764                         slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12765                 slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
12766 
12767                 ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
12768                 ASSERT(ret == 0);
12769                 hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
12770                     0, NULL);
12771                 as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
12772         }
12773 
12774         if (kmem_cachep != NULL) {
12775                 kmem_cache_free(kmem_cachep, tsbva);
12776         } else {
12777                 vmem_xfree(vmp, (void *)tsbva, tsb_size);
12778         }
12779         tsbinfo->tsb_va = (caddr_t)0xbad00bad;
12780         atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
12781 }
12782 
12783 static void
12784 sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
12785 {
12786         if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
12787                 sfmmu_tsb_free(tsbinfo);
12788         }
12789         kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
12790 
12791 }
12792 
12793 /*
12794  * Setup all the references to physical memory for this tsbinfo.
12795  * The underlying page(s) must be locked.
12796  */
12797 static void
12798 sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
12799 {
12800         ASSERT(pfn != PFN_INVALID);
12801         ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
12802 
12803 #ifndef sun4v
12804         if (tsbinfo->tsb_szc == 0) {
12805                 sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
12806                     PROT_WRITE|PROT_READ, TTE8K);
12807         } else {
12808                 /*
12809                  * Round down PA and use a large mapping; the handlers will
12810                  * compute the TSB pointer at the correct offset into the
12811                  * big virtual page.  NOTE: this assumes all TSBs larger
12812                  * than 8K must come from physically contiguous slabs of
12813                  * size tsb_slab_size.
12814                  */
12815                 sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
12816                     PROT_WRITE|PROT_READ, tsb_slab_ttesz);
12817         }
12818         tsbinfo->tsb_pa = ptob(pfn);
12819 
12820         TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
12821         TTE_SET_MOD(&tsbinfo->tsb_tte);    /* enable writes */
12822 
12823         ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
12824         ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
12825 #else /* sun4v */
12826         tsbinfo->tsb_pa = ptob(pfn);
12827 #endif /* sun4v */
12828 }
12829 
12830 
12831 /*
12832  * Returns zero on success, ENOMEM if over the high water mark,
12833  * or EAGAIN if the caller needs to retry with a smaller TSB
12834  * size (or specify TSB_FORCEALLOC if the allocation can't fail).
12835  *
12836  * This call cannot fail to allocate a TSB if TSB_FORCEALLOC
12837  * is specified and the TSB requested is PAGESIZE, though it
12838  * may sleep waiting for memory if sufficient memory is not
12839  * available.
12840  */
12841 static int
12842 sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
12843     int tsbcode, uint_t flags, sfmmu_t *sfmmup)
12844 {
12845         caddr_t vaddr = NULL;
12846         caddr_t slab_vaddr;
12847         uintptr_t slab_mask;
12848         int tsbbytes = TSB_BYTES(tsbcode);
12849         int lowmem = 0;
12850         struct kmem_cache *kmem_cachep = NULL;
12851         vmem_t *vmp = NULL;
12852         lgrp_id_t lgrpid = LGRP_NONE;
12853         pfn_t pfn;
12854         uint_t cbflags = HAC_SLEEP;
12855         page_t **pplist;
12856         int ret;
12857 
12858         ASSERT(tsbbytes <= MMU_PAGESIZE4M || use_bigtsb_arena);
12859         if (tsbbytes > MMU_PAGESIZE4M)
12860                 slab_mask = ~((uintptr_t)bigtsb_slab_mask) << PAGESHIFT;
12861         else
12862                 slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
12863 
12864         if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
12865                 flags |= TSB_ALLOC;
12866 
12867         ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
12868 
12869         tsbinfo->tsb_sfmmu = sfmmup;
12870 
12871         /*
12872          * If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
12873          * return.
12874          */
12875         if ((flags & TSB_ALLOC) == 0) {
12876                 tsbinfo->tsb_szc = tsbcode;
12877                 tsbinfo->tsb_ttesz_mask = tteszmask;
12878                 tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
12879                 tsbinfo->tsb_pa = -1;
12880                 tsbinfo->tsb_tte.ll = 0;
12881                 tsbinfo->tsb_next = NULL;
12882                 tsbinfo->tsb_flags = TSB_SWAPPED;
12883                 tsbinfo->tsb_cache = NULL;
12884                 tsbinfo->tsb_vmp = NULL;
12885                 return (0);
12886         }
12887 
12888 #ifdef DEBUG
12889         /*
12890          * For debugging:
12891          * Randomly force allocation failures every tsb_alloc_mtbf
12892          * tries if TSB_FORCEALLOC is not specified.  This will
12893          * return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
12894          * it is even, to allow testing of both failure paths...
12895          */
12896         if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
12897             (tsb_alloc_count++ == tsb_alloc_mtbf)) {
12898                 tsb_alloc_count = 0;
12899                 tsb_alloc_fail_mtbf++;
12900                 return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
12901         }
12902 #endif  /* DEBUG */
12903 
12904         /*
12905          * Enforce high water mark if we are not doing a forced allocation
12906          * and are not shrinking a process' TSB.
12907          */
12908         if ((flags & TSB_SHRINK) == 0 &&
12909             (tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
12910                 if ((flags & TSB_FORCEALLOC) == 0)
12911                         return (ENOMEM);
12912                 lowmem = 1;
12913         }
12914 
12915         /*
12916          * Allocate from the correct location based upon the size of the TSB
12917          * compared to the base page size, and what memory conditions dictate.
12918          * Note we always do nonblocking allocations from the TSB arena since
12919          * we don't want memory fragmentation to cause processes to block
12920          * indefinitely waiting for memory; until the kernel algorithms that
12921          * coalesce large pages are improved this is our best option.
12922          *
12923          * Algorithm:
12924          *      If allocating a "large" TSB (>8K), allocate from the
12925          *              appropriate kmem_tsb_default_arena vmem arena
12926          *      else if low on memory or the TSB_FORCEALLOC flag is set or
12927          *      tsb_forceheap is set
12928          *              Allocate from kernel heap via sfmmu_tsb8k_cache with
12929          *              KM_SLEEP (never fails)
12930          *      else
12931          *              Allocate from appropriate sfmmu_tsb_cache with
12932          *              KM_NOSLEEP
12933          *      endif
12934          */
12935         if (tsb_lgrp_affinity)
12936                 lgrpid = lgrp_home_id(curthread);
12937         if (lgrpid == LGRP_NONE)
12938                 lgrpid = 0;     /* use lgrp of boot CPU */
12939 
12940         if (tsbbytes > MMU_PAGESIZE) {
12941                 if (tsbbytes > MMU_PAGESIZE4M) {
12942                         vmp = kmem_bigtsb_default_arena[lgrpid];
12943                         vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
12944                             0, 0, NULL, NULL, VM_NOSLEEP);
12945                 } else {
12946                         vmp = kmem_tsb_default_arena[lgrpid];
12947                         vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes,
12948                             0, 0, NULL, NULL, VM_NOSLEEP);
12949                 }
12950 #ifdef  DEBUG
12951         } else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
12952 #else   /* !DEBUG */
12953         } else if (lowmem || (flags & TSB_FORCEALLOC)) {
12954 #endif  /* DEBUG */
12955                 kmem_cachep = sfmmu_tsb8k_cache;
12956                 vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
12957                 ASSERT(vaddr != NULL);
12958         } else {
12959                 kmem_cachep = sfmmu_tsb_cache[lgrpid];
12960                 vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
12961         }
12962 
12963         tsbinfo->tsb_cache = kmem_cachep;
12964         tsbinfo->tsb_vmp = vmp;
12965 
12966         if (vaddr == NULL) {
12967                 return (EAGAIN);
12968         }
12969 
12970         atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
12971         kmem_cachep = tsbinfo->tsb_cache;
12972 
12973         /*
12974          * If we are allocating from outside the cage, then we need to
12975          * register a relocation callback handler.  Note that for now
12976          * since pseudo mappings always hang off of the slab's root page,
12977          * we need only lock the first 8K of the TSB slab.  This is a bit
12978          * hacky but it is good for performance.
12979          */
12980         if (kmem_cachep != sfmmu_tsb8k_cache) {
12981                 slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
12982                 ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
12983                 ASSERT(ret == 0);
12984                 ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
12985                     cbflags, (void *)tsbinfo, &pfn, NULL);
12986 
12987                 /*
12988                  * Need to free up resources if we could not successfully
12989                  * add the callback function and return an error condition.
12990                  */
12991                 if (ret != 0) {
12992                         if (kmem_cachep) {
12993                                 kmem_cache_free(kmem_cachep, vaddr);
12994                         } else {
12995                                 vmem_xfree(vmp, (void *)vaddr, tsbbytes);
12996                         }
12997                         as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
12998                             S_WRITE);
12999                         return (EAGAIN);
13000                 }
13001         } else {
13002                 /*
13003                  * Since allocation of 8K TSBs from heap is rare and occurs
13004                  * during memory pressure we allocate them from permanent
13005                  * memory rather than using callbacks to get the PFN.
13006                  */
13007                 pfn = hat_getpfnum(kas.a_hat, vaddr);
13008         }
13009 
13010         tsbinfo->tsb_va = vaddr;
13011         tsbinfo->tsb_szc = tsbcode;
13012         tsbinfo->tsb_ttesz_mask = tteszmask;
13013         tsbinfo->tsb_next = NULL;
13014         tsbinfo->tsb_flags = 0;
13015 
13016         sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
13017 
13018         sfmmu_inv_tsb(vaddr, tsbbytes);
13019 
13020         if (kmem_cachep != sfmmu_tsb8k_cache) {
13021                 as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
13022         }
13023 
13024         return (0);
13025 }
13026 
13027 /*
13028  * Initialize per cpu tsb and per cpu tsbmiss_area
13029  */
13030 void
13031 sfmmu_init_tsbs(void)
13032 {
13033         int i;
13034         struct tsbmiss  *tsbmissp;
13035         struct kpmtsbm  *kpmtsbmp;
13036 #ifndef sun4v
13037         extern int      dcache_line_mask;
13038 #endif /* sun4v */
13039         extern uint_t   vac_colors;
13040 
13041         /*
13042          * Init. tsb miss area.
13043          */
13044         tsbmissp = tsbmiss_area;
13045 
13046         for (i = 0; i < NCPU; tsbmissp++, i++) {
13047                 /*
13048                  * initialize the tsbmiss area.
13049                  * Do this for all possible CPUs as some may be added
13050                  * while the system is running. There is no cost to this.
13051                  */
13052                 tsbmissp->ksfmmup = ksfmmup;
13053 #ifndef sun4v
13054                 tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
13055 #endif /* sun4v */
13056                 tsbmissp->khashstart =
13057                     (struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
13058                 tsbmissp->uhashstart =
13059                     (struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
13060                 tsbmissp->khashsz = khmehash_num;
13061                 tsbmissp->uhashsz = uhmehash_num;
13062         }
13063 
13064         sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
13065             sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
13066 
13067         if (kpm_enable == 0)
13068                 return;
13069 
13070         /* -- Begin KPM specific init -- */
13071 
13072         if (kpm_smallpages) {
13073                 /*
13074                  * If we're using base pagesize pages for seg_kpm
13075                  * mappings, we use the kernel TSB since we can't afford
13076                  * to allocate a second huge TSB for these mappings.
13077                  */
13078                 kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13079                 kpm_tsbsz = ktsb_szcode;
13080                 kpmsm_tsbbase = kpm_tsbbase;
13081                 kpmsm_tsbsz = kpm_tsbsz;
13082         } else {
13083                 /*
13084                  * In VAC conflict case, just put the entries in the
13085                  * kernel 8K indexed TSB for now so we can find them.
13086                  * This could really be changed in the future if we feel
13087                  * the need...
13088                  */
13089                 kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
13090                 kpmsm_tsbsz = ktsb_szcode;
13091                 kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
13092                 kpm_tsbsz = ktsb4m_szcode;
13093         }
13094 
13095         kpmtsbmp = kpmtsbm_area;
13096         for (i = 0; i < NCPU; kpmtsbmp++, i++) {
13097                 /*
13098                  * Initialize the kpmtsbm area.
13099                  * Do this for all possible CPUs as some may be added
13100                  * while the system is running. There is no cost to this.
13101                  */
13102                 kpmtsbmp->vbase = kpm_vbase;
13103                 kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
13104                 kpmtsbmp->sz_shift = kpm_size_shift;
13105                 kpmtsbmp->kpmp_shift = kpmp_shift;
13106                 kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
13107                 if (kpm_smallpages == 0) {
13108                         kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
13109                         kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
13110                 } else {
13111                         kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
13112                         kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
13113                 }
13114                 kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
13115                 kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
13116 #ifdef  DEBUG
13117                 kpmtsbmp->flags |= (kpm_tsbmtl) ?  KPMTSBM_TLTSBM_FLAG : 0;
13118 #endif  /* DEBUG */
13119                 if (ktsb_phys)
13120                         kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
13121         }
13122 
13123         /* -- End KPM specific init -- */
13124 }
13125 
13126 /* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
13127 struct tsb_info ktsb_info[2];
13128 
13129 /*
13130  * Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
13131  */
13132 void
13133 sfmmu_init_ktsbinfo()
13134 {
13135         ASSERT(ksfmmup != NULL);
13136         ASSERT(ksfmmup->sfmmu_tsb == NULL);
13137         /*
13138          * Allocate tsbinfos for kernel and copy in data
13139          * to make debug easier and sun4v setup easier.
13140          */
13141         ktsb_info[0].tsb_sfmmu = ksfmmup;
13142         ktsb_info[0].tsb_szc = ktsb_szcode;
13143         ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
13144         ktsb_info[0].tsb_va = ktsb_base;
13145         ktsb_info[0].tsb_pa = ktsb_pbase;
13146         ktsb_info[0].tsb_flags = 0;
13147         ktsb_info[0].tsb_tte.ll = 0;
13148         ktsb_info[0].tsb_cache = NULL;
13149 
13150         ktsb_info[1].tsb_sfmmu = ksfmmup;
13151         ktsb_info[1].tsb_szc = ktsb4m_szcode;
13152         ktsb_info[1].tsb_ttesz_mask = TSB4M;
13153         ktsb_info[1].tsb_va = ktsb4m_base;
13154         ktsb_info[1].tsb_pa = ktsb4m_pbase;
13155         ktsb_info[1].tsb_flags = 0;
13156         ktsb_info[1].tsb_tte.ll = 0;
13157         ktsb_info[1].tsb_cache = NULL;
13158 
13159         /* Link them into ksfmmup. */
13160         ktsb_info[0].tsb_next = &ktsb_info[1];
13161         ktsb_info[1].tsb_next = NULL;
13162         ksfmmup->sfmmu_tsb = &ktsb_info[0];
13163 
13164         sfmmu_setup_tsbinfo(ksfmmup);
13165 }
13166 
13167 /*
13168  * Cache the last value returned from va_to_pa().  If the VA specified
13169  * in the current call to cached_va_to_pa() maps to the same Page (as the
13170  * previous call to cached_va_to_pa()), then compute the PA using
13171  * cached info, else call va_to_pa().
13172  *
13173  * Note: this function is neither MT-safe nor consistent in the presence
13174  * of multiple, interleaved threads.  This function was created to enable
13175  * an optimization used during boot (at a point when there's only one thread
13176  * executing on the "boot CPU", and before startup_vm() has been called).
13177  */
13178 static uint64_t
13179 cached_va_to_pa(void *vaddr)
13180 {
13181         static uint64_t prev_vaddr_base = 0;
13182         static uint64_t prev_pfn = 0;
13183 
13184         if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
13185                 return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
13186         } else {
13187                 uint64_t pa = va_to_pa(vaddr);
13188 
13189                 if (pa != ((uint64_t)-1)) {
13190                         /*
13191                          * Computed physical address is valid.  Cache its
13192                          * related info for the next cached_va_to_pa() call.
13193                          */
13194                         prev_pfn = pa & MMU_PAGEMASK;
13195                         prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
13196                 }
13197 
13198                 return (pa);
13199         }
13200 }
13201 
13202 /*
13203  * Carve up our nucleus hblk region.  We may allocate more hblks than
13204  * asked due to rounding errors but we are guaranteed to have at least
13205  * enough space to allocate the requested number of hblk8's and hblk1's.
13206  */
13207 void
13208 sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
13209 {
13210         struct hme_blk *hmeblkp;
13211         size_t hme8blk_sz, hme1blk_sz;
13212         size_t i;
13213         size_t hblk8_bound;
13214         ulong_t j = 0, k = 0;
13215 
13216         ASSERT(addr != NULL && size != 0);
13217 
13218         /* Need to use proper structure alignment */
13219         hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
13220         hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
13221 
13222         nucleus_hblk8.list = (void *)addr;
13223         nucleus_hblk8.index = 0;
13224 
13225         /*
13226          * Use as much memory as possible for hblk8's since we
13227          * expect all bop_alloc'ed memory to be allocated in 8k chunks.
13228          * We need to hold back enough space for the hblk1's which
13229          * we'll allocate next.
13230          */
13231         hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
13232         for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
13233                 hmeblkp = (struct hme_blk *)addr;
13234                 addr += hme8blk_sz;
13235                 hmeblkp->hblk_nuc_bit = 1;
13236                 hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13237         }
13238         nucleus_hblk8.len = j;
13239         ASSERT(j >= nhblk8);
13240         SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
13241 
13242         nucleus_hblk1.list = (void *)addr;
13243         nucleus_hblk1.index = 0;
13244         for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
13245                 hmeblkp = (struct hme_blk *)addr;
13246                 addr += hme1blk_sz;
13247                 hmeblkp->hblk_nuc_bit = 1;
13248                 hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
13249         }
13250         ASSERT(k >= nhblk1);
13251         nucleus_hblk1.len = k;
13252         SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
13253 }
13254 
13255 /*
13256  * This function is currently not supported on this platform. For what
13257  * it's supposed to do, see hat.c and hat_srmmu.c
13258  */
13259 /* ARGSUSED */
13260 faultcode_t
13261 hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
13262     uint_t flags)
13263 {
13264         ASSERT(hat->sfmmu_xhat_provider == NULL);
13265         return (FC_NOSUPPORT);
13266 }
13267 
13268 /*
13269  * Searchs the mapping list of the page for a mapping of the same size. If not
13270  * found the corresponding bit is cleared in the p_index field. When large
13271  * pages are more prevalent in the system, we can maintain the mapping list
13272  * in order and we don't have to traverse the list each time. Just check the
13273  * next and prev entries, and if both are of different size, we clear the bit.
13274  */
13275 static void
13276 sfmmu_rm_large_mappings(page_t *pp, int ttesz)
13277 {
13278         struct sf_hment *sfhmep;
13279         struct hme_blk *hmeblkp;
13280         int     index;
13281         pgcnt_t npgs;
13282 
13283         ASSERT(ttesz > TTE8K);
13284 
13285         ASSERT(sfmmu_mlist_held(pp));
13286 
13287         ASSERT(PP_ISMAPPED_LARGE(pp));
13288 
13289         /*
13290          * Traverse mapping list looking for another mapping of same size.
13291          * since we only want to clear index field if all mappings of
13292          * that size are gone.
13293          */
13294 
13295         for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
13296                 if (IS_PAHME(sfhmep))
13297                         continue;
13298                 hmeblkp = sfmmu_hmetohblk(sfhmep);
13299                 if (hmeblkp->hblk_xhat_bit)
13300                         continue;
13301                 if (hme_size(sfhmep) == ttesz) {
13302                         /*
13303                          * another mapping of the same size. don't clear index.
13304                          */
13305                         return;
13306                 }
13307         }
13308 
13309         /*
13310          * Clear the p_index bit for large page.
13311          */
13312         index = PAGESZ_TO_INDEX(ttesz);
13313         npgs = TTEPAGES(ttesz);
13314         while (npgs-- > 0) {
13315                 ASSERT(pp->p_index & index);
13316                 pp->p_index &= ~index;
13317                 pp = PP_PAGENEXT(pp);
13318         }
13319 }
13320 
13321 /*
13322  * return supported features
13323  */
13324 /* ARGSUSED */
13325 int
13326 hat_supported(enum hat_features feature, void *arg)
13327 {
13328         switch (feature) {
13329         case    HAT_SHARED_PT:
13330         case    HAT_DYNAMIC_ISM_UNMAP:
13331         case    HAT_VMODSORT:
13332                 return (1);
13333         case    HAT_SHARED_REGIONS:
13334                 if (shctx_on)
13335                         return (1);
13336                 else
13337                         return (0);
13338         default:
13339                 return (0);
13340         }
13341 }
13342 
13343 void
13344 hat_enter(struct hat *hat)
13345 {
13346         hatlock_t       *hatlockp;
13347 
13348         if (hat != ksfmmup) {
13349                 hatlockp = TSB_HASH(hat);
13350                 mutex_enter(HATLOCK_MUTEXP(hatlockp));
13351         }
13352 }
13353 
13354 void
13355 hat_exit(struct hat *hat)
13356 {
13357         hatlock_t       *hatlockp;
13358 
13359         if (hat != ksfmmup) {
13360                 hatlockp = TSB_HASH(hat);
13361                 mutex_exit(HATLOCK_MUTEXP(hatlockp));
13362         }
13363 }
13364 
13365 /*ARGSUSED*/
13366 void
13367 hat_reserve(struct as *as, caddr_t addr, size_t len)
13368 {
13369 }
13370 
13371 static void
13372 hat_kstat_init(void)
13373 {
13374         kstat_t *ksp;
13375 
13376         ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
13377             KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
13378             KSTAT_FLAG_VIRTUAL);
13379         if (ksp) {
13380                 ksp->ks_data = (void *) &sfmmu_global_stat;
13381                 kstat_install(ksp);
13382         }
13383         ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
13384             KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
13385             KSTAT_FLAG_VIRTUAL);
13386         if (ksp) {
13387                 ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
13388                 kstat_install(ksp);
13389         }
13390         ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
13391             KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
13392             KSTAT_FLAG_WRITABLE);
13393         if (ksp) {
13394                 ksp->ks_update = sfmmu_kstat_percpu_update;
13395                 kstat_install(ksp);
13396         }
13397 }
13398 
13399 /* ARGSUSED */
13400 static int
13401 sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
13402 {
13403         struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
13404         struct tsbmiss *tsbm = tsbmiss_area;
13405         struct kpmtsbm *kpmtsbm = kpmtsbm_area;
13406         int i;
13407 
13408         ASSERT(cpu_kstat);
13409         if (rw == KSTAT_READ) {
13410                 for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
13411                         cpu_kstat->sf_itlb_misses = 0;
13412                         cpu_kstat->sf_dtlb_misses = 0;
13413                         cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
13414                             tsbm->uprot_traps;
13415                         cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
13416                             kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
13417                         cpu_kstat->sf_tsb_hits = 0;
13418                         cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
13419                         cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
13420                 }
13421         } else {
13422                 /* KSTAT_WRITE is used to clear stats */
13423                 for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
13424                         tsbm->utsb_misses = 0;
13425                         tsbm->ktsb_misses = 0;
13426                         tsbm->uprot_traps = 0;
13427                         tsbm->kprot_traps = 0;
13428                         kpmtsbm->kpm_dtlb_misses = 0;
13429                         kpmtsbm->kpm_tsb_misses = 0;
13430                 }
13431         }
13432         return (0);
13433 }
13434 
13435 #ifdef  DEBUG
13436 
13437 tte_t  *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
13438 
13439 /*
13440  * A tte checker. *orig_old is the value we read before cas.
13441  *      *cur is the value returned by cas.
13442  *      *new is the desired value when we do the cas.
13443  *
13444  *      *hmeblkp is currently unused.
13445  */
13446 
13447 /* ARGSUSED */
13448 void
13449 chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
13450 {
13451         pfn_t i, j, k;
13452         int cpuid = CPU->cpu_id;
13453 
13454         gorig[cpuid] = orig_old;
13455         gcur[cpuid] = cur;
13456         gnew[cpuid] = new;
13457 
13458 #ifdef lint
13459         hmeblkp = hmeblkp;
13460 #endif
13461 
13462         if (TTE_IS_VALID(orig_old)) {
13463                 if (TTE_IS_VALID(cur)) {
13464                         i = TTE_TO_TTEPFN(orig_old);
13465                         j = TTE_TO_TTEPFN(cur);
13466                         k = TTE_TO_TTEPFN(new);
13467                         if (i != j) {
13468                                 /* remap error? */
13469                                 panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
13470                         }
13471 
13472                         if (i != k) {
13473                                 /* remap error? */
13474                                 panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
13475                         }
13476                 } else {
13477                         if (TTE_IS_VALID(new)) {
13478                                 panic("chk_tte: invalid cur? ");
13479                         }
13480 
13481                         i = TTE_TO_TTEPFN(orig_old);
13482                         k = TTE_TO_TTEPFN(new);
13483                         if (i != k) {
13484                                 panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
13485                         }
13486                 }
13487         } else {
13488                 if (TTE_IS_VALID(cur)) {
13489                         j = TTE_TO_TTEPFN(cur);
13490                         if (TTE_IS_VALID(new)) {
13491                                 k = TTE_TO_TTEPFN(new);
13492                                 if (j != k) {
13493                                         panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
13494                                             j, k);
13495                                 }
13496                         } else {
13497                                 panic("chk_tte: why here?");
13498                         }
13499                 } else {
13500                         if (!TTE_IS_VALID(new)) {
13501                                 panic("chk_tte: why here2 ?");
13502                         }
13503                 }
13504         }
13505 }
13506 
13507 #endif /* DEBUG */
13508 
13509 extern void prefetch_tsbe_read(struct tsbe *);
13510 extern void prefetch_tsbe_write(struct tsbe *);
13511 
13512 
13513 /*
13514  * We want to prefetch 7 cache lines ahead for our read prefetch.  This gives
13515  * us optimal performance on Cheetah+.  You can only have 8 outstanding
13516  * prefetches at any one time, so we opted for 7 read prefetches and 1 write
13517  * prefetch to make the most utilization of the prefetch capability.
13518  */
13519 #define TSBE_PREFETCH_STRIDE (7)
13520 
13521 void
13522 sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
13523 {
13524         int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
13525         int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
13526         int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
13527         int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
13528         struct tsbe *old;
13529         struct tsbe *new;
13530         struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
13531         uint64_t va;
13532         int new_offset;
13533         int i;
13534         int vpshift;
13535         int last_prefetch;
13536 
13537         if (old_bytes == new_bytes) {
13538                 bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
13539         } else {
13540 
13541                 /*
13542                  * A TSBE is 16 bytes which means there are four TSBE's per
13543                  * P$ line (64 bytes), thus every 4 TSBE's we prefetch.
13544                  */
13545                 old = (struct tsbe *)old_tsbinfo->tsb_va;
13546                 last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
13547                 for (i = 0; i < old_entries; i++, old++) {
13548                         if (((i & (4-1)) == 0) && (i < last_prefetch))
13549                                 prefetch_tsbe_read(old);
13550                         if (!old->tte_tag.tag_invalid) {
13551                                 /*
13552                                  * We have a valid TTE to remap.  Check the
13553                                  * size.  We won't remap 64K or 512K TTEs
13554                                  * because they span more than one TSB entry
13555                                  * and are indexed using an 8K virt. page.
13556                                  * Ditto for 32M and 256M TTEs.
13557                                  */
13558                                 if (TTE_CSZ(&old->tte_data) == TTE64K ||
13559                                     TTE_CSZ(&old->tte_data) == TTE512K)
13560                                         continue;
13561                                 if (mmu_page_sizes == max_mmu_page_sizes) {
13562                                         if (TTE_CSZ(&old->tte_data) == TTE32M ||
13563                                             TTE_CSZ(&old->tte_data) == TTE256M)
13564                                                 continue;
13565                                 }
13566 
13567                                 /* clear the lower 22 bits of the va */
13568                                 va = *(uint64_t *)old << 22;
13569                                 /* turn va into a virtual pfn */
13570                                 va >>= 22 - TSB_START_SIZE;
13571                                 /*
13572                                  * or in bits from the offset in the tsb
13573                                  * to get the real virtual pfn. These
13574                                  * correspond to bits [21:13] in the va
13575                                  */
13576                                 vpshift =
13577                                     TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
13578                                     0x1ff;
13579                                 va |= (i << vpshift);
13580                                 va >>= vpshift;
13581                                 new_offset = va & (new_entries - 1);
13582                                 new = new_base + new_offset;
13583                                 prefetch_tsbe_write(new);
13584                                 *new = *old;
13585                         }
13586                 }
13587         }
13588 }
13589 
13590 /*
13591  * unused in sfmmu
13592  */
13593 void
13594 hat_dump(void)
13595 {
13596 }
13597 
13598 /*
13599  * Called when a thread is exiting and we have switched to the kernel address
13600  * space.  Perform the same VM initialization resume() uses when switching
13601  * processes.
13602  *
13603  * Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
13604  * we call it anyway in case the semantics change in the future.
13605  */
13606 /*ARGSUSED*/
13607 void
13608 hat_thread_exit(kthread_t *thd)
13609 {
13610         uint_t pgsz_cnum;
13611         uint_t pstate_save;
13612 
13613         ASSERT(thd->t_procp->p_as == &kas);
13614 
13615         pgsz_cnum = KCONTEXT;
13616 #ifdef sun4u
13617         pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
13618 #endif
13619 
13620         /*
13621          * Note that sfmmu_load_mmustate() is currently a no-op for
13622          * kernel threads. We need to disable interrupts here,
13623          * simply because otherwise sfmmu_load_mmustate() would panic
13624          * if the caller does not disable interrupts.
13625          */
13626         pstate_save = sfmmu_disable_intrs();
13627 
13628         /* Compatibility Note: hw takes care of MMU_SCONTEXT1 */
13629         sfmmu_setctx_sec(pgsz_cnum);
13630         sfmmu_load_mmustate(ksfmmup);
13631         sfmmu_enable_intrs(pstate_save);
13632 }
13633 
13634 
13635 /*
13636  * SRD support
13637  */
13638 #define SRD_HASH_FUNCTION(vp)   (((((uintptr_t)(vp)) >> 4) ^ \
13639                                     (((uintptr_t)(vp)) >> 11)) & \
13640                                     srd_hashmask)
13641 
13642 /*
13643  * Attach the process to the srd struct associated with the exec vnode
13644  * from which the process is started.
13645  */
13646 void
13647 hat_join_srd(struct hat *sfmmup, vnode_t *evp)
13648 {
13649         uint_t hash = SRD_HASH_FUNCTION(evp);
13650         sf_srd_t *srdp;
13651         sf_srd_t *newsrdp;
13652 
13653         ASSERT(sfmmup != ksfmmup);
13654         ASSERT(sfmmup->sfmmu_srdp == NULL);
13655 
13656         if (!shctx_on) {
13657                 return;
13658         }
13659 
13660         VN_HOLD(evp);
13661 
13662         if (srd_buckets[hash].srdb_srdp != NULL) {
13663                 mutex_enter(&srd_buckets[hash].srdb_lock);
13664                 for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13665                     srdp = srdp->srd_hash) {
13666                         if (srdp->srd_evp == evp) {
13667                                 ASSERT(srdp->srd_refcnt >= 0);
13668                                 sfmmup->sfmmu_srdp = srdp;
13669                                 atomic_add_32(
13670                                     (volatile uint_t *)&srdp->srd_refcnt, 1);
13671                                 mutex_exit(&srd_buckets[hash].srdb_lock);
13672                                 return;
13673                         }
13674                 }
13675                 mutex_exit(&srd_buckets[hash].srdb_lock);
13676         }
13677         newsrdp = kmem_cache_alloc(srd_cache, KM_SLEEP);
13678         ASSERT(newsrdp->srd_next_ismrid == 0 && newsrdp->srd_next_hmerid == 0);
13679 
13680         newsrdp->srd_evp = evp;
13681         newsrdp->srd_refcnt = 1;
13682         newsrdp->srd_hmergnfree = NULL;
13683         newsrdp->srd_ismrgnfree = NULL;
13684 
13685         mutex_enter(&srd_buckets[hash].srdb_lock);
13686         for (srdp = srd_buckets[hash].srdb_srdp; srdp != NULL;
13687             srdp = srdp->srd_hash) {
13688                 if (srdp->srd_evp == evp) {
13689                         ASSERT(srdp->srd_refcnt >= 0);
13690                         sfmmup->sfmmu_srdp = srdp;
13691                         atomic_add_32((volatile uint_t *)&srdp->srd_refcnt, 1);
13692                         mutex_exit(&srd_buckets[hash].srdb_lock);
13693                         kmem_cache_free(srd_cache, newsrdp);
13694                         return;
13695                 }
13696         }
13697         newsrdp->srd_hash = srd_buckets[hash].srdb_srdp;
13698         srd_buckets[hash].srdb_srdp = newsrdp;
13699         sfmmup->sfmmu_srdp = newsrdp;
13700 
13701         mutex_exit(&srd_buckets[hash].srdb_lock);
13702 
13703 }
13704 
13705 static void
13706 sfmmu_leave_srd(sfmmu_t *sfmmup)
13707 {
13708         vnode_t *evp;
13709         sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13710         uint_t hash;
13711         sf_srd_t **prev_srdpp;
13712         sf_region_t *rgnp;
13713         sf_region_t *nrgnp;
13714 #ifdef DEBUG
13715         int rgns = 0;
13716 #endif
13717         int i;
13718 
13719         ASSERT(sfmmup != ksfmmup);
13720         ASSERT(srdp != NULL);
13721         ASSERT(srdp->srd_refcnt > 0);
13722         ASSERT(sfmmup->sfmmu_scdp == NULL);
13723         ASSERT(sfmmup->sfmmu_free == 1);
13724 
13725         sfmmup->sfmmu_srdp = NULL;
13726         evp = srdp->srd_evp;
13727         ASSERT(evp != NULL);
13728         if (atomic_add_32_nv(
13729             (volatile uint_t *)&srdp->srd_refcnt, -1)) {
13730                 VN_RELE(evp);
13731                 return;
13732         }
13733 
13734         hash = SRD_HASH_FUNCTION(evp);
13735         mutex_enter(&srd_buckets[hash].srdb_lock);
13736         for (prev_srdpp = &srd_buckets[hash].srdb_srdp;
13737             (srdp = *prev_srdpp) != NULL; prev_srdpp = &srdp->srd_hash) {
13738                 if (srdp->srd_evp == evp) {
13739                         break;
13740                 }
13741         }
13742         if (srdp == NULL || srdp->srd_refcnt) {
13743                 mutex_exit(&srd_buckets[hash].srdb_lock);
13744                 VN_RELE(evp);
13745                 return;
13746         }
13747         *prev_srdpp = srdp->srd_hash;
13748         mutex_exit(&srd_buckets[hash].srdb_lock);
13749 
13750         ASSERT(srdp->srd_refcnt == 0);
13751         VN_RELE(evp);
13752 
13753 #ifdef DEBUG
13754         for (i = 0; i < SFMMU_MAX_REGION_BUCKETS; i++) {
13755                 ASSERT(srdp->srd_rgnhash[i] == NULL);
13756         }
13757 #endif /* DEBUG */
13758 
13759         /* free each hme regions in the srd */
13760         for (rgnp = srdp->srd_hmergnfree; rgnp != NULL; rgnp = nrgnp) {
13761                 nrgnp = rgnp->rgn_next;
13762                 ASSERT(rgnp->rgn_id < srdp->srd_next_hmerid);
13763                 ASSERT(rgnp->rgn_refcnt == 0);
13764                 ASSERT(rgnp->rgn_sfmmu_head == NULL);
13765                 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13766                 ASSERT(rgnp->rgn_hmeflags == 0);
13767                 ASSERT(srdp->srd_hmergnp[rgnp->rgn_id] == rgnp);
13768 #ifdef DEBUG
13769                 for (i = 0; i < MMU_PAGE_SIZES; i++) {
13770                         ASSERT(rgnp->rgn_ttecnt[i] == 0);
13771                 }
13772                 rgns++;
13773 #endif /* DEBUG */
13774                 kmem_cache_free(region_cache, rgnp);
13775         }
13776         ASSERT(rgns == srdp->srd_next_hmerid);
13777 
13778 #ifdef DEBUG
13779         rgns = 0;
13780 #endif
13781         /* free each ism rgns in the srd */
13782         for (rgnp = srdp->srd_ismrgnfree; rgnp != NULL; rgnp = nrgnp) {
13783                 nrgnp = rgnp->rgn_next;
13784                 ASSERT(rgnp->rgn_id < srdp->srd_next_ismrid);
13785                 ASSERT(rgnp->rgn_refcnt == 0);
13786                 ASSERT(rgnp->rgn_sfmmu_head == NULL);
13787                 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
13788                 ASSERT(srdp->srd_ismrgnp[rgnp->rgn_id] == rgnp);
13789 #ifdef DEBUG
13790                 for (i = 0; i < MMU_PAGE_SIZES; i++) {
13791                         ASSERT(rgnp->rgn_ttecnt[i] == 0);
13792                 }
13793                 rgns++;
13794 #endif /* DEBUG */
13795                 kmem_cache_free(region_cache, rgnp);
13796         }
13797         ASSERT(rgns == srdp->srd_next_ismrid);
13798         ASSERT(srdp->srd_ismbusyrgns == 0);
13799         ASSERT(srdp->srd_hmebusyrgns == 0);
13800 
13801         srdp->srd_next_ismrid = 0;
13802         srdp->srd_next_hmerid = 0;
13803 
13804         bzero((void *)srdp->srd_ismrgnp,
13805             sizeof (sf_region_t *) * SFMMU_MAX_ISM_REGIONS);
13806         bzero((void *)srdp->srd_hmergnp,
13807             sizeof (sf_region_t *) * SFMMU_MAX_HME_REGIONS);
13808 
13809         ASSERT(srdp->srd_scdp == NULL);
13810         kmem_cache_free(srd_cache, srdp);
13811 }
13812 
13813 /* ARGSUSED */
13814 static int
13815 sfmmu_srdcache_constructor(void *buf, void *cdrarg, int kmflags)
13816 {
13817         sf_srd_t *srdp = (sf_srd_t *)buf;
13818         bzero(buf, sizeof (*srdp));
13819 
13820         mutex_init(&srdp->srd_mutex, NULL, MUTEX_DEFAULT, NULL);
13821         mutex_init(&srdp->srd_scd_mutex, NULL, MUTEX_DEFAULT, NULL);
13822         return (0);
13823 }
13824 
13825 /* ARGSUSED */
13826 static void
13827 sfmmu_srdcache_destructor(void *buf, void *cdrarg)
13828 {
13829         sf_srd_t *srdp = (sf_srd_t *)buf;
13830 
13831         mutex_destroy(&srdp->srd_mutex);
13832         mutex_destroy(&srdp->srd_scd_mutex);
13833 }
13834 
13835 /*
13836  * The caller makes sure hat_join_region()/hat_leave_region() can't be called
13837  * at the same time for the same process and address range. This is ensured by
13838  * the fact that address space is locked as writer when a process joins the
13839  * regions. Therefore there's no need to hold an srd lock during the entire
13840  * execution of hat_join_region()/hat_leave_region().
13841  */
13842 
13843 #define RGN_HASH_FUNCTION(obj)  (((((uintptr_t)(obj)) >> 4) ^ \
13844                                     (((uintptr_t)(obj)) >> 11)) & \
13845                                         srd_rgn_hashmask)
13846 /*
13847  * This routine implements the shared context functionality required when
13848  * attaching a segment to an address space. It must be called from
13849  * hat_share() for D(ISM) segments and from segvn_create() for segments
13850  * with the MAP_PRIVATE and MAP_TEXT flags set. It returns a region_cookie
13851  * which is saved in the private segment data for hme segments and
13852  * the ism_map structure for ism segments.
13853  */
13854 hat_region_cookie_t
13855 hat_join_region(struct hat *sfmmup,
13856         caddr_t r_saddr,
13857         size_t r_size,
13858         void *r_obj,
13859         u_offset_t r_objoff,
13860         uchar_t r_perm,
13861         uchar_t r_pgszc,
13862         hat_rgn_cb_func_t r_cb_function,
13863         uint_t flags)
13864 {
13865         sf_srd_t *srdp = sfmmup->sfmmu_srdp;
13866         uint_t rhash;
13867         uint_t rid;
13868         hatlock_t *hatlockp;
13869         sf_region_t *rgnp;
13870         sf_region_t *new_rgnp = NULL;
13871         int i;
13872         uint16_t *nextidp;
13873         sf_region_t **freelistp;
13874         int maxids;
13875         sf_region_t **rarrp;
13876         uint16_t *busyrgnsp;
13877         ulong_t rttecnt;
13878         uchar_t tteflag;
13879         uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
13880         int text = (r_type == HAT_REGION_TEXT);
13881 
13882         if (srdp == NULL || r_size == 0) {
13883                 return (HAT_INVALID_REGION_COOKIE);
13884         }
13885 
13886         ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
13887         ASSERT(sfmmup != ksfmmup);
13888         ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
13889         ASSERT(srdp->srd_refcnt > 0);
13890         ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
13891         ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
13892         ASSERT(r_pgszc < mmu_page_sizes);
13893         if (!IS_P2ALIGNED(r_saddr, TTEBYTES(r_pgszc)) ||
13894             !IS_P2ALIGNED(r_size, TTEBYTES(r_pgszc))) {
13895                 panic("hat_join_region: region addr or size is not aligned\n");
13896         }
13897 
13898 
13899         r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
13900             SFMMU_REGION_HME;
13901         /*
13902          * Currently only support shared hmes for the read only main text
13903          * region.
13904          */
13905         if (r_type == SFMMU_REGION_HME && ((r_obj != srdp->srd_evp) ||
13906             (r_perm & PROT_WRITE))) {
13907                 return (HAT_INVALID_REGION_COOKIE);
13908         }
13909 
13910         rhash = RGN_HASH_FUNCTION(r_obj);
13911 
13912         if (r_type == SFMMU_REGION_ISM) {
13913                 nextidp = &srdp->srd_next_ismrid;
13914                 freelistp = &srdp->srd_ismrgnfree;
13915                 maxids = SFMMU_MAX_ISM_REGIONS;
13916                 rarrp = srdp->srd_ismrgnp;
13917                 busyrgnsp = &srdp->srd_ismbusyrgns;
13918         } else {
13919                 nextidp = &srdp->srd_next_hmerid;
13920                 freelistp = &srdp->srd_hmergnfree;
13921                 maxids = SFMMU_MAX_HME_REGIONS;
13922                 rarrp = srdp->srd_hmergnp;
13923                 busyrgnsp = &srdp->srd_hmebusyrgns;
13924         }
13925 
13926         mutex_enter(&srdp->srd_mutex);
13927 
13928         for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
13929             rgnp = rgnp->rgn_hash) {
13930                 if (rgnp->rgn_saddr == r_saddr && rgnp->rgn_size == r_size &&
13931                     rgnp->rgn_obj == r_obj && rgnp->rgn_objoff == r_objoff &&
13932                     rgnp->rgn_perm == r_perm && rgnp->rgn_pgszc == r_pgszc) {
13933                         break;
13934                 }
13935         }
13936 
13937 rfound:
13938         if (rgnp != NULL) {
13939                 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
13940                 ASSERT(rgnp->rgn_cb_function == r_cb_function);
13941                 ASSERT(rgnp->rgn_refcnt >= 0);
13942                 rid = rgnp->rgn_id;
13943                 ASSERT(rid < maxids);
13944                 ASSERT(rarrp[rid] == rgnp);
13945                 ASSERT(rid < *nextidp);
13946                 atomic_add_32((volatile uint_t *)&rgnp->rgn_refcnt, 1);
13947                 mutex_exit(&srdp->srd_mutex);
13948                 if (new_rgnp != NULL) {
13949                         kmem_cache_free(region_cache, new_rgnp);
13950                 }
13951                 if (r_type == SFMMU_REGION_HME) {
13952                         int myjoin =
13953                             (sfmmup == astosfmmu(curthread->t_procp->p_as));
13954 
13955                         sfmmu_link_to_hmeregion(sfmmup, rgnp);
13956                         /*
13957                          * bitmap should be updated after linking sfmmu on
13958                          * region list so that pageunload() doesn't skip
13959                          * TSB/TLB flush. As soon as bitmap is updated another
13960                          * thread in this process can already start accessing
13961                          * this region.
13962                          */
13963                         /*
13964                          * Normally ttecnt accounting is done as part of
13965                          * pagefault handling. But a process may not take any
13966                          * pagefaults on shared hmeblks created by some other
13967                          * process. To compensate for this assume that the
13968                          * entire region will end up faulted in using
13969                          * the region's pagesize.
13970                          *
13971                          */
13972                         if (r_pgszc > TTE8K) {
13973                                 tteflag = 1 << r_pgszc;
13974                                 if (disable_large_pages & tteflag) {
13975                                         tteflag = 0;
13976                                 }
13977                         } else {
13978                                 tteflag = 0;
13979                         }
13980                         if (tteflag && !(sfmmup->sfmmu_rtteflags & tteflag)) {
13981                                 hatlockp = sfmmu_hat_enter(sfmmup);
13982                                 sfmmup->sfmmu_rtteflags |= tteflag;
13983                                 sfmmu_hat_exit(hatlockp);
13984                         }
13985                         hatlockp = sfmmu_hat_enter(sfmmup);
13986 
13987                         /*
13988                          * Preallocate 1/4 of ttecnt's in 8K TSB for >= 4M
13989                          * region to allow for large page allocation failure.
13990                          */
13991                         if (r_pgszc >= TTE4M) {
13992                                 sfmmup->sfmmu_tsb0_4minflcnt +=
13993                                     r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
13994                         }
13995 
13996                         /* update sfmmu_ttecnt with the shme rgn ttecnt */
13997                         rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
13998                         atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
13999                             rttecnt);
14000 
14001                         if (text && r_pgszc >= TTE4M &&
14002                             (tteflag || ((disable_large_pages >> TTE4M) &
14003                             ((1 << (r_pgszc - TTE4M + 1)) - 1))) &&
14004                             !SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
14005                                 SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
14006                         }
14007 
14008                         sfmmu_hat_exit(hatlockp);
14009                         /*
14010                          * On Panther we need to make sure TLB is programmed
14011                          * to accept 32M/256M pages.  Call
14012                          * sfmmu_check_page_sizes() now to make sure TLB is
14013                          * setup before making hmeregions visible to other
14014                          * threads.
14015                          */
14016                         sfmmu_check_page_sizes(sfmmup, 1);
14017                         hatlockp = sfmmu_hat_enter(sfmmup);
14018                         SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
14019 
14020                         /*
14021                          * if context is invalid tsb miss exception code will
14022                          * call sfmmu_check_page_sizes() and update tsbmiss
14023                          * area later.
14024                          */
14025                         kpreempt_disable();
14026                         if (myjoin &&
14027                             (sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum
14028                             != INVALID_CONTEXT)) {
14029                                 struct tsbmiss *tsbmp;
14030 
14031                                 tsbmp = &tsbmiss_area[CPU->cpu_id];
14032                                 ASSERT(sfmmup == tsbmp->usfmmup);
14033                                 BT_SET(tsbmp->shmermap, rid);
14034                                 if (r_pgszc > TTE64K) {
14035                                         tsbmp->uhat_rtteflags |= tteflag;
14036                                 }
14037 
14038                         }
14039                         kpreempt_enable();
14040 
14041                         sfmmu_hat_exit(hatlockp);
14042                         ASSERT((hat_region_cookie_t)((uint64_t)rid) !=
14043                             HAT_INVALID_REGION_COOKIE);
14044                 } else {
14045                         hatlockp = sfmmu_hat_enter(sfmmup);
14046                         SF_RGNMAP_ADD(sfmmup->sfmmu_ismregion_map, rid);
14047                         sfmmu_hat_exit(hatlockp);
14048                 }
14049                 ASSERT(rid < maxids);
14050 
14051                 if (r_type == SFMMU_REGION_ISM) {
14052                         sfmmu_find_scd(sfmmup);
14053                 }
14054                 return ((hat_region_cookie_t)((uint64_t)rid));
14055         }
14056 
14057         ASSERT(new_rgnp == NULL);
14058 
14059         if (*busyrgnsp >= maxids) {
14060                 mutex_exit(&srdp->srd_mutex);
14061                 return (HAT_INVALID_REGION_COOKIE);
14062         }
14063 
14064         ASSERT(MUTEX_HELD(&srdp->srd_mutex));
14065         if (*freelistp != NULL) {
14066                 rgnp = *freelistp;
14067                 *freelistp = rgnp->rgn_next;
14068                 ASSERT(rgnp->rgn_id < *nextidp);
14069                 ASSERT(rgnp->rgn_id < maxids);
14070                 ASSERT(rgnp->rgn_flags & SFMMU_REGION_FREE);
14071                 ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK)
14072                     == r_type);
14073                 ASSERT(rarrp[rgnp->rgn_id] == rgnp);
14074                 ASSERT(rgnp->rgn_hmeflags == 0);
14075         } else {
14076                 /*
14077                  * release local locks before memory allocation.
14078                  */
14079                 mutex_exit(&srdp->srd_mutex);
14080 
14081                 new_rgnp = kmem_cache_alloc(region_cache, KM_SLEEP);
14082 
14083                 mutex_enter(&srdp->srd_mutex);
14084                 for (rgnp = srdp->srd_rgnhash[rhash]; rgnp != NULL;
14085                     rgnp = rgnp->rgn_hash) {
14086                         if (rgnp->rgn_saddr == r_saddr &&
14087                             rgnp->rgn_size == r_size &&
14088                             rgnp->rgn_obj == r_obj &&
14089                             rgnp->rgn_objoff == r_objoff &&
14090                             rgnp->rgn_perm == r_perm &&
14091                             rgnp->rgn_pgszc == r_pgszc) {
14092                                 break;
14093                         }
14094                 }
14095                 if (rgnp != NULL) {
14096                         goto rfound;
14097                 }
14098 
14099                 if (*nextidp >= maxids) {
14100                         mutex_exit(&srdp->srd_mutex);
14101                         goto fail;
14102                 }
14103                 rgnp = new_rgnp;
14104                 new_rgnp = NULL;
14105                 rgnp->rgn_id = (*nextidp)++;
14106                 ASSERT(rgnp->rgn_id < maxids);
14107                 ASSERT(rarrp[rgnp->rgn_id] == NULL);
14108                 rarrp[rgnp->rgn_id] = rgnp;
14109         }
14110 
14111         ASSERT(rgnp->rgn_sfmmu_head == NULL);
14112         ASSERT(rgnp->rgn_hmeflags == 0);
14113 #ifdef DEBUG
14114         for (i = 0; i < MMU_PAGE_SIZES; i++) {
14115                 ASSERT(rgnp->rgn_ttecnt[i] == 0);
14116         }
14117 #endif
14118         rgnp->rgn_saddr = r_saddr;
14119         rgnp->rgn_size = r_size;
14120         rgnp->rgn_obj = r_obj;
14121         rgnp->rgn_objoff = r_objoff;
14122         rgnp->rgn_perm = r_perm;
14123         rgnp->rgn_pgszc = r_pgszc;
14124         rgnp->rgn_flags = r_type;
14125         rgnp->rgn_refcnt = 0;
14126         rgnp->rgn_cb_function = r_cb_function;
14127         rgnp->rgn_hash = srdp->srd_rgnhash[rhash];
14128         srdp->srd_rgnhash[rhash] = rgnp;
14129         (*busyrgnsp)++;
14130         ASSERT(*busyrgnsp <= maxids);
14131         goto rfound;
14132 
14133 fail:
14134         ASSERT(new_rgnp != NULL);
14135         kmem_cache_free(region_cache, new_rgnp);
14136         return (HAT_INVALID_REGION_COOKIE);
14137 }
14138 
14139 /*
14140  * This function implements the shared context functionality required
14141  * when detaching a segment from an address space. It must be called
14142  * from hat_unshare() for all D(ISM) segments and from segvn_unmap(),
14143  * for segments with a valid region_cookie.
14144  * It will also be called from all seg_vn routines which change a
14145  * segment's attributes such as segvn_setprot(), segvn_setpagesize(),
14146  * segvn_clrszc() & segvn_advise(), as well as in the case of COW fault
14147  * from segvn_fault().
14148  */
14149 void
14150 hat_leave_region(struct hat *sfmmup, hat_region_cookie_t rcookie, uint_t flags)
14151 {
14152         sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14153         sf_scd_t *scdp;
14154         uint_t rhash;
14155         uint_t rid = (uint_t)((uint64_t)rcookie);
14156         hatlock_t *hatlockp = NULL;
14157         sf_region_t *rgnp;
14158         sf_region_t **prev_rgnpp;
14159         sf_region_t *cur_rgnp;
14160         void *r_obj;
14161         int i;
14162         caddr_t r_saddr;
14163         caddr_t r_eaddr;
14164         size_t  r_size;
14165         uchar_t r_pgszc;
14166         uchar_t r_type = flags & HAT_REGION_TYPE_MASK;
14167 
14168         ASSERT(sfmmup != ksfmmup);
14169         ASSERT(srdp != NULL);
14170         ASSERT(srdp->srd_refcnt > 0);
14171         ASSERT(!(flags & ~HAT_REGION_TYPE_MASK));
14172         ASSERT(flags == HAT_REGION_TEXT || flags == HAT_REGION_ISM);
14173         ASSERT(!sfmmup->sfmmu_free || sfmmup->sfmmu_scdp == NULL);
14174 
14175         r_type = (r_type == HAT_REGION_ISM) ? SFMMU_REGION_ISM :
14176             SFMMU_REGION_HME;
14177 
14178         if (r_type == SFMMU_REGION_ISM) {
14179                 ASSERT(SFMMU_IS_ISMRID_VALID(rid));
14180                 ASSERT(rid < SFMMU_MAX_ISM_REGIONS);
14181                 rgnp = srdp->srd_ismrgnp[rid];
14182         } else {
14183                 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14184                 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14185                 rgnp = srdp->srd_hmergnp[rid];
14186         }
14187         ASSERT(rgnp != NULL);
14188         ASSERT(rgnp->rgn_id == rid);
14189         ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14190         ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14191         ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
14192 
14193         ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
14194         if (r_type == SFMMU_REGION_HME && sfmmup->sfmmu_as->a_xhat != NULL) {
14195                 xhat_unload_callback_all(sfmmup->sfmmu_as, rgnp->rgn_saddr,
14196                     rgnp->rgn_size, 0, NULL);
14197         }
14198 
14199         if (sfmmup->sfmmu_free) {
14200                 ulong_t rttecnt;
14201                 r_pgszc = rgnp->rgn_pgszc;
14202                 r_size = rgnp->rgn_size;
14203 
14204                 ASSERT(sfmmup->sfmmu_scdp == NULL);
14205                 if (r_type == SFMMU_REGION_ISM) {
14206                         SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14207                 } else {
14208                         /* update shme rgns ttecnt in sfmmu_ttecnt */
14209                         rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14210                         ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14211 
14212                         atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc],
14213                             -rttecnt);
14214 
14215                         SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14216                 }
14217         } else if (r_type == SFMMU_REGION_ISM) {
14218                 hatlockp = sfmmu_hat_enter(sfmmup);
14219                 ASSERT(rid < srdp->srd_next_ismrid);
14220                 SF_RGNMAP_DEL(sfmmup->sfmmu_ismregion_map, rid);
14221                 scdp = sfmmup->sfmmu_scdp;
14222                 if (scdp != NULL &&
14223                     SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid)) {
14224                         sfmmu_leave_scd(sfmmup, r_type);
14225                         ASSERT(sfmmu_hat_lock_held(sfmmup));
14226                 }
14227                 sfmmu_hat_exit(hatlockp);
14228         } else {
14229                 ulong_t rttecnt;
14230                 r_pgszc = rgnp->rgn_pgszc;
14231                 r_saddr = rgnp->rgn_saddr;
14232                 r_size = rgnp->rgn_size;
14233                 r_eaddr = r_saddr + r_size;
14234 
14235                 ASSERT(r_type == SFMMU_REGION_HME);
14236                 hatlockp = sfmmu_hat_enter(sfmmup);
14237                 ASSERT(rid < srdp->srd_next_hmerid);
14238                 SF_RGNMAP_DEL(sfmmup->sfmmu_hmeregion_map, rid);
14239 
14240                 /*
14241                  * If region is part of an SCD call sfmmu_leave_scd().
14242                  * Otherwise if process is not exiting and has valid context
14243                  * just drop the context on the floor to lose stale TLB
14244                  * entries and force the update of tsb miss area to reflect
14245                  * the new region map. After that clean our TSB entries.
14246                  */
14247                 scdp = sfmmup->sfmmu_scdp;
14248                 if (scdp != NULL &&
14249                     SF_RGNMAP_TEST(scdp->scd_hmeregion_map, rid)) {
14250                         sfmmu_leave_scd(sfmmup, r_type);
14251                         ASSERT(sfmmu_hat_lock_held(sfmmup));
14252                 }
14253                 sfmmu_invalidate_ctx(sfmmup);
14254 
14255                 i = TTE8K;
14256                 while (i < mmu_page_sizes) {
14257                         if (rgnp->rgn_ttecnt[i] != 0) {
14258                                 sfmmu_unload_tsb_range(sfmmup, r_saddr,
14259                                     r_eaddr, i);
14260                                 if (i < TTE4M) {
14261                                         i = TTE4M;
14262                                         continue;
14263                                 } else {
14264                                         break;
14265                                 }
14266                         }
14267                         i++;
14268                 }
14269                 /* Remove the preallocated 1/4 8k ttecnt for 4M regions. */
14270                 if (r_pgszc >= TTE4M) {
14271                         rttecnt = r_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14272                         ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
14273                             rttecnt);
14274                         sfmmup->sfmmu_tsb0_4minflcnt -= rttecnt;
14275                 }
14276 
14277                 /* update shme rgns ttecnt in sfmmu_ttecnt */
14278                 rttecnt = r_size >> TTE_PAGE_SHIFT(r_pgszc);
14279                 ASSERT(sfmmup->sfmmu_ttecnt[r_pgszc] >= rttecnt);
14280                 atomic_add_long(&sfmmup->sfmmu_ttecnt[r_pgszc], -rttecnt);
14281 
14282                 sfmmu_hat_exit(hatlockp);
14283                 if (scdp != NULL && sfmmup->sfmmu_scdp == NULL) {
14284                         /* sfmmup left the scd, grow private tsb */
14285                         sfmmu_check_page_sizes(sfmmup, 1);
14286                 } else {
14287                         sfmmu_check_page_sizes(sfmmup, 0);
14288                 }
14289         }
14290 
14291         if (r_type == SFMMU_REGION_HME) {
14292                 sfmmu_unlink_from_hmeregion(sfmmup, rgnp);
14293         }
14294 
14295         r_obj = rgnp->rgn_obj;
14296         if (atomic_add_32_nv((volatile uint_t *)&rgnp->rgn_refcnt, -1)) {
14297                 return;
14298         }
14299 
14300         /*
14301          * looks like nobody uses this region anymore. Free it.
14302          */
14303         rhash = RGN_HASH_FUNCTION(r_obj);
14304         mutex_enter(&srdp->srd_mutex);
14305         for (prev_rgnpp = &srdp->srd_rgnhash[rhash];
14306             (cur_rgnp = *prev_rgnpp) != NULL;
14307             prev_rgnpp = &cur_rgnp->rgn_hash) {
14308                 if (cur_rgnp == rgnp && cur_rgnp->rgn_refcnt == 0) {
14309                         break;
14310                 }
14311         }
14312 
14313         if (cur_rgnp == NULL) {
14314                 mutex_exit(&srdp->srd_mutex);
14315                 return;
14316         }
14317 
14318         ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == r_type);
14319         *prev_rgnpp = rgnp->rgn_hash;
14320         if (r_type == SFMMU_REGION_ISM) {
14321                 rgnp->rgn_flags |= SFMMU_REGION_FREE;
14322                 ASSERT(rid < srdp->srd_next_ismrid);
14323                 rgnp->rgn_next = srdp->srd_ismrgnfree;
14324                 srdp->srd_ismrgnfree = rgnp;
14325                 ASSERT(srdp->srd_ismbusyrgns > 0);
14326                 srdp->srd_ismbusyrgns--;
14327                 mutex_exit(&srdp->srd_mutex);
14328                 return;
14329         }
14330         mutex_exit(&srdp->srd_mutex);
14331 
14332         /*
14333          * Destroy region's hmeblks.
14334          */
14335         sfmmu_unload_hmeregion(srdp, rgnp);
14336 
14337         rgnp->rgn_hmeflags = 0;
14338 
14339         ASSERT(rgnp->rgn_sfmmu_head == NULL);
14340         ASSERT(rgnp->rgn_id == rid);
14341         for (i = 0; i < MMU_PAGE_SIZES; i++) {
14342                 rgnp->rgn_ttecnt[i] = 0;
14343         }
14344         rgnp->rgn_flags |= SFMMU_REGION_FREE;
14345         mutex_enter(&srdp->srd_mutex);
14346         ASSERT(rid < srdp->srd_next_hmerid);
14347         rgnp->rgn_next = srdp->srd_hmergnfree;
14348         srdp->srd_hmergnfree = rgnp;
14349         ASSERT(srdp->srd_hmebusyrgns > 0);
14350         srdp->srd_hmebusyrgns--;
14351         mutex_exit(&srdp->srd_mutex);
14352 }
14353 
14354 /*
14355  * For now only called for hmeblk regions and not for ISM regions.
14356  */
14357 void
14358 hat_dup_region(struct hat *sfmmup, hat_region_cookie_t rcookie)
14359 {
14360         sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14361         uint_t rid = (uint_t)((uint64_t)rcookie);
14362         sf_region_t *rgnp;
14363         sf_rgn_link_t *rlink;
14364         sf_rgn_link_t *hrlink;
14365         ulong_t rttecnt;
14366 
14367         ASSERT(sfmmup != ksfmmup);
14368         ASSERT(srdp != NULL);
14369         ASSERT(srdp->srd_refcnt > 0);
14370 
14371         ASSERT(rid < srdp->srd_next_hmerid);
14372         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14373         ASSERT(rid < SFMMU_MAX_HME_REGIONS);
14374 
14375         rgnp = srdp->srd_hmergnp[rid];
14376         ASSERT(rgnp->rgn_refcnt > 0);
14377         ASSERT(rgnp->rgn_id == rid);
14378         ASSERT((rgnp->rgn_flags & SFMMU_REGION_TYPE_MASK) == SFMMU_REGION_HME);
14379         ASSERT(!(rgnp->rgn_flags & SFMMU_REGION_FREE));
14380 
14381         atomic_add_32((volatile uint_t *)&rgnp->rgn_refcnt, 1);
14382 
14383         /* LINTED: constant in conditional context */
14384         SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 0);
14385         ASSERT(rlink != NULL);
14386         mutex_enter(&rgnp->rgn_mutex);
14387         ASSERT(rgnp->rgn_sfmmu_head != NULL);
14388         /* LINTED: constant in conditional context */
14389         SFMMU_HMERID2RLINKP(rgnp->rgn_sfmmu_head, rid, hrlink, 0, 0);
14390         ASSERT(hrlink != NULL);
14391         ASSERT(hrlink->prev == NULL);
14392         rlink->next = rgnp->rgn_sfmmu_head;
14393         rlink->prev = NULL;
14394         hrlink->prev = sfmmup;
14395         /*
14396          * make sure rlink's next field is correct
14397          * before making this link visible.
14398          */
14399         membar_stst();
14400         rgnp->rgn_sfmmu_head = sfmmup;
14401         mutex_exit(&rgnp->rgn_mutex);
14402 
14403         /* update sfmmu_ttecnt with the shme rgn ttecnt */
14404         rttecnt = rgnp->rgn_size >> TTE_PAGE_SHIFT(rgnp->rgn_pgszc);
14405         atomic_add_long(&sfmmup->sfmmu_ttecnt[rgnp->rgn_pgszc], rttecnt);
14406         /* update tsb0 inflation count */
14407         if (rgnp->rgn_pgszc >= TTE4M) {
14408                 sfmmup->sfmmu_tsb0_4minflcnt +=
14409                     rgnp->rgn_size >> (TTE_PAGE_SHIFT(TTE8K) + 2);
14410         }
14411         /*
14412          * Update regionid bitmask without hat lock since no other thread
14413          * can update this region bitmask right now.
14414          */
14415         SF_RGNMAP_ADD(sfmmup->sfmmu_hmeregion_map, rid);
14416 }
14417 
14418 /* ARGSUSED */
14419 static int
14420 sfmmu_rgncache_constructor(void *buf, void *cdrarg, int kmflags)
14421 {
14422         sf_region_t *rgnp = (sf_region_t *)buf;
14423         bzero(buf, sizeof (*rgnp));
14424 
14425         mutex_init(&rgnp->rgn_mutex, NULL, MUTEX_DEFAULT, NULL);
14426 
14427         return (0);
14428 }
14429 
14430 /* ARGSUSED */
14431 static void
14432 sfmmu_rgncache_destructor(void *buf, void *cdrarg)
14433 {
14434         sf_region_t *rgnp = (sf_region_t *)buf;
14435         mutex_destroy(&rgnp->rgn_mutex);
14436 }
14437 
14438 static int
14439 sfrgnmap_isnull(sf_region_map_t *map)
14440 {
14441         int i;
14442 
14443         for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14444                 if (map->bitmap[i] != 0) {
14445                         return (0);
14446                 }
14447         }
14448         return (1);
14449 }
14450 
14451 static int
14452 sfhmergnmap_isnull(sf_hmeregion_map_t *map)
14453 {
14454         int i;
14455 
14456         for (i = 0; i < SFMMU_HMERGNMAP_WORDS; i++) {
14457                 if (map->bitmap[i] != 0) {
14458                         return (0);
14459                 }
14460         }
14461         return (1);
14462 }
14463 
14464 #ifdef DEBUG
14465 static void
14466 check_scd_sfmmu_list(sfmmu_t **headp, sfmmu_t *sfmmup, int onlist)
14467 {
14468         sfmmu_t *sp;
14469         sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14470 
14471         for (sp = *headp; sp != NULL; sp = sp->sfmmu_scd_link.next) {
14472                 ASSERT(srdp == sp->sfmmu_srdp);
14473                 if (sp == sfmmup) {
14474                         if (onlist) {
14475                                 return;
14476                         } else {
14477                                 panic("shctx: sfmmu 0x%p found on scd"
14478                                     "list 0x%p", (void *)sfmmup,
14479                                     (void *)*headp);
14480                         }
14481                 }
14482         }
14483         if (onlist) {
14484                 panic("shctx: sfmmu 0x%p not found on scd list 0x%p",
14485                     (void *)sfmmup, (void *)*headp);
14486         } else {
14487                 return;
14488         }
14489 }
14490 #else /* DEBUG */
14491 #define check_scd_sfmmu_list(headp, sfmmup, onlist)
14492 #endif /* DEBUG */
14493 
14494 /*
14495  * Removes an sfmmu from the SCD sfmmu list.
14496  */
14497 static void
14498 sfmmu_from_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14499 {
14500         ASSERT(sfmmup->sfmmu_srdp != NULL);
14501         check_scd_sfmmu_list(headp, sfmmup, 1);
14502         if (sfmmup->sfmmu_scd_link.prev != NULL) {
14503                 ASSERT(*headp != sfmmup);
14504                 sfmmup->sfmmu_scd_link.prev->sfmmu_scd_link.next =
14505                     sfmmup->sfmmu_scd_link.next;
14506         } else {
14507                 ASSERT(*headp == sfmmup);
14508                 *headp = sfmmup->sfmmu_scd_link.next;
14509         }
14510         if (sfmmup->sfmmu_scd_link.next != NULL) {
14511                 sfmmup->sfmmu_scd_link.next->sfmmu_scd_link.prev =
14512                     sfmmup->sfmmu_scd_link.prev;
14513         }
14514 }
14515 
14516 
14517 /*
14518  * Adds an sfmmu to the start of the queue.
14519  */
14520 static void
14521 sfmmu_to_scd_list(sfmmu_t **headp, sfmmu_t *sfmmup)
14522 {
14523         check_scd_sfmmu_list(headp, sfmmup, 0);
14524         sfmmup->sfmmu_scd_link.prev = NULL;
14525         sfmmup->sfmmu_scd_link.next = *headp;
14526         if (*headp != NULL)
14527                 (*headp)->sfmmu_scd_link.prev = sfmmup;
14528         *headp = sfmmup;
14529 }
14530 
14531 /*
14532  * Remove an scd from the start of the queue.
14533  */
14534 static void
14535 sfmmu_remove_scd(sf_scd_t **headp, sf_scd_t *scdp)
14536 {
14537         if (scdp->scd_prev != NULL) {
14538                 ASSERT(*headp != scdp);
14539                 scdp->scd_prev->scd_next = scdp->scd_next;
14540         } else {
14541                 ASSERT(*headp == scdp);
14542                 *headp = scdp->scd_next;
14543         }
14544 
14545         if (scdp->scd_next != NULL) {
14546                 scdp->scd_next->scd_prev = scdp->scd_prev;
14547         }
14548 }
14549 
14550 /*
14551  * Add an scd to the start of the queue.
14552  */
14553 static void
14554 sfmmu_add_scd(sf_scd_t **headp, sf_scd_t *scdp)
14555 {
14556         scdp->scd_prev = NULL;
14557         scdp->scd_next = *headp;
14558         if (*headp != NULL) {
14559                 (*headp)->scd_prev = scdp;
14560         }
14561         *headp = scdp;
14562 }
14563 
14564 static int
14565 sfmmu_alloc_scd_tsbs(sf_srd_t *srdp, sf_scd_t *scdp)
14566 {
14567         uint_t rid;
14568         uint_t i;
14569         uint_t j;
14570         ulong_t w;
14571         sf_region_t *rgnp;
14572         ulong_t tte8k_cnt = 0;
14573         ulong_t tte4m_cnt = 0;
14574         uint_t tsb_szc;
14575         sfmmu_t *scsfmmup = scdp->scd_sfmmup;
14576         sfmmu_t *ism_hatid;
14577         struct tsb_info *newtsb;
14578         int szc;
14579 
14580         ASSERT(srdp != NULL);
14581 
14582         for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14583                 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14584                         continue;
14585                 }
14586                 j = 0;
14587                 while (w) {
14588                         if (!(w & 0x1)) {
14589                                 j++;
14590                                 w >>= 1;
14591                                 continue;
14592                         }
14593                         rid = (i << BT_ULSHIFT) | j;
14594                         j++;
14595                         w >>= 1;
14596 
14597                         if (rid < SFMMU_MAX_HME_REGIONS) {
14598                                 rgnp = srdp->srd_hmergnp[rid];
14599                                 ASSERT(rgnp->rgn_id == rid);
14600                                 ASSERT(rgnp->rgn_refcnt > 0);
14601 
14602                                 if (rgnp->rgn_pgszc < TTE4M) {
14603                                         tte8k_cnt += rgnp->rgn_size >>
14604                                             TTE_PAGE_SHIFT(TTE8K);
14605                                 } else {
14606                                         ASSERT(rgnp->rgn_pgszc >= TTE4M);
14607                                         tte4m_cnt += rgnp->rgn_size >>
14608                                             TTE_PAGE_SHIFT(TTE4M);
14609                                         /*
14610                                          * Inflate SCD tsb0 by preallocating
14611                                          * 1/4 8k ttecnt for 4M regions to
14612                                          * allow for lgpg alloc failure.
14613                                          */
14614                                         tte8k_cnt += rgnp->rgn_size >>
14615                                             (TTE_PAGE_SHIFT(TTE8K) + 2);
14616                                 }
14617                         } else {
14618                                 rid -= SFMMU_MAX_HME_REGIONS;
14619                                 rgnp = srdp->srd_ismrgnp[rid];
14620                                 ASSERT(rgnp->rgn_id == rid);
14621                                 ASSERT(rgnp->rgn_refcnt > 0);
14622 
14623                                 ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14624                                 ASSERT(ism_hatid->sfmmu_ismhat);
14625 
14626                                 for (szc = 0; szc < TTE4M; szc++) {
14627                                         tte8k_cnt +=
14628                                             ism_hatid->sfmmu_ttecnt[szc] <<
14629                                             TTE_BSZS_SHIFT(szc);
14630                                 }
14631 
14632                                 ASSERT(rgnp->rgn_pgszc >= TTE4M);
14633                                 if (rgnp->rgn_pgszc >= TTE4M) {
14634                                         tte4m_cnt += rgnp->rgn_size >>
14635                                             TTE_PAGE_SHIFT(TTE4M);
14636                                 }
14637                         }
14638                 }
14639         }
14640 
14641         tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
14642 
14643         /* Allocate both the SCD TSBs here. */
14644         if (sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14645             tsb_szc, TSB8K|TSB64K|TSB512K, TSB_ALLOC, scsfmmup) &&
14646             (tsb_szc <= TSB_4M_SZCODE ||
14647             sfmmu_tsbinfo_alloc(&scsfmmup->sfmmu_tsb,
14648             TSB_4M_SZCODE, TSB8K|TSB64K|TSB512K,
14649             TSB_ALLOC, scsfmmup))) {
14650 
14651                 SFMMU_STAT(sf_scd_1sttsb_allocfail);
14652                 return (TSB_ALLOCFAIL);
14653         } else {
14654                 scsfmmup->sfmmu_tsb->tsb_flags |= TSB_SHAREDCTX;
14655 
14656                 if (tte4m_cnt) {
14657                         tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
14658                         if (sfmmu_tsbinfo_alloc(&newtsb, tsb_szc,
14659                             TSB4M|TSB32M|TSB256M, TSB_ALLOC, scsfmmup) &&
14660                             (tsb_szc <= TSB_4M_SZCODE ||
14661                             sfmmu_tsbinfo_alloc(&newtsb, TSB_4M_SZCODE,
14662                             TSB4M|TSB32M|TSB256M,
14663                             TSB_ALLOC, scsfmmup))) {
14664                                 /*
14665                                  * If we fail to allocate the 2nd shared tsb,
14666                                  * just free the 1st tsb, return failure.
14667                                  */
14668                                 sfmmu_tsbinfo_free(scsfmmup->sfmmu_tsb);
14669                                 SFMMU_STAT(sf_scd_2ndtsb_allocfail);
14670                                 return (TSB_ALLOCFAIL);
14671                         } else {
14672                                 ASSERT(scsfmmup->sfmmu_tsb->tsb_next == NULL);
14673                                 newtsb->tsb_flags |= TSB_SHAREDCTX;
14674                                 scsfmmup->sfmmu_tsb->tsb_next = newtsb;
14675                                 SFMMU_STAT(sf_scd_2ndtsb_alloc);
14676                         }
14677                 }
14678                 SFMMU_STAT(sf_scd_1sttsb_alloc);
14679         }
14680         return (TSB_SUCCESS);
14681 }
14682 
14683 static void
14684 sfmmu_free_scd_tsbs(sfmmu_t *scd_sfmmu)
14685 {
14686         while (scd_sfmmu->sfmmu_tsb != NULL) {
14687                 struct tsb_info *next = scd_sfmmu->sfmmu_tsb->tsb_next;
14688                 sfmmu_tsbinfo_free(scd_sfmmu->sfmmu_tsb);
14689                 scd_sfmmu->sfmmu_tsb = next;
14690         }
14691 }
14692 
14693 /*
14694  * Link the sfmmu onto the hme region list.
14695  */
14696 void
14697 sfmmu_link_to_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14698 {
14699         uint_t rid;
14700         sf_rgn_link_t *rlink;
14701         sfmmu_t *head;
14702         sf_rgn_link_t *hrlink;
14703 
14704         rid = rgnp->rgn_id;
14705         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14706 
14707         /* LINTED: constant in conditional context */
14708         SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 1, 1);
14709         ASSERT(rlink != NULL);
14710         mutex_enter(&rgnp->rgn_mutex);
14711         if ((head = rgnp->rgn_sfmmu_head) == NULL) {
14712                 rlink->next = NULL;
14713                 rlink->prev = NULL;
14714                 /*
14715                  * make sure rlink's next field is NULL
14716                  * before making this link visible.
14717                  */
14718                 membar_stst();
14719                 rgnp->rgn_sfmmu_head = sfmmup;
14720         } else {
14721                 /* LINTED: constant in conditional context */
14722                 SFMMU_HMERID2RLINKP(head, rid, hrlink, 0, 0);
14723                 ASSERT(hrlink != NULL);
14724                 ASSERT(hrlink->prev == NULL);
14725                 rlink->next = head;
14726                 rlink->prev = NULL;
14727                 hrlink->prev = sfmmup;
14728                 /*
14729                  * make sure rlink's next field is correct
14730                  * before making this link visible.
14731                  */
14732                 membar_stst();
14733                 rgnp->rgn_sfmmu_head = sfmmup;
14734         }
14735         mutex_exit(&rgnp->rgn_mutex);
14736 }
14737 
14738 /*
14739  * Unlink the sfmmu from the hme region list.
14740  */
14741 void
14742 sfmmu_unlink_from_hmeregion(sfmmu_t *sfmmup, sf_region_t *rgnp)
14743 {
14744         uint_t rid;
14745         sf_rgn_link_t *rlink;
14746 
14747         rid = rgnp->rgn_id;
14748         ASSERT(SFMMU_IS_SHMERID_VALID(rid));
14749 
14750         /* LINTED: constant in conditional context */
14751         SFMMU_HMERID2RLINKP(sfmmup, rid, rlink, 0, 0);
14752         ASSERT(rlink != NULL);
14753         mutex_enter(&rgnp->rgn_mutex);
14754         if (rgnp->rgn_sfmmu_head == sfmmup) {
14755                 sfmmu_t *next = rlink->next;
14756                 rgnp->rgn_sfmmu_head = next;
14757                 /*
14758                  * if we are stopped by xc_attention() after this
14759                  * point the forward link walking in
14760                  * sfmmu_rgntlb_demap() will work correctly since the
14761                  * head correctly points to the next element.
14762                  */
14763                 membar_stst();
14764                 rlink->next = NULL;
14765                 ASSERT(rlink->prev == NULL);
14766                 if (next != NULL) {
14767                         sf_rgn_link_t *nrlink;
14768                         /* LINTED: constant in conditional context */
14769                         SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14770                         ASSERT(nrlink != NULL);
14771                         ASSERT(nrlink->prev == sfmmup);
14772                         nrlink->prev = NULL;
14773                 }
14774         } else {
14775                 sfmmu_t *next = rlink->next;
14776                 sfmmu_t *prev = rlink->prev;
14777                 sf_rgn_link_t *prlink;
14778 
14779                 ASSERT(prev != NULL);
14780                 /* LINTED: constant in conditional context */
14781                 SFMMU_HMERID2RLINKP(prev, rid, prlink, 0, 0);
14782                 ASSERT(prlink != NULL);
14783                 ASSERT(prlink->next == sfmmup);
14784                 prlink->next = next;
14785                 /*
14786                  * if we are stopped by xc_attention()
14787                  * after this point the forward link walking
14788                  * will work correctly since the prev element
14789                  * correctly points to the next element.
14790                  */
14791                 membar_stst();
14792                 rlink->next = NULL;
14793                 rlink->prev = NULL;
14794                 if (next != NULL) {
14795                         sf_rgn_link_t *nrlink;
14796                         /* LINTED: constant in conditional context */
14797                         SFMMU_HMERID2RLINKP(next, rid, nrlink, 0, 0);
14798                         ASSERT(nrlink != NULL);
14799                         ASSERT(nrlink->prev == sfmmup);
14800                         nrlink->prev = prev;
14801                 }
14802         }
14803         mutex_exit(&rgnp->rgn_mutex);
14804 }
14805 
14806 /*
14807  * Link scd sfmmu onto ism or hme region list for each region in the
14808  * scd region map.
14809  */
14810 void
14811 sfmmu_link_scd_to_regions(sf_srd_t *srdp, sf_scd_t *scdp)
14812 {
14813         uint_t rid;
14814         uint_t i;
14815         uint_t j;
14816         ulong_t w;
14817         sf_region_t *rgnp;
14818         sfmmu_t *scsfmmup;
14819 
14820         scsfmmup = scdp->scd_sfmmup;
14821         ASSERT(scsfmmup->sfmmu_scdhat);
14822         for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14823                 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14824                         continue;
14825                 }
14826                 j = 0;
14827                 while (w) {
14828                         if (!(w & 0x1)) {
14829                                 j++;
14830                                 w >>= 1;
14831                                 continue;
14832                         }
14833                         rid = (i << BT_ULSHIFT) | j;
14834                         j++;
14835                         w >>= 1;
14836 
14837                         if (rid < SFMMU_MAX_HME_REGIONS) {
14838                                 rgnp = srdp->srd_hmergnp[rid];
14839                                 ASSERT(rgnp->rgn_id == rid);
14840                                 ASSERT(rgnp->rgn_refcnt > 0);
14841                                 sfmmu_link_to_hmeregion(scsfmmup, rgnp);
14842                         } else {
14843                                 sfmmu_t *ism_hatid = NULL;
14844                                 ism_ment_t *ism_ment;
14845                                 rid -= SFMMU_MAX_HME_REGIONS;
14846                                 rgnp = srdp->srd_ismrgnp[rid];
14847                                 ASSERT(rgnp->rgn_id == rid);
14848                                 ASSERT(rgnp->rgn_refcnt > 0);
14849 
14850                                 ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14851                                 ASSERT(ism_hatid->sfmmu_ismhat);
14852                                 ism_ment = &scdp->scd_ism_links[rid];
14853                                 ism_ment->iment_hat = scsfmmup;
14854                                 ism_ment->iment_base_va = rgnp->rgn_saddr;
14855                                 mutex_enter(&ism_mlist_lock);
14856                                 iment_add(ism_ment, ism_hatid);
14857                                 mutex_exit(&ism_mlist_lock);
14858 
14859                         }
14860                 }
14861         }
14862 }
14863 /*
14864  * Unlink scd sfmmu from ism or hme region list for each region in the
14865  * scd region map.
14866  */
14867 void
14868 sfmmu_unlink_scd_from_regions(sf_srd_t *srdp, sf_scd_t *scdp)
14869 {
14870         uint_t rid;
14871         uint_t i;
14872         uint_t j;
14873         ulong_t w;
14874         sf_region_t *rgnp;
14875         sfmmu_t *scsfmmup;
14876 
14877         scsfmmup = scdp->scd_sfmmup;
14878         for (i = 0; i < SFMMU_RGNMAP_WORDS; i++) {
14879                 if ((w = scdp->scd_region_map.bitmap[i]) == 0) {
14880                         continue;
14881                 }
14882                 j = 0;
14883                 while (w) {
14884                         if (!(w & 0x1)) {
14885                                 j++;
14886                                 w >>= 1;
14887                                 continue;
14888                         }
14889                         rid = (i << BT_ULSHIFT) | j;
14890                         j++;
14891                         w >>= 1;
14892 
14893                         if (rid < SFMMU_MAX_HME_REGIONS) {
14894                                 rgnp = srdp->srd_hmergnp[rid];
14895                                 ASSERT(rgnp->rgn_id == rid);
14896                                 ASSERT(rgnp->rgn_refcnt > 0);
14897                                 sfmmu_unlink_from_hmeregion(scsfmmup,
14898                                     rgnp);
14899 
14900                         } else {
14901                                 sfmmu_t *ism_hatid = NULL;
14902                                 ism_ment_t *ism_ment;
14903                                 rid -= SFMMU_MAX_HME_REGIONS;
14904                                 rgnp = srdp->srd_ismrgnp[rid];
14905                                 ASSERT(rgnp->rgn_id == rid);
14906                                 ASSERT(rgnp->rgn_refcnt > 0);
14907 
14908                                 ism_hatid = (sfmmu_t *)rgnp->rgn_obj;
14909                                 ASSERT(ism_hatid->sfmmu_ismhat);
14910                                 ism_ment = &scdp->scd_ism_links[rid];
14911                                 ASSERT(ism_ment->iment_hat == scdp->scd_sfmmup);
14912                                 ASSERT(ism_ment->iment_base_va ==
14913                                     rgnp->rgn_saddr);
14914                                 mutex_enter(&ism_mlist_lock);
14915                                 iment_sub(ism_ment, ism_hatid);
14916                                 mutex_exit(&ism_mlist_lock);
14917 
14918                         }
14919                 }
14920         }
14921 }
14922 /*
14923  * Allocates and initialises a new SCD structure, this is called with
14924  * the srd_scd_mutex held and returns with the reference count
14925  * initialised to 1.
14926  */
14927 static sf_scd_t *
14928 sfmmu_alloc_scd(sf_srd_t *srdp, sf_region_map_t *new_map)
14929 {
14930         sf_scd_t *new_scdp;
14931         sfmmu_t *scsfmmup;
14932         int i;
14933 
14934         ASSERT(MUTEX_HELD(&srdp->srd_scd_mutex));
14935         new_scdp = kmem_cache_alloc(scd_cache, KM_SLEEP);
14936 
14937         scsfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
14938         new_scdp->scd_sfmmup = scsfmmup;
14939         scsfmmup->sfmmu_srdp = srdp;
14940         scsfmmup->sfmmu_scdp = new_scdp;
14941         scsfmmup->sfmmu_tsb0_4minflcnt = 0;
14942         scsfmmup->sfmmu_scdhat = 1;
14943         CPUSET_ALL(scsfmmup->sfmmu_cpusran);
14944         bzero(scsfmmup->sfmmu_hmeregion_links, SFMMU_L1_HMERLINKS_SIZE);
14945 
14946         ASSERT(max_mmu_ctxdoms > 0);
14947         for (i = 0; i < max_mmu_ctxdoms; i++) {
14948                 scsfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
14949                 scsfmmup->sfmmu_ctxs[i].gnum = 0;
14950         }
14951 
14952         for (i = 0; i < MMU_PAGE_SIZES; i++) {
14953                 new_scdp->scd_rttecnt[i] = 0;
14954         }
14955 
14956         new_scdp->scd_region_map = *new_map;
14957         new_scdp->scd_refcnt = 1;
14958         if (sfmmu_alloc_scd_tsbs(srdp, new_scdp) != TSB_SUCCESS) {
14959                 kmem_cache_free(scd_cache, new_scdp);
14960                 kmem_cache_free(sfmmuid_cache, scsfmmup);
14961                 return (NULL);
14962         }
14963         if (&mmu_init_scd) {
14964                 mmu_init_scd(new_scdp);
14965         }
14966         return (new_scdp);
14967 }
14968 
14969 /*
14970  * The first phase of a process joining an SCD. The hat structure is
14971  * linked to the SCD queue and then the HAT_JOIN_SCD sfmmu flag is set
14972  * and a cross-call with context invalidation is used to cause the
14973  * remaining work to be carried out in the sfmmu_tsbmiss_exception()
14974  * routine.
14975  */
14976 static void
14977 sfmmu_join_scd(sf_scd_t *scdp, sfmmu_t *sfmmup)
14978 {
14979         hatlock_t *hatlockp;
14980         sf_srd_t *srdp = sfmmup->sfmmu_srdp;
14981         int i;
14982         sf_scd_t *old_scdp;
14983 
14984         ASSERT(srdp != NULL);
14985         ASSERT(scdp != NULL);
14986         ASSERT(scdp->scd_refcnt > 0);
14987         ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
14988 
14989         if ((old_scdp = sfmmup->sfmmu_scdp) != NULL) {
14990                 ASSERT(old_scdp != scdp);
14991 
14992                 mutex_enter(&old_scdp->scd_mutex);
14993                 sfmmu_from_scd_list(&old_scdp->scd_sf_list, sfmmup);
14994                 mutex_exit(&old_scdp->scd_mutex);
14995                 /*
14996                  * sfmmup leaves the old scd. Update sfmmu_ttecnt to
14997                  * include the shme rgn ttecnt for rgns that
14998                  * were in the old SCD
14999                  */
15000                 for (i = 0; i < mmu_page_sizes; i++) {
15001                         ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15002                             old_scdp->scd_rttecnt[i]);
15003                         atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15004                             sfmmup->sfmmu_scdrttecnt[i]);
15005                 }
15006         }
15007 
15008         /*
15009          * Move sfmmu to the scd lists.
15010          */
15011         mutex_enter(&scdp->scd_mutex);
15012         sfmmu_to_scd_list(&scdp->scd_sf_list, sfmmup);
15013         mutex_exit(&scdp->scd_mutex);
15014         SF_SCD_INCR_REF(scdp);
15015 
15016         hatlockp = sfmmu_hat_enter(sfmmup);
15017         /*
15018          * For a multi-thread process, we must stop
15019          * all the other threads before joining the scd.
15020          */
15021 
15022         SFMMU_FLAGS_SET(sfmmup, HAT_JOIN_SCD);
15023 
15024         sfmmu_invalidate_ctx(sfmmup);
15025         sfmmup->sfmmu_scdp = scdp;
15026 
15027         /*
15028          * Copy scd_rttecnt into sfmmup's sfmmu_scdrttecnt, and update
15029          * sfmmu_ttecnt to not include the rgn ttecnt just joined in SCD.
15030          */
15031         for (i = 0; i < mmu_page_sizes; i++) {
15032                 sfmmup->sfmmu_scdrttecnt[i] = scdp->scd_rttecnt[i];
15033                 ASSERT(sfmmup->sfmmu_ttecnt[i] >= scdp->scd_rttecnt[i]);
15034                 atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15035                     -sfmmup->sfmmu_scdrttecnt[i]);
15036         }
15037         /* update tsb0 inflation count */
15038         if (old_scdp != NULL) {
15039                 sfmmup->sfmmu_tsb0_4minflcnt +=
15040                     old_scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15041         }
15042         ASSERT(sfmmup->sfmmu_tsb0_4minflcnt >=
15043             scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt);
15044         sfmmup->sfmmu_tsb0_4minflcnt -= scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15045 
15046         sfmmu_hat_exit(hatlockp);
15047 
15048         if (old_scdp != NULL) {
15049                 SF_SCD_DECR_REF(srdp, old_scdp);
15050         }
15051 
15052 }
15053 
15054 /*
15055  * This routine is called by a process to become part of an SCD. It is called
15056  * from sfmmu_tsbmiss_exception() once most of the initial work has been
15057  * done by sfmmu_join_scd(). This routine must not drop the hat lock.
15058  */
15059 static void
15060 sfmmu_finish_join_scd(sfmmu_t *sfmmup)
15061 {
15062         struct tsb_info *tsbinfop;
15063 
15064         ASSERT(sfmmu_hat_lock_held(sfmmup));
15065         ASSERT(sfmmup->sfmmu_scdp != NULL);
15066         ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD));
15067         ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15068         ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ALLCTX_INVALID));
15069 
15070         for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
15071             tsbinfop = tsbinfop->tsb_next) {
15072                 if (tsbinfop->tsb_flags & TSB_SWAPPED) {
15073                         continue;
15074                 }
15075                 ASSERT(!(tsbinfop->tsb_flags & TSB_RELOC_FLAG));
15076 
15077                 sfmmu_inv_tsb(tsbinfop->tsb_va,
15078                     TSB_BYTES(tsbinfop->tsb_szc));
15079         }
15080 
15081         /* Set HAT_CTX1_FLAG for all SCD ISMs */
15082         sfmmu_ism_hatflags(sfmmup, 1);
15083 
15084         SFMMU_STAT(sf_join_scd);
15085 }
15086 
15087 /*
15088  * This routine is called in order to check if there is an SCD which matches
15089  * the process's region map if not then a new SCD may be created.
15090  */
15091 static void
15092 sfmmu_find_scd(sfmmu_t *sfmmup)
15093 {
15094         sf_srd_t *srdp = sfmmup->sfmmu_srdp;
15095         sf_scd_t *scdp, *new_scdp;
15096         int ret;
15097 
15098         ASSERT(srdp != NULL);
15099         ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15100 
15101         mutex_enter(&srdp->srd_scd_mutex);
15102         for (scdp = srdp->srd_scdp; scdp != NULL;
15103             scdp = scdp->scd_next) {
15104                 SF_RGNMAP_EQUAL(&scdp->scd_region_map,
15105                     &sfmmup->sfmmu_region_map, ret);
15106                 if (ret == 1) {
15107                         SF_SCD_INCR_REF(scdp);
15108                         mutex_exit(&srdp->srd_scd_mutex);
15109                         sfmmu_join_scd(scdp, sfmmup);
15110                         ASSERT(scdp->scd_refcnt >= 2);
15111                         atomic_add_32((volatile uint32_t *)
15112                             &scdp->scd_refcnt, -1);
15113                         return;
15114                 } else {
15115                         /*
15116                          * If the sfmmu region map is a subset of the scd
15117                          * region map, then the assumption is that this process
15118                          * will continue attaching to ISM segments until the
15119                          * region maps are equal.
15120                          */
15121                         SF_RGNMAP_IS_SUBSET(&scdp->scd_region_map,
15122                             &sfmmup->sfmmu_region_map, ret);
15123                         if (ret == 1) {
15124                                 mutex_exit(&srdp->srd_scd_mutex);
15125                                 return;
15126                         }
15127                 }
15128         }
15129 
15130         ASSERT(scdp == NULL);
15131         /*
15132          * No matching SCD has been found, create a new one.
15133          */
15134         if ((new_scdp = sfmmu_alloc_scd(srdp, &sfmmup->sfmmu_region_map)) ==
15135             NULL) {
15136                 mutex_exit(&srdp->srd_scd_mutex);
15137                 return;
15138         }
15139 
15140         /*
15141          * sfmmu_alloc_scd() returns with a ref count of 1 on the scd.
15142          */
15143 
15144         /* Set scd_rttecnt for shme rgns in SCD */
15145         sfmmu_set_scd_rttecnt(srdp, new_scdp);
15146 
15147         /*
15148          * Link scd onto srd_scdp list and scd sfmmu onto region/iment lists.
15149          */
15150         sfmmu_link_scd_to_regions(srdp, new_scdp);
15151         sfmmu_add_scd(&srdp->srd_scdp, new_scdp);
15152         SFMMU_STAT_ADD(sf_create_scd, 1);
15153 
15154         mutex_exit(&srdp->srd_scd_mutex);
15155         sfmmu_join_scd(new_scdp, sfmmup);
15156         ASSERT(new_scdp->scd_refcnt >= 2);
15157         atomic_add_32((volatile uint32_t *)&new_scdp->scd_refcnt, -1);
15158 }
15159 
15160 /*
15161  * This routine is called by a process to remove itself from an SCD. It is
15162  * either called when the processes has detached from a segment or from
15163  * hat_free_start() as a result of calling exit.
15164  */
15165 static void
15166 sfmmu_leave_scd(sfmmu_t *sfmmup, uchar_t r_type)
15167 {
15168         sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15169         sf_srd_t *srdp =  sfmmup->sfmmu_srdp;
15170         hatlock_t *hatlockp = TSB_HASH(sfmmup);
15171         int i;
15172 
15173         ASSERT(scdp != NULL);
15174         ASSERT(srdp != NULL);
15175 
15176         if (sfmmup->sfmmu_free) {
15177                 /*
15178                  * If the process is part of an SCD the sfmmu is unlinked
15179                  * from scd_sf_list.
15180                  */
15181                 mutex_enter(&scdp->scd_mutex);
15182                 sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15183                 mutex_exit(&scdp->scd_mutex);
15184                 /*
15185                  * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15186                  * are about to leave the SCD
15187                  */
15188                 for (i = 0; i < mmu_page_sizes; i++) {
15189                         ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15190                             scdp->scd_rttecnt[i]);
15191                         atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15192                             sfmmup->sfmmu_scdrttecnt[i]);
15193                         sfmmup->sfmmu_scdrttecnt[i] = 0;
15194                 }
15195                 sfmmup->sfmmu_scdp = NULL;
15196 
15197                 SF_SCD_DECR_REF(srdp, scdp);
15198                 return;
15199         }
15200 
15201         ASSERT(r_type != SFMMU_REGION_ISM ||
15202             SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15203         ASSERT(scdp->scd_refcnt);
15204         ASSERT(!sfmmup->sfmmu_free);
15205         ASSERT(sfmmu_hat_lock_held(sfmmup));
15206         ASSERT(AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
15207 
15208         /*
15209          * Wait for ISM maps to be updated.
15210          */
15211         if (r_type != SFMMU_REGION_ISM) {
15212                 while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY) &&
15213                     sfmmup->sfmmu_scdp != NULL) {
15214                         cv_wait(&sfmmup->sfmmu_tsb_cv,
15215                             HATLOCK_MUTEXP(hatlockp));
15216                 }
15217 
15218                 if (sfmmup->sfmmu_scdp == NULL) {
15219                         sfmmu_hat_exit(hatlockp);
15220                         return;
15221                 }
15222                 SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
15223         }
15224 
15225         if (SFMMU_FLAGS_ISSET(sfmmup, HAT_JOIN_SCD)) {
15226                 SFMMU_FLAGS_CLEAR(sfmmup, HAT_JOIN_SCD);
15227                 /*
15228                  * Since HAT_JOIN_SCD was set our context
15229                  * is still invalid.
15230                  */
15231         } else {
15232                 /*
15233                  * For a multi-thread process, we must stop
15234                  * all the other threads before leaving the scd.
15235                  */
15236 
15237                 sfmmu_invalidate_ctx(sfmmup);
15238         }
15239 
15240         /* Clear all the rid's for ISM, delete flags, etc */
15241         ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
15242         sfmmu_ism_hatflags(sfmmup, 0);
15243 
15244         /*
15245          * Update sfmmu_ttecnt to include the rgn ttecnt for rgns that
15246          * are in SCD before this sfmmup leaves the SCD.
15247          */
15248         for (i = 0; i < mmu_page_sizes; i++) {
15249                 ASSERT(sfmmup->sfmmu_scdrttecnt[i] ==
15250                     scdp->scd_rttecnt[i]);
15251                 atomic_add_long(&sfmmup->sfmmu_ttecnt[i],
15252                     sfmmup->sfmmu_scdrttecnt[i]);
15253                 sfmmup->sfmmu_scdrttecnt[i] = 0;
15254                 /* update ismttecnt to include SCD ism before hat leaves SCD */
15255                 sfmmup->sfmmu_ismttecnt[i] += sfmmup->sfmmu_scdismttecnt[i];
15256                 sfmmup->sfmmu_scdismttecnt[i] = 0;
15257         }
15258         /* update tsb0 inflation count */
15259         sfmmup->sfmmu_tsb0_4minflcnt += scdp->scd_sfmmup->sfmmu_tsb0_4minflcnt;
15260 
15261         if (r_type != SFMMU_REGION_ISM) {
15262                 SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
15263         }
15264         sfmmup->sfmmu_scdp = NULL;
15265 
15266         sfmmu_hat_exit(hatlockp);
15267 
15268         /*
15269          * Unlink sfmmu from scd_sf_list this can be done without holding
15270          * the hat lock as we hold the sfmmu_as lock which prevents
15271          * hat_join_region from adding this thread to the scd again. Other
15272          * threads check if sfmmu_scdp is NULL under hat lock and if it's NULL
15273          * they won't get here, since sfmmu_leave_scd() clears sfmmu_scdp
15274          * while holding the hat lock.
15275          */
15276         mutex_enter(&scdp->scd_mutex);
15277         sfmmu_from_scd_list(&scdp->scd_sf_list, sfmmup);
15278         mutex_exit(&scdp->scd_mutex);
15279         SFMMU_STAT(sf_leave_scd);
15280 
15281         SF_SCD_DECR_REF(srdp, scdp);
15282         hatlockp = sfmmu_hat_enter(sfmmup);
15283 
15284 }
15285 
15286 /*
15287  * Unlink and free up an SCD structure with a reference count of 0.
15288  */
15289 static void
15290 sfmmu_destroy_scd(sf_srd_t *srdp, sf_scd_t *scdp, sf_region_map_t *scd_rmap)
15291 {
15292         sfmmu_t *scsfmmup;
15293         sf_scd_t *sp;
15294         hatlock_t *shatlockp;
15295         int i, ret;
15296 
15297         mutex_enter(&srdp->srd_scd_mutex);
15298         for (sp = srdp->srd_scdp; sp != NULL; sp = sp->scd_next) {
15299                 if (sp == scdp)
15300                         break;
15301         }
15302         if (sp == NULL || sp->scd_refcnt) {
15303                 mutex_exit(&srdp->srd_scd_mutex);
15304                 return;
15305         }
15306 
15307         /*
15308          * It is possible that the scd has been freed and reallocated with a
15309          * different region map while we've been waiting for the srd_scd_mutex.
15310          */
15311         SF_RGNMAP_EQUAL(scd_rmap, &sp->scd_region_map, ret);
15312         if (ret != 1) {
15313                 mutex_exit(&srdp->srd_scd_mutex);
15314                 return;
15315         }
15316 
15317         ASSERT(scdp->scd_sf_list == NULL);
15318         /*
15319          * Unlink scd from srd_scdp list.
15320          */
15321         sfmmu_remove_scd(&srdp->srd_scdp, scdp);
15322         mutex_exit(&srdp->srd_scd_mutex);
15323 
15324         sfmmu_unlink_scd_from_regions(srdp, scdp);
15325 
15326         /* Clear shared context tsb and release ctx */
15327         scsfmmup = scdp->scd_sfmmup;
15328 
15329         /*
15330          * create a barrier so that scd will not be destroyed
15331          * if other thread still holds the same shared hat lock.
15332          * E.g., sfmmu_tsbmiss_exception() needs to acquire the
15333          * shared hat lock before checking the shared tsb reloc flag.
15334          */
15335         shatlockp = sfmmu_hat_enter(scsfmmup);
15336         sfmmu_hat_exit(shatlockp);
15337 
15338         sfmmu_free_scd_tsbs(scsfmmup);
15339 
15340         for (i = 0; i < SFMMU_L1_HMERLINKS; i++) {
15341                 if (scsfmmup->sfmmu_hmeregion_links[i] != NULL) {
15342                         kmem_free(scsfmmup->sfmmu_hmeregion_links[i],
15343                             SFMMU_L2_HMERLINKS_SIZE);
15344                         scsfmmup->sfmmu_hmeregion_links[i] = NULL;
15345                 }
15346         }
15347         kmem_cache_free(sfmmuid_cache, scsfmmup);
15348         kmem_cache_free(scd_cache, scdp);
15349         SFMMU_STAT(sf_destroy_scd);
15350 }
15351 
15352 /*
15353  * Modifies the HAT_CTX1_FLAG for each of the ISM segments which correspond to
15354  * bits which are set in the ism_region_map parameter. This flag indicates to
15355  * the tsbmiss handler that mapping for these segments should be loaded using
15356  * the shared context.
15357  */
15358 static void
15359 sfmmu_ism_hatflags(sfmmu_t *sfmmup, int addflag)
15360 {
15361         sf_scd_t *scdp = sfmmup->sfmmu_scdp;
15362         ism_blk_t *ism_blkp;
15363         ism_map_t *ism_map;
15364         int i, rid;
15365 
15366         ASSERT(sfmmup->sfmmu_iblk != NULL);
15367         ASSERT(scdp != NULL);
15368         /*
15369          * Note that the caller either set HAT_ISMBUSY flag or checked
15370          * under hat lock that HAT_ISMBUSY was not set by another thread.
15371          */
15372         ASSERT(sfmmu_hat_lock_held(sfmmup));
15373 
15374         ism_blkp = sfmmup->sfmmu_iblk;
15375         while (ism_blkp != NULL) {
15376                 ism_map = ism_blkp->iblk_maps;
15377                 for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
15378                         rid = ism_map[i].imap_rid;
15379                         if (rid == SFMMU_INVALID_ISMRID) {
15380                                 continue;
15381                         }
15382                         ASSERT(rid >= 0 && rid < SFMMU_MAX_ISM_REGIONS);
15383                         if (SF_RGNMAP_TEST(scdp->scd_ismregion_map, rid) &&
15384                             addflag) {
15385                                 ism_map[i].imap_hatflags |=
15386                                     HAT_CTX1_FLAG;
15387                         } else {
15388                                 ism_map[i].imap_hatflags &=
15389                                     ~HAT_CTX1_FLAG;
15390                         }
15391                 }
15392                 ism_blkp = ism_blkp->iblk_next;
15393         }
15394 }
15395 
15396 static int
15397 sfmmu_srd_lock_held(sf_srd_t *srdp)
15398 {
15399         return (MUTEX_HELD(&srdp->srd_mutex));
15400 }
15401 
15402 /* ARGSUSED */
15403 static int
15404 sfmmu_scdcache_constructor(void *buf, void *cdrarg, int kmflags)
15405 {
15406         sf_scd_t *scdp = (sf_scd_t *)buf;
15407 
15408         bzero(buf, sizeof (sf_scd_t));
15409         mutex_init(&scdp->scd_mutex, NULL, MUTEX_DEFAULT, NULL);
15410         return (0);
15411 }
15412 
15413 /* ARGSUSED */
15414 static void
15415 sfmmu_scdcache_destructor(void *buf, void *cdrarg)
15416 {
15417         sf_scd_t *scdp = (sf_scd_t *)buf;
15418 
15419         mutex_destroy(&scdp->scd_mutex);
15420 }
15421 
15422 /*
15423  * The listp parameter is a pointer to a list of hmeblks which are partially
15424  * freed as result of calling sfmmu_hblk_hash_rm(), the last phase of the
15425  * freeing process is to cross-call all cpus to ensure that there are no
15426  * remaining cached references.
15427  *
15428  * If the local generation number is less than the global then we can free
15429  * hmeblks which are already on the pending queue as another cpu has completed
15430  * the cross-call.
15431  *
15432  * We cross-call to make sure that there are no threads on other cpus accessing
15433  * these hmblks and then complete the process of freeing them under the
15434  * following conditions:
15435  *      The total number of pending hmeblks is greater than the threshold
15436  *      The reserve list has fewer than HBLK_RESERVE_CNT hmeblks
15437  *      It is at least 1 second since the last time we cross-called
15438  *
15439  * Otherwise, we add the hmeblks to the per-cpu pending queue.
15440  */
15441 static void
15442 sfmmu_hblks_list_purge(struct hme_blk **listp, int dontfree)
15443 {
15444         struct hme_blk *hblkp, *pr_hblkp = NULL;
15445         int             count = 0;
15446         cpuset_t        cpuset = cpu_ready_set;
15447         cpu_hme_pend_t  *cpuhp;
15448         timestruc_t     now;
15449         int             one_second_expired = 0;
15450 
15451         gethrestime_lasttick(&now);
15452 
15453         for (hblkp = *listp; hblkp != NULL; hblkp = hblkp->hblk_next) {
15454                 ASSERT(hblkp->hblk_shw_bit == 0);
15455                 ASSERT(hblkp->hblk_shared == 0);
15456                 count++;
15457                 pr_hblkp = hblkp;
15458         }
15459 
15460         cpuhp = &cpu_hme_pend[CPU->cpu_seqid];
15461         mutex_enter(&cpuhp->chp_mutex);
15462 
15463         if ((cpuhp->chp_count + count) == 0) {
15464                 mutex_exit(&cpuhp->chp_mutex);
15465                 return;
15466         }
15467 
15468         if ((now.tv_sec - cpuhp->chp_timestamp) > 1) {
15469                 one_second_expired  = 1;
15470         }
15471 
15472         if (!dontfree && (freehblkcnt < HBLK_RESERVE_CNT ||
15473             (cpuhp->chp_count + count) > cpu_hme_pend_thresh ||
15474             one_second_expired)) {
15475                 /* Append global list to local */
15476                 if (pr_hblkp == NULL) {
15477                         *listp = cpuhp->chp_listp;
15478                 } else {
15479                         pr_hblkp->hblk_next = cpuhp->chp_listp;
15480                 }
15481                 cpuhp->chp_listp = NULL;
15482                 cpuhp->chp_count = 0;
15483                 cpuhp->chp_timestamp = now.tv_sec;
15484                 mutex_exit(&cpuhp->chp_mutex);
15485 
15486                 kpreempt_disable();
15487                 CPUSET_DEL(cpuset, CPU->cpu_id);
15488                 xt_sync(cpuset);
15489                 xt_sync(cpuset);
15490                 kpreempt_enable();
15491 
15492                 /*
15493                  * At this stage we know that no trap handlers on other
15494                  * cpus can have references to hmeblks on the list.
15495                  */
15496                 sfmmu_hblk_free(listp);
15497         } else if (*listp != NULL) {
15498                 pr_hblkp->hblk_next = cpuhp->chp_listp;
15499                 cpuhp->chp_listp = *listp;
15500                 cpuhp->chp_count += count;
15501                 *listp = NULL;
15502                 mutex_exit(&cpuhp->chp_mutex);
15503         } else {
15504                 mutex_exit(&cpuhp->chp_mutex);
15505         }
15506 }
15507 
15508 /*
15509  * Add an hmeblk to the the hash list.
15510  */
15511 void
15512 sfmmu_hblk_hash_add(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
15513         uint64_t hblkpa)
15514 {
15515         ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
15516 #ifdef  DEBUG
15517         if (hmebp->hmeblkp == NULL) {
15518                 ASSERT(hmebp->hmeh_nextpa == HMEBLK_ENDPA);
15519         }
15520 #endif /* DEBUG */
15521 
15522         hmeblkp->hblk_nextpa = hmebp->hmeh_nextpa;
15523         /*
15524          * Since the TSB miss handler now does not lock the hash chain before
15525          * walking it, make sure that the hmeblks nextpa is globally visible
15526          * before we make the hmeblk globally visible by updating the chain root
15527          * pointer in the hash bucket.
15528          */
15529         membar_producer();
15530         hmebp->hmeh_nextpa = hblkpa;
15531         hmeblkp->hblk_next = hmebp->hmeblkp;
15532         hmebp->hmeblkp = hmeblkp;
15533 
15534 }
15535 
15536 /*
15537  * This function is the first part of a 2 part process to remove an hmeblk
15538  * from the hash chain. In this phase we unlink the hmeblk from the hash chain
15539  * but leave the next physical pointer unchanged. The hmeblk is then linked onto
15540  * a per-cpu pending list using the virtual address pointer.
15541  *
15542  * TSB miss trap handlers that start after this phase will no longer see
15543  * this hmeblk. TSB miss handlers that still cache this hmeblk in a register
15544  * can still use it for further chain traversal because we haven't yet modifed
15545  * the next physical pointer or freed it.
15546  *
15547  * In the second phase of hmeblk removal we'll issue a barrier xcall before
15548  * we reuse or free this hmeblk. This will make sure all lingering references to
15549  * the hmeblk after first phase disappear before we finally reclaim it.
15550  * This scheme eliminates the need for TSB miss handlers to lock hmeblk chains
15551  * during their traversal.
15552  *
15553  * The hmehash_mutex must be held when calling this function.
15554  *
15555  * Input:
15556  *       hmebp - hme hash bucket pointer
15557  *       hmeblkp - address of hmeblk to be removed
15558  *       pr_hblk - virtual address of previous hmeblkp
15559  *       listp - pointer to list of hmeblks linked by virtual address
15560  *       free_now flag - indicates that a complete removal from the hash chains
15561  *                       is necessary.
15562  *
15563  * It is inefficient to use the free_now flag as a cross-call is required to
15564  * remove a single hmeblk from the hash chain but is necessary when hmeblks are
15565  * in short supply.
15566  */
15567 void
15568 sfmmu_hblk_hash_rm(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
15569     struct hme_blk *pr_hblk, struct hme_blk **listp,
15570     int free_now)
15571 {
15572         int shw_size, vshift;
15573         struct hme_blk *shw_hblkp;
15574         uint_t          shw_mask, newshw_mask;
15575         caddr_t         vaddr;
15576         int             size;
15577         cpuset_t cpuset = cpu_ready_set;
15578 
15579         ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
15580 
15581         if (hmebp->hmeblkp == hmeblkp) {
15582                 hmebp->hmeh_nextpa = hmeblkp->hblk_nextpa;
15583                 hmebp->hmeblkp = hmeblkp->hblk_next;
15584         } else {
15585                 pr_hblk->hblk_nextpa = hmeblkp->hblk_nextpa;
15586                 pr_hblk->hblk_next = hmeblkp->hblk_next;
15587         }
15588 
15589         size = get_hblk_ttesz(hmeblkp);
15590         shw_hblkp = hmeblkp->hblk_shadow;
15591         if (shw_hblkp) {
15592                 ASSERT(hblktosfmmu(hmeblkp) != KHATID);
15593                 ASSERT(!hmeblkp->hblk_shared);
15594 #ifdef  DEBUG
15595                 if (mmu_page_sizes == max_mmu_page_sizes) {
15596                         ASSERT(size < TTE256M);
15597                 } else {
15598                         ASSERT(size < TTE4M);
15599                 }
15600 #endif /* DEBUG */
15601 
15602                 shw_size = get_hblk_ttesz(shw_hblkp);
15603                 vaddr = (caddr_t)get_hblk_base(hmeblkp);
15604                 vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
15605                 ASSERT(vshift < 8);
15606                 /*
15607                  * Atomically clear shadow mask bit
15608                  */
15609                 do {
15610                         shw_mask = shw_hblkp->hblk_shw_mask;
15611                         ASSERT(shw_mask & (1 << vshift));
15612                         newshw_mask = shw_mask & ~(1 << vshift);
15613                         newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
15614                             shw_mask, newshw_mask);
15615                 } while (newshw_mask != shw_mask);
15616                 hmeblkp->hblk_shadow = NULL;
15617         }
15618         hmeblkp->hblk_shw_bit = 0;
15619 
15620         if (hmeblkp->hblk_shared) {
15621 #ifdef  DEBUG
15622                 sf_srd_t        *srdp;
15623                 sf_region_t     *rgnp;
15624                 uint_t          rid;
15625 
15626                 srdp = hblktosrd(hmeblkp);
15627                 ASSERT(srdp != NULL && srdp->srd_refcnt != 0);
15628                 rid = hmeblkp->hblk_tag.htag_rid;
15629                 ASSERT(SFMMU_IS_SHMERID_VALID(rid));
15630                 ASSERT(rid < SFMMU_MAX_HME_REGIONS);
15631                 rgnp = srdp->srd_hmergnp[rid];
15632                 ASSERT(rgnp != NULL);
15633                 SFMMU_VALIDATE_SHAREDHBLK(hmeblkp, srdp, rgnp, rid);
15634 #endif /* DEBUG */
15635                 hmeblkp->hblk_shared = 0;
15636         }
15637         if (free_now) {
15638                 kpreempt_disable();
15639                 CPUSET_DEL(cpuset, CPU->cpu_id);
15640                 xt_sync(cpuset);
15641                 xt_sync(cpuset);
15642                 kpreempt_enable();
15643 
15644                 hmeblkp->hblk_nextpa = HMEBLK_ENDPA;
15645                 hmeblkp->hblk_next = NULL;
15646         } else {
15647                 /* Append hmeblkp to listp for processing later. */
15648                 hmeblkp->hblk_next = *listp;
15649                 *listp = hmeblkp;
15650         }
15651 }
15652 
15653 /*
15654  * This routine is called when memory is in short supply and returns a free
15655  * hmeblk of the requested size from the cpu pending lists.
15656  */
15657 static struct hme_blk *
15658 sfmmu_check_pending_hblks(int size)
15659 {
15660         int i;
15661         struct hme_blk *hmeblkp = NULL, *last_hmeblkp;
15662         int found_hmeblk;
15663         cpuset_t cpuset = cpu_ready_set;
15664         cpu_hme_pend_t *cpuhp;
15665 
15666         /* Flush cpu hblk pending queues */
15667         for (i = 0; i < NCPU; i++) {
15668                 cpuhp = &cpu_hme_pend[i];
15669                 if (cpuhp->chp_listp != NULL)  {
15670                         mutex_enter(&cpuhp->chp_mutex);
15671                         if (cpuhp->chp_listp == NULL)  {
15672                                 mutex_exit(&cpuhp->chp_mutex);
15673                                 continue;
15674                         }
15675                         found_hmeblk = 0;
15676                         last_hmeblkp = NULL;
15677                         for (hmeblkp = cpuhp->chp_listp; hmeblkp != NULL;
15678                             hmeblkp = hmeblkp->hblk_next) {
15679                                 if (get_hblk_ttesz(hmeblkp) == size) {
15680                                         if (last_hmeblkp == NULL) {
15681                                                 cpuhp->chp_listp =
15682                                                     hmeblkp->hblk_next;
15683                                         } else {
15684                                                 last_hmeblkp->hblk_next =
15685                                                     hmeblkp->hblk_next;
15686                                         }
15687                                         ASSERT(cpuhp->chp_count > 0);
15688                                         cpuhp->chp_count--;
15689                                         found_hmeblk = 1;
15690                                         break;
15691                                 } else {
15692                                         last_hmeblkp = hmeblkp;
15693                                 }
15694                         }
15695                         mutex_exit(&cpuhp->chp_mutex);
15696 
15697                         if (found_hmeblk) {
15698                                 kpreempt_disable();
15699                                 CPUSET_DEL(cpuset, CPU->cpu_id);
15700                                 xt_sync(cpuset);
15701                                 xt_sync(cpuset);
15702                                 kpreempt_enable();
15703                                 return (hmeblkp);
15704                         }
15705                 }
15706         }
15707         return (NULL);
15708 }