1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
  24  */
  25 /*
  26  * Copyright (c) 2010, Intel Corporation.
  27  * All rights reserved.
  28  */
  29 /*
  30  * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
  31  */
  32 
  33 /*
  34  * To understand how the pcplusmp module interacts with the interrupt subsystem
  35  * read the theory statement in uts/i86pc/os/intr.c.
  36  */
  37 
  38 /*
  39  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
  40  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
  41  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
  42  * PSMI 1.5 extensions are supported in Solaris Nevada.
  43  * PSMI 1.6 extensions are supported in Solaris Nevada.
  44  * PSMI 1.7 extensions are supported in Solaris Nevada.
  45  */
  46 #define PSMI_1_7
  47 
  48 #include <sys/processor.h>
  49 #include <sys/time.h>
  50 #include <sys/psm.h>
  51 #include <sys/smp_impldefs.h>
  52 #include <sys/cram.h>
  53 #include <sys/acpi/acpi.h>
  54 #include <sys/acpica.h>
  55 #include <sys/psm_common.h>
  56 #include <sys/apic.h>
  57 #include <sys/pit.h>
  58 #include <sys/ddi.h>
  59 #include <sys/sunddi.h>
  60 #include <sys/ddi_impldefs.h>
  61 #include <sys/pci.h>
  62 #include <sys/promif.h>
  63 #include <sys/x86_archext.h>
  64 #include <sys/cpc_impl.h>
  65 #include <sys/uadmin.h>
  66 #include <sys/panic.h>
  67 #include <sys/debug.h>
  68 #include <sys/archsystm.h>
  69 #include <sys/trap.h>
  70 #include <sys/machsystm.h>
  71 #include <sys/sysmacros.h>
  72 #include <sys/cpuvar.h>
  73 #include <sys/rm_platter.h>
  74 #include <sys/privregs.h>
  75 #include <sys/note.h>
  76 #include <sys/pci_intr_lib.h>
  77 #include <sys/spl.h>
  78 #include <sys/clock.h>
  79 #include <sys/cyclic.h>
  80 #include <sys/dditypes.h>
  81 #include <sys/sunddi.h>
  82 #include <sys/x_call.h>
  83 #include <sys/reboot.h>
  84 #include <sys/hpet.h>
  85 #include <sys/apic_common.h>
  86 #include <sys/apic_timer.h>
  87 
  88 /*
  89  *      Local Function Prototypes
  90  */
  91 static void apic_init_intr(void);
  92 
  93 /*
  94  *      standard MP entries
  95  */
  96 static int      apic_probe(void);
  97 static int      apic_getclkirq(int ipl);
  98 static void     apic_init(void);
  99 static void     apic_picinit(void);
 100 static int      apic_post_cpu_start(void);
 101 static int      apic_intr_enter(int ipl, int *vect);
 102 static void     apic_setspl(int ipl);
 103 static void     x2apic_setspl(int ipl);
 104 static int      apic_addspl(int ipl, int vector, int min_ipl, int max_ipl);
 105 static int      apic_delspl(int ipl, int vector, int min_ipl, int max_ipl);
 106 static int      apic_disable_intr(processorid_t cpun);
 107 static void     apic_enable_intr(processorid_t cpun);
 108 static int              apic_get_ipivect(int ipl, int type);
 109 static void     apic_post_cyclic_setup(void *arg);
 110 
 111 /*
 112  * The following vector assignments influence the value of ipltopri and
 113  * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program
 114  * idle to 0 and IPL 0 to 0xf to differentiate idle in case
 115  * we care to do so in future. Note some IPLs which are rarely used
 116  * will share the vector ranges and heavily used IPLs (5 and 6) have
 117  * a wide range.
 118  *
 119  * This array is used to initialize apic_ipls[] (in apic_init()).
 120  *
 121  *      IPL             Vector range.           as passed to intr_enter
 122  *      0               none.
 123  *      1,2,3           0x20-0x2f               0x0-0xf
 124  *      4               0x30-0x3f               0x10-0x1f
 125  *      5               0x40-0x5f               0x20-0x3f
 126  *      6               0x60-0x7f               0x40-0x5f
 127  *      7,8,9           0x80-0x8f               0x60-0x6f
 128  *      10              0x90-0x9f               0x70-0x7f
 129  *      11              0xa0-0xaf               0x80-0x8f
 130  *      ...             ...
 131  *      15              0xe0-0xef               0xc0-0xcf
 132  *      15              0xf0-0xff               0xd0-0xdf
 133  */
 134 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
 135         3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
 136 };
 137         /*
 138          * The ipl of an ISR at vector X is apic_vectortoipl[X>>4]
 139          * NOTE that this is vector as passed into intr_enter which is
 140          * programmed vector - 0x20 (APIC_BASE_VECT)
 141          */
 142 
 143 uchar_t apic_ipltopri[MAXIPL + 1];      /* unix ipl to apic pri */
 144         /* The taskpri to be programmed into apic to mask given ipl */
 145 
 146 #if defined(__amd64)
 147 uchar_t apic_cr8pri[MAXIPL + 1];        /* unix ipl to cr8 pri  */
 148 #endif
 149 
 150 /*
 151  * Correlation of the hardware vector to the IPL in use, initialized
 152  * from apic_vectortoipl[] in apic_init().  The final IPLs may not correlate
 153  * to the IPLs in apic_vectortoipl on some systems that share interrupt lines
 154  * connected to errata-stricken IOAPICs
 155  */
 156 uchar_t apic_ipls[APIC_AVAIL_VECTOR];
 157 
 158 /*
 159  * Patchable global variables.
 160  */
 161 int     apic_enable_hwsoftint = 0;      /* 0 - disable, 1 - enable      */
 162 int     apic_enable_bind_log = 1;       /* 1 - display interrupt binding log */
 163 
 164 /*
 165  *      Local static data
 166  */
 167 static struct   psm_ops apic_ops = {
 168         apic_probe,
 169 
 170         apic_init,
 171         apic_picinit,
 172         apic_intr_enter,
 173         apic_intr_exit,
 174         apic_setspl,
 175         apic_addspl,
 176         apic_delspl,
 177         apic_disable_intr,
 178         apic_enable_intr,
 179         (int (*)(int))NULL,             /* psm_softlvl_to_irq */
 180         (void (*)(int))NULL,            /* psm_set_softintr */
 181 
 182         apic_set_idlecpu,
 183         apic_unset_idlecpu,
 184 
 185         apic_clkinit,
 186         apic_getclkirq,
 187         (void (*)(void))NULL,           /* psm_hrtimeinit */
 188         apic_gethrtime,
 189 
 190         apic_get_next_processorid,
 191         apic_cpu_start,
 192         apic_post_cpu_start,
 193         apic_shutdown,
 194         apic_get_ipivect,
 195         apic_send_ipi,
 196 
 197         (int (*)(dev_info_t *, int))NULL,       /* psm_translate_irq */
 198         (void (*)(int, char *))NULL,    /* psm_notify_error */
 199         (void (*)(int))NULL,            /* psm_notify_func */
 200         apic_timer_reprogram,
 201         apic_timer_enable,
 202         apic_timer_disable,
 203         apic_post_cyclic_setup,
 204         apic_preshutdown,
 205         apic_intr_ops,                  /* Advanced DDI Interrupt framework */
 206         apic_state,                     /* save, restore apic state for S3 */
 207         apic_cpu_ops,                   /* CPU control interface. */
 208 };
 209 
 210 struct psm_ops *psmops = &apic_ops;
 211 
 212 static struct   psm_info apic_psm_info = {
 213         PSM_INFO_VER01_7,                       /* version */
 214         PSM_OWN_EXCLUSIVE,                      /* ownership */
 215         (struct psm_ops *)&apic_ops,                /* operation */
 216         APIC_PCPLUSMP_NAME,                     /* machine name */
 217         "pcplusmp v1.4 compatible",
 218 };
 219 
 220 static void *apic_hdlp;
 221 
 222 /*
 223  * apic_let_idle_redistribute can have the following values:
 224  * 0 - If clock decremented it from 1 to 0, clock has to call redistribute.
 225  * apic_redistribute_lock prevents multiple idle cpus from redistributing
 226  */
 227 int     apic_num_idle_redistributions = 0;
 228 static  int apic_let_idle_redistribute = 0;
 229 
 230 /* to gather intr data and redistribute */
 231 static void apic_redistribute_compute(void);
 232 
 233 /*
 234  *      This is the loadable module wrapper
 235  */
 236 
 237 int
 238 _init(void)
 239 {
 240         if (apic_coarse_hrtime)
 241                 apic_ops.psm_gethrtime = &apic_gettime;
 242         return (psm_mod_init(&apic_hdlp, &apic_psm_info));
 243 }
 244 
 245 int
 246 _fini(void)
 247 {
 248         return (psm_mod_fini(&apic_hdlp, &apic_psm_info));
 249 }
 250 
 251 int
 252 _info(struct modinfo *modinfop)
 253 {
 254         return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop));
 255 }
 256 
 257 static int
 258 apic_probe(void)
 259 {
 260         /* check if apix is initialized */
 261         if (apix_enable && apix_loaded())
 262                 return (PSM_FAILURE);
 263         else
 264                 apix_enable = 0; /* continue using pcplusmp PSM */
 265 
 266         return (apic_probe_common(apic_psm_info.p_mach_idstring));
 267 }
 268 
 269 static uchar_t
 270 apic_xlate_vector_by_irq(uchar_t irq)
 271 {
 272         if (apic_irq_table[irq] == NULL)
 273                 return (0);
 274 
 275         return (apic_irq_table[irq]->airq_vector);
 276 }
 277 
 278 void
 279 apic_init(void)
 280 {
 281         int i;
 282         int     j = 1;
 283 
 284         psm_get_ioapicid = apic_get_ioapicid;
 285         psm_get_localapicid = apic_get_localapicid;
 286         psm_xlate_vector_by_irq = apic_xlate_vector_by_irq;
 287 
 288         apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */
 289         for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
 290                 if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) &&
 291                     (apic_vectortoipl[i + 1] == apic_vectortoipl[i]))
 292                         /* get to highest vector at the same ipl */
 293                         continue;
 294                 for (; j <= apic_vectortoipl[i]; j++) {
 295                         apic_ipltopri[j] = (i << APIC_IPL_SHIFT) +
 296                             APIC_BASE_VECT;
 297                 }
 298         }
 299         for (; j < MAXIPL + 1; j++)
 300                 /* fill up any empty ipltopri slots */
 301                 apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT;
 302         apic_init_common();
 303 #if defined(__amd64)
 304         /*
 305          * Make cpu-specific interrupt info point to cr8pri vector
 306          */
 307         for (i = 0; i <= MAXIPL; i++)
 308                 apic_cr8pri[i] = apic_ipltopri[i] >> APIC_IPL_SHIFT;
 309         CPU->cpu_pri_data = apic_cr8pri;
 310 #else
 311         if (cpuid_have_cr8access(CPU))
 312                 apic_have_32bit_cr8 = 1;
 313 #endif  /* __amd64 */
 314 }
 315 
 316 static void
 317 apic_init_intr(void)
 318 {
 319         processorid_t   cpun = psm_get_cpu_id();
 320         uint_t nlvt;
 321         uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
 322 
 323         apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
 324 
 325         if (apic_mode == LOCAL_APIC) {
 326                 /*
 327                  * We are running APIC in MMIO mode.
 328                  */
 329                 if (apic_flat_model) {
 330                         apic_reg_ops->apic_write(APIC_FORMAT_REG,
 331                             APIC_FLAT_MODEL);
 332                 } else {
 333                         apic_reg_ops->apic_write(APIC_FORMAT_REG,
 334                             APIC_CLUSTER_MODEL);
 335                 }
 336 
 337                 apic_reg_ops->apic_write(APIC_DEST_REG,
 338                     AV_HIGH_ORDER >> cpun);
 339         }
 340 
 341         if (apic_directed_EOI_supported()) {
 342                 /*
 343                  * Setting the 12th bit in the Spurious Interrupt Vector
 344                  * Register suppresses broadcast EOIs generated by the local
 345                  * APIC. The suppression of broadcast EOIs happens only when
 346                  * interrupts are level-triggered.
 347                  */
 348                 svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI;
 349         }
 350 
 351         /* need to enable APIC before unmasking NMI */
 352         apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
 353 
 354         /*
 355          * Presence of an invalid vector with delivery mode AV_FIXED can
 356          * cause an error interrupt, even if the entry is masked...so
 357          * write a valid vector to LVT entries along with the mask bit
 358          */
 359 
 360         /* All APICs have timer and LINT0/1 */
 361         apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
 362         apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
 363         apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI);    /* enable NMI */
 364 
 365         /*
 366          * On integrated APICs, the number of LVT entries is
 367          * 'Max LVT entry' + 1; on 82489DX's (non-integrated
 368          * APICs), nlvt is "3" (LINT0, LINT1, and timer)
 369          */
 370 
 371         if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
 372                 nlvt = 3;
 373         } else {
 374                 nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) &
 375                     0xFF) + 1;
 376         }
 377 
 378         if (nlvt >= 5) {
 379                 /* Enable performance counter overflow interrupt */
 380 
 381                 if (!is_x86_feature(x86_featureset, X86FSET_MSR))
 382                         apic_enable_cpcovf_intr = 0;
 383                 if (apic_enable_cpcovf_intr) {
 384                         if (apic_cpcovf_vect == 0) {
 385                                 int ipl = APIC_PCINT_IPL;
 386                                 int irq = apic_get_ipivect(ipl, -1);
 387 
 388                                 ASSERT(irq != -1);
 389                                 apic_cpcovf_vect =
 390                                     apic_irq_table[irq]->airq_vector;
 391                                 ASSERT(apic_cpcovf_vect);
 392                                 (void) add_avintr(NULL, ipl,
 393                                     (avfunc)kcpc_hw_overflow_intr,
 394                                     "apic pcint", irq, NULL, NULL, NULL, NULL);
 395                                 kcpc_hw_overflow_intr_installed = 1;
 396                                 kcpc_hw_enable_cpc_intr =
 397                                     apic_cpcovf_mask_clear;
 398                         }
 399                         apic_reg_ops->apic_write(APIC_PCINT_VECT,
 400                             apic_cpcovf_vect);
 401                 }
 402         }
 403 
 404         if (nlvt >= 6) {
 405                 /* Only mask TM intr if the BIOS apparently doesn't use it */
 406 
 407                 uint32_t lvtval;
 408 
 409                 lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
 410                 if (((lvtval & AV_MASK) == AV_MASK) ||
 411                     ((lvtval & AV_DELIV_MODE) != AV_SMI)) {
 412                         apic_reg_ops->apic_write(APIC_THERM_VECT,
 413                             AV_MASK|APIC_RESV_IRQ);
 414                 }
 415         }
 416 
 417         /* Enable error interrupt */
 418 
 419         if (nlvt >= 4 && apic_enable_error_intr) {
 420                 if (apic_errvect == 0) {
 421                         int ipl = 0xf;  /* get highest priority intr */
 422                         int irq = apic_get_ipivect(ipl, -1);
 423 
 424                         ASSERT(irq != -1);
 425                         apic_errvect = apic_irq_table[irq]->airq_vector;
 426                         ASSERT(apic_errvect);
 427                         /*
 428                          * Not PSMI compliant, but we are going to merge
 429                          * with ON anyway
 430                          */
 431                         (void) add_avintr((void *)NULL, ipl,
 432                             (avfunc)apic_error_intr, "apic error intr",
 433                             irq, NULL, NULL, NULL, NULL);
 434                 }
 435                 apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
 436                 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
 437                 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
 438         }
 439 
 440         /* Enable CMCI interrupt */
 441         if (cmi_enable_cmci) {
 442 
 443                 mutex_enter(&cmci_cpu_setup_lock);
 444                 if (cmci_cpu_setup_registered == 0) {
 445                         mutex_enter(&cpu_lock);
 446                         register_cpu_setup_func(cmci_cpu_setup, NULL);
 447                         mutex_exit(&cpu_lock);
 448                         cmci_cpu_setup_registered = 1;
 449                 }
 450                 mutex_exit(&cmci_cpu_setup_lock);
 451 
 452                 if (apic_cmci_vect == 0) {
 453                         int ipl = 0x2;
 454                         int irq = apic_get_ipivect(ipl, -1);
 455 
 456                         ASSERT(irq != -1);
 457                         apic_cmci_vect = apic_irq_table[irq]->airq_vector;
 458                         ASSERT(apic_cmci_vect);
 459 
 460                         (void) add_avintr(NULL, ipl,
 461                             (avfunc)cmi_cmci_trap,
 462                             "apic cmci intr", irq, NULL, NULL, NULL, NULL);
 463                 }
 464                 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
 465         }
 466 }
 467 
 468 static void
 469 apic_picinit(void)
 470 {
 471         int i, j;
 472         uint_t isr;
 473 
 474         /*
 475          * Initialize and enable interrupt remapping before apic
 476          * hardware initialization
 477          */
 478         apic_intrmap_init(apic_mode);
 479 
 480         /*
 481          * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
 482          * bit on without clearing it with EOI.  Since softint
 483          * uses vector 0x20 to interrupt itself, so softint will
 484          * not work on this machine.  In order to fix this problem
 485          * a check is made to verify all the isr bits are clear.
 486          * If not, EOIs are issued to clear the bits.
 487          */
 488         for (i = 7; i >= 1; i--) {
 489                 isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
 490                 if (isr != 0)
 491                         for (j = 0; ((j < 32) && (isr != 0)); j++)
 492                                 if (isr & (1 << j)) {
 493                                         apic_reg_ops->apic_write(
 494                                             APIC_EOI_REG, 0);
 495                                         isr &= ~(1 << j);
 496                                         apic_error |= APIC_ERR_BOOT_EOI;
 497                                 }
 498         }
 499 
 500         /* set a flag so we know we have run apic_picinit() */
 501         apic_picinit_called = 1;
 502         LOCK_INIT_CLEAR(&apic_gethrtime_lock);
 503         LOCK_INIT_CLEAR(&apic_ioapic_lock);
 504         LOCK_INIT_CLEAR(&apic_error_lock);
 505         LOCK_INIT_CLEAR(&apic_mode_switch_lock);
 506 
 507         picsetup();      /* initialise the 8259 */
 508 
 509         /* add nmi handler - least priority nmi handler */
 510         LOCK_INIT_CLEAR(&apic_nmi_lock);
 511 
 512         if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
 513             "pcplusmp NMI handler", (caddr_t)NULL))
 514                 cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler");
 515 
 516         /*
 517          * Check for directed-EOI capability in the local APIC.
 518          */
 519         if (apic_directed_EOI_supported() == 1) {
 520                 apic_set_directed_EOI_handler();
 521         }
 522 
 523         apic_init_intr();
 524 
 525         /* enable apic mode if imcr present */
 526         if (apic_imcrp) {
 527                 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
 528                 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
 529         }
 530 
 531         ioapic_init_intr(IOAPIC_MASK);
 532 }
 533 
 534 #ifdef  DEBUG
 535 void
 536 apic_break(void)
 537 {
 538 }
 539 #endif /* DEBUG */
 540 
 541 /*
 542  * platform_intr_enter
 543  *
 544  *      Called at the beginning of the interrupt service routine to
 545  *      mask all level equal to and below the interrupt priority
 546  *      of the interrupting vector.  An EOI should be given to
 547  *      the interrupt controller to enable other HW interrupts.
 548  *
 549  *      Return -1 for spurious interrupts
 550  *
 551  */
 552 /*ARGSUSED*/
 553 static int
 554 apic_intr_enter(int ipl, int *vectorp)
 555 {
 556         uchar_t vector;
 557         int nipl;
 558         int irq;
 559         ulong_t iflag;
 560         apic_cpus_info_t *cpu_infop;
 561 
 562         /*
 563          * The real vector delivered is (*vectorp + 0x20), but our caller
 564          * subtracts 0x20 from the vector before passing it to us.
 565          * (That's why APIC_BASE_VECT is 0x20.)
 566          */
 567         vector = (uchar_t)*vectorp;
 568 
 569         /* if interrupted by the clock, increment apic_nsec_since_boot */
 570         if (vector == apic_clkvect) {
 571                 if (!apic_oneshot) {
 572                         /* NOTE: this is not MT aware */
 573                         apic_hrtime_stamp++;
 574                         apic_nsec_since_boot += apic_nsec_per_intr;
 575                         apic_hrtime_stamp++;
 576                         last_count_read = apic_hertz_count;
 577                         apic_redistribute_compute();
 578                 }
 579 
 580                 /* We will avoid all the book keeping overhead for clock */
 581                 nipl = apic_ipls[vector];
 582 
 583                 *vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT];
 584                 if (apic_mode == LOCAL_APIC) {
 585 #if defined(__amd64)
 586                         setcr8((ulong_t)(apic_ipltopri[nipl] >>
 587                             APIC_IPL_SHIFT));
 588 #else
 589                         if (apic_have_32bit_cr8)
 590                                 setcr8((ulong_t)(apic_ipltopri[nipl] >>
 591                                     APIC_IPL_SHIFT));
 592                         else
 593                                 LOCAL_APIC_WRITE_REG(APIC_TASK_REG,
 594                                     (uint32_t)apic_ipltopri[nipl]);
 595 #endif
 596                         LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
 597                 } else {
 598                         X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]);
 599                         X2APIC_WRITE(APIC_EOI_REG, 0);
 600                 }
 601 
 602                 return (nipl);
 603         }
 604 
 605         cpu_infop = &apic_cpus[psm_get_cpu_id()];
 606 
 607         if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) {
 608                 cpu_infop->aci_spur_cnt++;
 609                 return (APIC_INT_SPURIOUS);
 610         }
 611 
 612         /* Check if the vector we got is really what we need */
 613         if (apic_revector_pending) {
 614                 /*
 615                  * Disable interrupts for the duration of
 616                  * the vector translation to prevent a self-race for
 617                  * the apic_revector_lock.  This cannot be done
 618                  * in apic_xlate_vector because it is recursive and
 619                  * we want the vector translation to be atomic with
 620                  * respect to other (higher-priority) interrupts.
 621                  */
 622                 iflag = intr_clear();
 623                 vector = apic_xlate_vector(vector + APIC_BASE_VECT) -
 624                     APIC_BASE_VECT;
 625                 intr_restore(iflag);
 626         }
 627 
 628         nipl = apic_ipls[vector];
 629         *vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT];
 630 
 631         if (apic_mode == LOCAL_APIC) {
 632 #if defined(__amd64)
 633                 setcr8((ulong_t)(apic_ipltopri[nipl] >> APIC_IPL_SHIFT));
 634 #else
 635                 if (apic_have_32bit_cr8)
 636                         setcr8((ulong_t)(apic_ipltopri[nipl] >>
 637                             APIC_IPL_SHIFT));
 638                 else
 639                         LOCAL_APIC_WRITE_REG(APIC_TASK_REG,
 640                             (uint32_t)apic_ipltopri[nipl]);
 641 #endif
 642         } else {
 643                 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]);
 644         }
 645 
 646         cpu_infop->aci_current[nipl] = (uchar_t)irq;
 647         cpu_infop->aci_curipl = (uchar_t)nipl;
 648         cpu_infop->aci_ISR_in_progress |= 1 << nipl;
 649 
 650         /*
 651          * apic_level_intr could have been assimilated into the irq struct.
 652          * but, having it as a character array is more efficient in terms of
 653          * cache usage. So, we leave it as is.
 654          */
 655         if (!apic_level_intr[irq]) {
 656                 if (apic_mode == LOCAL_APIC) {
 657                         LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
 658                 } else {
 659                         X2APIC_WRITE(APIC_EOI_REG, 0);
 660                 }
 661         }
 662 
 663 #ifdef  DEBUG
 664         APIC_DEBUG_BUF_PUT(vector);
 665         APIC_DEBUG_BUF_PUT(irq);
 666         APIC_DEBUG_BUF_PUT(nipl);
 667         APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
 668         if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
 669                 drv_usecwait(apic_stretch_interrupts);
 670 
 671         if (apic_break_on_cpu == psm_get_cpu_id())
 672                 apic_break();
 673 #endif /* DEBUG */
 674         return (nipl);
 675 }
 676 
 677 /*
 678  * This macro is a common code used by MMIO local apic and X2APIC
 679  * local apic.
 680  */
 681 #define APIC_INTR_EXIT() \
 682 { \
 683         cpu_infop = &apic_cpus[psm_get_cpu_id()]; \
 684         if (apic_level_intr[irq]) \
 685                 apic_reg_ops->apic_send_eoi(irq); \
 686         cpu_infop->aci_curipl = (uchar_t)prev_ipl; \
 687         /* ISR above current pri could not be in progress */ \
 688         cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; \
 689 }
 690 
 691 /*
 692  * Any changes made to this function must also change X2APIC
 693  * version of intr_exit.
 694  */
 695 void
 696 apic_intr_exit(int prev_ipl, int irq)
 697 {
 698         apic_cpus_info_t *cpu_infop;
 699 
 700 #if defined(__amd64)
 701         setcr8((ulong_t)apic_cr8pri[prev_ipl]);
 702 #else
 703         if (apic_have_32bit_cr8)
 704                 setcr8((ulong_t)(apic_ipltopri[prev_ipl] >> APIC_IPL_SHIFT));
 705         else
 706                 apicadr[APIC_TASK_REG] = apic_ipltopri[prev_ipl];
 707 #endif
 708 
 709         APIC_INTR_EXIT();
 710 }
 711 
 712 /*
 713  * Same as apic_intr_exit() except it uses MSR rather than MMIO
 714  * to access local apic registers.
 715  */
 716 void
 717 x2apic_intr_exit(int prev_ipl, int irq)
 718 {
 719         apic_cpus_info_t *cpu_infop;
 720 
 721         X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[prev_ipl]);
 722         APIC_INTR_EXIT();
 723 }
 724 
 725 intr_exit_fn_t
 726 psm_intr_exit_fn(void)
 727 {
 728         if (apic_mode == LOCAL_X2APIC)
 729                 return (x2apic_intr_exit);
 730 
 731         return (apic_intr_exit);
 732 }
 733 
 734 /*
 735  * Mask all interrupts below or equal to the given IPL.
 736  * Any changes made to this function must also change X2APIC
 737  * version of setspl.
 738  */
 739 static void
 740 apic_setspl(int ipl)
 741 {
 742 #if defined(__amd64)
 743         setcr8((ulong_t)apic_cr8pri[ipl]);
 744 #else
 745         if (apic_have_32bit_cr8)
 746                 setcr8((ulong_t)(apic_ipltopri[ipl] >> APIC_IPL_SHIFT));
 747         else
 748                 apicadr[APIC_TASK_REG] = apic_ipltopri[ipl];
 749 #endif
 750 
 751         /* interrupts at ipl above this cannot be in progress */
 752         apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
 753         /*
 754          * this is a patch fix for the ALR QSMP P5 machine, so that interrupts
 755          * have enough time to come in before the priority is raised again
 756          * during the idle() loop.
 757          */
 758         if (apic_setspl_delay)
 759                 (void) apic_reg_ops->apic_get_pri();
 760 }
 761 
 762 /*
 763  * X2APIC version of setspl.
 764  * Mask all interrupts below or equal to the given IPL
 765  */
 766 static void
 767 x2apic_setspl(int ipl)
 768 {
 769         X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[ipl]);
 770 
 771         /* interrupts at ipl above this cannot be in progress */
 772         apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
 773 }
 774 
 775 /*ARGSUSED*/
 776 static int
 777 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl)
 778 {
 779         return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl));
 780 }
 781 
 782 static int
 783 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl)
 784 {
 785         return (apic_delspl_common(irqno, ipl, min_ipl,  max_ipl));
 786 }
 787 
 788 static int
 789 apic_post_cpu_start(void)
 790 {
 791         int cpun;
 792         static int cpus_started = 1;
 793 
 794         /* We know this CPU + BSP  started successfully. */
 795         cpus_started++;
 796 
 797         /*
 798          * On BSP we would have enabled X2APIC, if supported by processor,
 799          * in acpi_probe(), but on AP we do it here.
 800          *
 801          * We enable X2APIC mode only if BSP is running in X2APIC & the
 802          * local APIC mode of the current CPU is MMIO (xAPIC).
 803          */
 804         if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() &&
 805             apic_local_mode() == LOCAL_APIC) {
 806                 apic_enable_x2apic();
 807         }
 808 
 809         /*
 810          * Switch back to x2apic IPI sending method for performance when target
 811          * CPU has entered x2apic mode.
 812          */
 813         if (apic_mode == LOCAL_X2APIC) {
 814                 apic_switch_ipi_callback(B_FALSE);
 815         }
 816 
 817         splx(ipltospl(LOCK_LEVEL));
 818         apic_init_intr();
 819 
 820         /*
 821          * since some systems don't enable the internal cache on the non-boot
 822          * cpus, so we have to enable them here
 823          */
 824         setcr0(getcr0() & ~(CR0_CD | CR0_NW));
 825 
 826 #ifdef  DEBUG
 827         APIC_AV_PENDING_SET();
 828 #else
 829         if (apic_mode == LOCAL_APIC)
 830                 APIC_AV_PENDING_SET();
 831 #endif  /* DEBUG */
 832 
 833         /*
 834          * We may be booting, or resuming from suspend; aci_status will
 835          * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
 836          * APIC_CPU_ONLINE flag here rather than setting aci_status completely.
 837          */
 838         cpun = psm_get_cpu_id();
 839         apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
 840 
 841         apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
 842         return (PSM_SUCCESS);
 843 }
 844 
 845 /*
 846  * type == -1 indicates it is an internal request. Do not change
 847  * resv_vector for these requests
 848  */
 849 static int
 850 apic_get_ipivect(int ipl, int type)
 851 {
 852         uchar_t vector;
 853         int irq;
 854 
 855         if ((irq = apic_allocate_irq(APIC_VECTOR(ipl))) != -1) {
 856                 if (vector = apic_allocate_vector(ipl, irq, 1)) {
 857                         apic_irq_table[irq]->airq_mps_intr_index =
 858                             RESERVE_INDEX;
 859                         apic_irq_table[irq]->airq_vector = vector;
 860                         if (type != -1) {
 861                                 apic_resv_vector[ipl] = vector;
 862                         }
 863                         return (irq);
 864                 }
 865         }
 866         apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
 867         return (-1);    /* shouldn't happen */
 868 }
 869 
 870 static int
 871 apic_getclkirq(int ipl)
 872 {
 873         int     irq;
 874 
 875         if ((irq = apic_get_ipivect(ipl, -1)) == -1)
 876                 return (-1);
 877         /*
 878          * Note the vector in apic_clkvect for per clock handling.
 879          */
 880         apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT;
 881         APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n",
 882             apic_clkvect));
 883         return (irq);
 884 }
 885 
 886 /*
 887  * Try and disable all interrupts. We just assign interrupts to other
 888  * processors based on policy. If any were bound by user request, we
 889  * let them continue and return failure. We do not bother to check
 890  * for cache affinity while rebinding.
 891  */
 892 
 893 static int
 894 apic_disable_intr(processorid_t cpun)
 895 {
 896         int bind_cpu = 0, i, hardbound = 0;
 897         apic_irq_t *irq_ptr;
 898         ulong_t iflag;
 899 
 900         iflag = intr_clear();
 901         lock_set(&apic_ioapic_lock);
 902 
 903         for (i = 0; i <= APIC_MAX_VECTOR; i++) {
 904                 if (apic_reprogram_info[i].done == B_FALSE) {
 905                         if (apic_reprogram_info[i].bindcpu == cpun) {
 906                                 /*
 907                                  * CPU is busy -- it's the target of
 908                                  * a pending reprogramming attempt
 909                                  */
 910                                 lock_clear(&apic_ioapic_lock);
 911                                 intr_restore(iflag);
 912                                 return (PSM_FAILURE);
 913                         }
 914                 }
 915         }
 916 
 917         apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
 918 
 919         apic_cpus[cpun].aci_curipl = 0;
 920 
 921         i = apic_min_device_irq;
 922         for (; i <= apic_max_device_irq; i++) {
 923                 /*
 924                  * If there are bound interrupts on this cpu, then
 925                  * rebind them to other processors.
 926                  */
 927                 if ((irq_ptr = apic_irq_table[i]) != NULL) {
 928                         ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) ||
 929                             (irq_ptr->airq_temp_cpu == IRQ_UNINIT) ||
 930                             (apic_cpu_in_range(irq_ptr->airq_temp_cpu)));
 931 
 932                         if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) {
 933                                 hardbound = 1;
 934                                 continue;
 935                         }
 936 
 937                         if (irq_ptr->airq_temp_cpu == cpun) {
 938                                 do {
 939                                         bind_cpu =
 940                                             apic_find_cpu(APIC_CPU_INTR_ENABLE);
 941                                 } while (apic_rebind_all(irq_ptr, bind_cpu));
 942                         }
 943                 }
 944         }
 945 
 946         lock_clear(&apic_ioapic_lock);
 947         intr_restore(iflag);
 948 
 949         if (hardbound) {
 950                 cmn_err(CE_WARN, "Could not disable interrupts on %d"
 951                     "due to user bound interrupts", cpun);
 952                 return (PSM_FAILURE);
 953         }
 954         else
 955                 return (PSM_SUCCESS);
 956 }
 957 
 958 /*
 959  * Bind interrupts to the CPU's local APIC.
 960  * Interrupts should not be bound to a CPU's local APIC until the CPU
 961  * is ready to receive interrupts.
 962  */
 963 static void
 964 apic_enable_intr(processorid_t cpun)
 965 {
 966         int     i;
 967         apic_irq_t *irq_ptr;
 968         ulong_t iflag;
 969 
 970         iflag = intr_clear();
 971         lock_set(&apic_ioapic_lock);
 972 
 973         apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
 974 
 975         i = apic_min_device_irq;
 976         for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
 977                 if ((irq_ptr = apic_irq_table[i]) != NULL) {
 978                         if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) {
 979                                 (void) apic_rebind_all(irq_ptr,
 980                                     irq_ptr->airq_cpu);
 981                         }
 982                 }
 983         }
 984 
 985         if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND)
 986                 apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND;
 987 
 988         lock_clear(&apic_ioapic_lock);
 989         intr_restore(iflag);
 990 }
 991 
 992 /*
 993  * If this module needs a periodic handler for the interrupt distribution, it
 994  * can be added here. The argument to the periodic handler is not currently
 995  * used, but is reserved for future.
 996  */
 997 static void
 998 apic_post_cyclic_setup(void *arg)
 999 {
1000 _NOTE(ARGUNUSED(arg))
1001 
1002         cyc_handler_t cyh;
1003         cyc_time_t cyt;
1004 
1005         /* cpu_lock is held */
1006         /* set up a periodic handler for intr redistribution */
1007 
1008         /*
1009          * In peridoc mode intr redistribution processing is done in
1010          * apic_intr_enter during clk intr processing
1011          */
1012         if (!apic_oneshot)
1013                 return;
1014 
1015         /*
1016          * Register a periodical handler for the redistribution processing.
1017          * Though we would generally prefer to use the DDI interface for
1018          * periodic handler invocation, ddi_periodic_add(9F), we are
1019          * unfortunately already holding cpu_lock, which ddi_periodic_add will
1020          * attempt to take for us.  Thus, we add our own cyclic directly:
1021          */
1022         cyh.cyh_func = (void (*)(void *))apic_redistribute_compute;
1023         cyh.cyh_arg = NULL;
1024         cyh.cyh_level = CY_LOW_LEVEL;
1025 
1026         cyt.cyt_when = 0;
1027         cyt.cyt_interval = apic_redistribute_sample_interval;
1028 
1029         apic_cyclic_id = cyclic_add(&cyh, &cyt);
1030 }
1031 
1032 static void
1033 apic_redistribute_compute(void)
1034 {
1035         int     i, j, max_busy;
1036 
1037         if (apic_enable_dynamic_migration) {
1038                 if (++apic_nticks == apic_sample_factor_redistribution) {
1039                         /*
1040                          * Time to call apic_intr_redistribute().
1041                          * reset apic_nticks. This will cause max_busy
1042                          * to be calculated below and if it is more than
1043                          * apic_int_busy, we will do the whole thing
1044                          */
1045                         apic_nticks = 0;
1046                 }
1047                 max_busy = 0;
1048                 for (i = 0; i < apic_nproc; i++) {
1049                         if (!apic_cpu_in_range(i))
1050                                 continue;
1051 
1052                         /*
1053                          * Check if curipl is non zero & if ISR is in
1054                          * progress
1055                          */
1056                         if (((j = apic_cpus[i].aci_curipl) != 0) &&
1057                             (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
1058 
1059                                 int     irq;
1060                                 apic_cpus[i].aci_busy++;
1061                                 irq = apic_cpus[i].aci_current[j];
1062                                 apic_irq_table[irq]->airq_busy++;
1063                         }
1064 
1065                         if (!apic_nticks &&
1066                             (apic_cpus[i].aci_busy > max_busy))
1067                                 max_busy = apic_cpus[i].aci_busy;
1068                 }
1069                 if (!apic_nticks) {
1070                         if (max_busy > apic_int_busy_mark) {
1071                         /*
1072                          * We could make the following check be
1073                          * skipped > 1 in which case, we get a
1074                          * redistribution at half the busy mark (due to
1075                          * double interval). Need to be able to collect
1076                          * more empirical data to decide if that is a
1077                          * good strategy. Punt for now.
1078                          */
1079                                 if (apic_skipped_redistribute) {
1080                                         apic_cleanup_busy();
1081                                         apic_skipped_redistribute = 0;
1082                                 } else {
1083                                         apic_intr_redistribute();
1084                                 }
1085                         } else
1086                                 apic_skipped_redistribute++;
1087                 }
1088         }
1089 }
1090 
1091 
1092 /*
1093  * The following functions are in the platform specific file so that they
1094  * can be different functions depending on whether we are running on
1095  * bare metal or a hypervisor.
1096  */
1097 
1098 /*
1099  * Check to make sure there are enough irq slots
1100  */
1101 int
1102 apic_check_free_irqs(int count)
1103 {
1104         int i, avail;
1105 
1106         avail = 0;
1107         for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
1108                 if ((apic_irq_table[i] == NULL) ||
1109                     apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) {
1110                         if (++avail >= count)
1111                                 return (PSM_SUCCESS);
1112                 }
1113         }
1114         return (PSM_FAILURE);
1115 }
1116 
1117 /*
1118  * This function allocates "count" MSI vector(s) for the given "dip/pri/type"
1119  */
1120 int
1121 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri,
1122     int behavior)
1123 {
1124         int     rcount, i;
1125         uchar_t start, irqno;
1126         uint32_t cpu;
1127         major_t major;
1128         apic_irq_t      *irqptr;
1129 
1130         DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p "
1131             "inum=0x%x  pri=0x%x count=0x%x behavior=%d\n",
1132             (void *)dip, inum, pri, count, behavior));
1133 
1134         if (count > 1) {
1135                 if (behavior == DDI_INTR_ALLOC_STRICT &&
1136                     apic_multi_msi_enable == 0)
1137                         return (0);
1138                 if (apic_multi_msi_enable == 0)
1139                         count = 1;
1140         }
1141 
1142         if ((rcount = apic_navail_vector(dip, pri)) > count)
1143                 rcount = count;
1144         else if (rcount == 0 || (rcount < count &&
1145             behavior == DDI_INTR_ALLOC_STRICT))
1146                 return (0);
1147 
1148         /* if not ISP2, then round it down */
1149         if (!ISP2(rcount))
1150                 rcount = 1 << (highbit(rcount) - 1);
1151 
1152         mutex_enter(&airq_mutex);
1153 
1154         for (start = 0; rcount > 0; rcount >>= 1) {
1155                 if ((start = apic_find_multi_vectors(pri, rcount)) != 0 ||
1156                     behavior == DDI_INTR_ALLOC_STRICT)
1157                         break;
1158         }
1159 
1160         if (start == 0) {
1161                 /* no vector available */
1162                 mutex_exit(&airq_mutex);
1163                 return (0);
1164         }
1165 
1166         if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1167                 /* not enough free irq slots available */
1168                 mutex_exit(&airq_mutex);
1169                 return (0);
1170         }
1171 
1172         major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1173         for (i = 0; i < rcount; i++) {
1174                 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1175                     (uchar_t)-1) {
1176                         /*
1177                          * shouldn't happen because of the
1178                          * apic_check_free_irqs() check earlier
1179                          */
1180                         mutex_exit(&airq_mutex);
1181                         DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1182                             "apic_allocate_irq failed\n"));
1183                         return (i);
1184                 }
1185                 apic_max_device_irq = max(irqno, apic_max_device_irq);
1186                 apic_min_device_irq = min(irqno, apic_min_device_irq);
1187                 irqptr = apic_irq_table[irqno];
1188 #ifdef  DEBUG
1189                 if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ)
1190                         DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1191                             "apic_vector_to_irq is not APIC_RESV_IRQ\n"));
1192 #endif
1193                 apic_vector_to_irq[start + i] = (uchar_t)irqno;
1194 
1195                 irqptr->airq_vector = (uchar_t)(start + i);
1196                 irqptr->airq_ioapicindex = (uchar_t)inum;    /* start */
1197                 irqptr->airq_intin_no = (uchar_t)rcount;
1198                 irqptr->airq_ipl = pri;
1199                 irqptr->airq_vector = start + i;
1200                 irqptr->airq_origirq = (uchar_t)(inum + i);
1201                 irqptr->airq_share_id = 0;
1202                 irqptr->airq_mps_intr_index = MSI_INDEX;
1203                 irqptr->airq_dip = dip;
1204                 irqptr->airq_major = major;
1205                 if (i == 0) /* they all bound to the same cpu */
1206                         cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno,
1207                             0xff, 0xff);
1208                 else
1209                         irqptr->airq_cpu = cpu;
1210                 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x "
1211                     "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
1212                     (void *)irqptr->airq_dip, irqptr->airq_vector,
1213                     irqptr->airq_origirq, pri));
1214         }
1215         mutex_exit(&airq_mutex);
1216         return (rcount);
1217 }
1218 
1219 /*
1220  * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type"
1221  */
1222 int
1223 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri,
1224     int behavior)
1225 {
1226         int     rcount, i;
1227         major_t major;
1228 
1229         mutex_enter(&airq_mutex);
1230 
1231         if ((rcount = apic_navail_vector(dip, pri)) > count)
1232                 rcount = count;
1233         else if (rcount == 0 || (rcount < count &&
1234             behavior == DDI_INTR_ALLOC_STRICT)) {
1235                 rcount = 0;
1236                 goto out;
1237         }
1238 
1239         if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1240                 /* not enough free irq slots available */
1241                 rcount = 0;
1242                 goto out;
1243         }
1244 
1245         major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1246         for (i = 0; i < rcount; i++) {
1247                 uchar_t vector, irqno;
1248                 apic_irq_t      *irqptr;
1249 
1250                 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1251                     (uchar_t)-1) {
1252                         /*
1253                          * shouldn't happen because of the
1254                          * apic_check_free_irqs() check earlier
1255                          */
1256                         DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1257                             "apic_allocate_irq failed\n"));
1258                         rcount = i;
1259                         goto out;
1260                 }
1261                 if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) {
1262                         /*
1263                          * shouldn't happen because of the
1264                          * apic_navail_vector() call earlier
1265                          */
1266                         DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1267                             "apic_allocate_vector failed\n"));
1268                         rcount = i;
1269                         goto out;
1270                 }
1271                 apic_max_device_irq = max(irqno, apic_max_device_irq);
1272                 apic_min_device_irq = min(irqno, apic_min_device_irq);
1273                 irqptr = apic_irq_table[irqno];
1274                 irqptr->airq_vector = (uchar_t)vector;
1275                 irqptr->airq_ipl = pri;
1276                 irqptr->airq_origirq = (uchar_t)(inum + i);
1277                 irqptr->airq_share_id = 0;
1278                 irqptr->airq_mps_intr_index = MSIX_INDEX;
1279                 irqptr->airq_dip = dip;
1280                 irqptr->airq_major = major;
1281                 irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff);
1282         }
1283 out:
1284         mutex_exit(&airq_mutex);
1285         return (rcount);
1286 }
1287 
1288 /*
1289  * Allocate a free vector for irq at ipl. Takes care of merging of multiple
1290  * IPLs into a single APIC level as well as stretching some IPLs onto multiple
1291  * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority
1292  * requests and allocated only when pri is set.
1293  */
1294 uchar_t
1295 apic_allocate_vector(int ipl, int irq, int pri)
1296 {
1297         int     lowest, highest, i;
1298 
1299         highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
1300         lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL;
1301 
1302         if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
1303                 lowest -= APIC_VECTOR_PER_IPL;
1304 
1305 #ifdef  DEBUG
1306         if (apic_restrict_vector)       /* for testing shared interrupt logic */
1307                 highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS;
1308 #endif /* DEBUG */
1309         if (pri == 0)
1310                 highest -= APIC_HI_PRI_VECTS;
1311 
1312         for (i = lowest; i <= highest; i++) {
1313                 if (APIC_CHECK_RESERVE_VECTORS(i))
1314                         continue;
1315                 if (apic_vector_to_irq[i] == APIC_RESV_IRQ) {
1316                         apic_vector_to_irq[i] = (uchar_t)irq;
1317                         return (i);
1318                 }
1319         }
1320 
1321         return (0);
1322 }
1323 
1324 /* Mark vector as not being used by any irq */
1325 void
1326 apic_free_vector(uchar_t vector)
1327 {
1328         apic_vector_to_irq[vector] = APIC_RESV_IRQ;
1329 }
1330 
1331 /*
1332  * Call rebind to do the actual programming.
1333  * Must be called with interrupts disabled and apic_ioapic_lock held
1334  * 'p' is polymorphic -- if this function is called to process a deferred
1335  * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which
1336  * the irq pointer is retrieved.  If not doing deferred reprogramming,
1337  * p is of the type 'apic_irq_t *'.
1338  *
1339  * apic_ioapic_lock must be held across this call, as it protects apic_rebind
1340  * and it protects apic_get_next_bind_cpu() from a race in which a CPU can be
1341  * taken offline after a cpu is selected, but before apic_rebind is called to
1342  * bind interrupts to it.
1343  */
1344 int
1345 apic_setup_io_intr(void *p, int irq, boolean_t deferred)
1346 {
1347         apic_irq_t *irqptr;
1348         struct ioapic_reprogram_data *drep = NULL;
1349         int rv;
1350 
1351         if (deferred) {
1352                 drep = (struct ioapic_reprogram_data *)p;
1353                 ASSERT(drep != NULL);
1354                 irqptr = drep->irqp;
1355         } else
1356                 irqptr = (apic_irq_t *)p;
1357 
1358         ASSERT(irqptr != NULL);
1359 
1360         rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep);
1361         if (rv) {
1362                 /*
1363                  * CPU is not up or interrupts are disabled. Fall back to
1364                  * the first available CPU
1365                  */
1366                 rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE),
1367                     drep);
1368         }
1369 
1370         return (rv);
1371 }
1372 
1373 
1374 uchar_t
1375 apic_modify_vector(uchar_t vector, int irq)
1376 {
1377         apic_vector_to_irq[vector] = (uchar_t)irq;
1378         return (vector);
1379 }
1380 
1381 char *
1382 apic_get_apic_type(void)
1383 {
1384         return (apic_psm_info.p_mach_idstring);
1385 }
1386 
1387 void
1388 x2apic_update_psm(void)
1389 {
1390         struct psm_ops *pops = &apic_ops;
1391 
1392         ASSERT(pops != NULL);
1393 
1394         pops->psm_intr_exit = x2apic_intr_exit;
1395         pops->psm_setspl = x2apic_setspl;
1396 
1397         pops->psm_send_ipi =  x2apic_send_ipi;
1398         send_dirintf = pops->psm_send_ipi;
1399 
1400         apic_mode = LOCAL_X2APIC;
1401         apic_change_ops();
1402 }